1
|
Jones MJ, Uzuneser TC, Clement T, Wang H, Ojima I, Rushlow WJ, Laviolette SR. Inhibition of fatty acid binding protein-5 in the basolateral amygdala induces anxiolytic effects and accelerates fear memory extinction. Psychopharmacology (Berl) 2024; 241:119-138. [PMID: 37747506 DOI: 10.1007/s00213-023-06468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
RATIONALE The endocannabinoid (eCB) system critically controls anxiety and fear-related behaviours. Anandamide (AEA), a prominent eCB ligand, is a hydrophobic lipid that requires chaperone proteins such as Fatty Acid Binding Proteins (FABPs) for intracellular transport. Intracellular AEA transport is necessary for degradation, so blocking FABP activity increases AEA neurotransmission. OBJECTIVE To investigate the effects of a novel FABP5 inhibitor (SBFI-103) in the basolateral amygdala (BLA) on anxiety and fear memory. METHODS We infused SBFI-103 (0.5 μg-5 μg) to the BLA of adult male Sprague Dawley rats and ran various anxiety and fear memory behavioural assays, neurophysiological recordings, and localized molecular signaling analyses. We also co-infused SBFI-103 with the AEA inhibitor, LEI-401 (3 μg and 10 μg) to investigate the potential role of AEA in these phenomena. RESULTS Acute intra-BLA administration of SBFI-103 produced strong anxiolytic effects across multiple behavioural tests. Furthermore, animals exhibited acute and long-term accelerated associative fear memory extinction following intra-BLA FABP5 inhibition. In addition, BLA FABP5 inhibition induced strong modulatory effects on putative PFC pyramidal neurons along with significantly increased gamma oscillation power. Finally, we observed local BLA changes in the phosphorylation activity of various anxiety- and fear memory-related molecular biomarkers in the PI3K/Akt and MAPK/Erk signaling pathways. At all three levels of analyses, we found the functional effects of SBFI-103 depend on availability of the AEA ligand. CONCLUSIONS These findings demonstrate a novel intra-BLA FABP5 signaling mechanism regulating anxiety and fear memory behaviours, neuronal activity states, local anxiety-related molecular pathways, and functional AEA modulation.
Collapse
Affiliation(s)
- Matthew J Jones
- Department of Neuroscience, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada
| | - Taygun C Uzuneser
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada
| | - Timothy Clement
- Institute of Chemical Biology and Drug Discoveries, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
| | - Hehe Wang
- Institute of Chemical Biology and Drug Discoveries, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discoveries, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, USA
| | - Walter J Rushlow
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada.
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON, Canada.
- Lawson Health Research Institute, 268 Grosvenor St, London, ON, Canada.
| |
Collapse
|
2
|
Namkung H, Thomas KL, Hall J, Sawa A. Parsing neural circuits of fear learning and extinction across basic and clinical neuroscience: Towards better translation. Neurosci Biobehav Rev 2022; 134:104502. [PMID: 34921863 DOI: 10.1016/j.neubiorev.2021.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022]
Abstract
Over the past decades, studies of fear learning and extinction have advanced our understanding of the neurobiology of threat and safety learning. Animal studies can provide mechanistic/causal insights into human brain regions and their functional connectivity involved in fear learning and extinction. Findings in humans, conversely, may further enrich our understanding of neural circuits in animals by providing macroscopic insights at the level of brain-wide networks. Nevertheless, there is still much room for improvement in translation between basic and clinical research on fear learning and extinction. Through the lens of neural circuits, in this article, we aim to review the current knowledge of fear learning and extinction in both animals and humans, and to propose strategies to fill in the current knowledge gap for the purpose of enhancing clinical benefits.
Collapse
Affiliation(s)
- Ho Namkung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK; School of Biosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK; School of Medicine, Cardiff University, Cardiff, UK
| | - Akira Sawa
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21287, USA.
| |
Collapse
|
3
|
Chiodi V, Domenici MR, Biagini T, De Simone R, Tartaglione AM, Di Rosa M, Lo Re O, Mazza T, Micale V, Vinciguerra M. Systemic depletion of histone macroH2A1.1 boosts hippocampal synaptic plasticity and social behavior in mice. FASEB J 2021; 35:e21793. [PMID: 34320234 DOI: 10.1096/fj.202100569r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022]
Abstract
Gene expression and epigenetic processes in several brain regions regulate physiological processes such as cognitive functions and social behavior. MacroH2A1.1 is a ubiquitous variant of histone H2A that regulates cell stemness and differentiation in various organs. Whether macroH2A1.1 has a modulatory role in emotional behavior is unknown. Here, we employed macroH2A1.1 knock-out (-/- ) mice to perform a comprehensive battery of behavioral tests, and an assessment of hippocampal synaptic plasticity (long-term potentiation) accompanied by whole hippocampus RNA sequencing. MacroH2A1.1-/- mice exhibit a stunningly enhancement both of sociability and of active stress-coping behavior, reflected by the increased social behavior in social activity tests and higher mobility time in the forced swim test, respectively. They also display an increased hippocampal synaptic plasticity, accompanied by significant neurotransmission transcriptional networks changes. These results suggest that systemic depletion of histone macroH2A1.1 supports an epigenetic control necessary for hippocampal function and social behavior.
Collapse
Affiliation(s)
- Valentina Chiodi
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Rosaria Domenici
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Tommaso Biagini
- IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, San Giovanni Rotondo, Italy
| | - Roberta De Simone
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Maria Tartaglione
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Oriana Lo Re
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Tommaso Mazza
- IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, San Giovanni Rotondo, Italy
| | - Vincenzo Micale
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.,Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic.,ERA Chair in Translational Stem Cell Biology, Medical University-Varna, Varna, Bulgaria.,Division of Medicine, University College London (UCL), London, UK
| |
Collapse
|
4
|
Knox D, Della Valle R, Mohammadmirzaei N, Shultz B, Biddle M, Farkash A, Chamness M, Moulton E. PI3K-Akt Signaling in the Basolateral Amygdala Facilitates Traumatic Stress Enhancements in Fear Memory. Int J Neuropsychopharmacol 2020; 24:229-238. [PMID: 33151288 PMCID: PMC7968623 DOI: 10.1093/ijnp/pyaa083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/02/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A core symptom of posttraumatic stress disorder is persistent fear memory, which can be defined as fear memory that is resistant to updating, inhibition, or extinction. posttraumatic stress disorder emerges after traumatic stress exposure, but neurobiological mechanisms via which traumatic stress leads to persistent fear memory are not well defined. Akt signaling within the amygdala (Amy) is enhanced with traumatic stress, and phosphatidylinositol kinase 3 (PI3K) activation of Akt within the basolateral Amy (BLA) has been implicated as critical to fear memory formation. These findings raise the possibility that traumatic stress enhances PI3K→Akt signaling in the BLA, which leads to persistent fear memory. METHODS To test this hypothesis, rats were exposed to traumatic stress using the single prolonged stress model, and changes in Akt phosphorylation were assayed in the Amy at 0 and 30 minutes after fear conditioning (FC). In a separate experiment, we inhibited PI3K→Akt signaling in the BLA prior to FC and observed the effect this had on acquisition, expression, and extinction of FC in stressed and control rats. RESULTS Enhanced Akt phosphorylation in the Amy at both time points was observed in stressed rats, but not in control rats. PI3K→Akt inhibition in the BLA had no effect on freezing in control rats but decreased freezing during extinction training and testing in stressed rats. CONCLUSION These findings suggest that PI3K→Akt signaling in the BLA could be a mechanism via which traumatic stress leads to fear memory that is resistant to extinction.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA,Correspondence: Dayan Knox, PhD, 217 Wolf Hall, Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716 ()
| | - Rebecca Della Valle
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Negin Mohammadmirzaei
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Brianna Shultz
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Matt Biddle
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Abigail Farkash
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Marisa Chamness
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Emily Moulton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
5
|
Giménez-Llort L, Santana-Santana M, Bayascas JR. The Impact of the PI3K/Akt Signaling Pathway in Anxiety and Working Memory in Young and Middle-Aged PDK1 K465E Knock-In Mice. Front Behav Neurosci 2020; 14:61. [PMID: 32457586 PMCID: PMC7225327 DOI: 10.3389/fnbeh.2020.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Dysfunction and dysregulation at the genetic, neural, and behavioral levels point at the fine-tuning of broadly spread networks as critical for a wide array of behaviors and mental processes through the life span. This brain-based evidence, from basic to behavioral neuroscience levels, is leading to a new conceptualization of mental health and disease. Thus, the Research Domain Criteria considers phenotypic differences observed among disorders as explained by variations in the nature and degree of neural circuitry disruptions, under the modulation of several developmental, compensatory, environmental, and epigenetic factors. In this context, we aimed to describe for the first time the in vivo behavioral impact of tweaking the PI3K/Akt signaling pathway known to play an essential role in the regulation of cellular processes, leading to diverse physiological responses. We explored the effects in young (YA, 3–4 months of age) and mature (MA, 11–14 months of age) male and female PDK1 K465E knock-in mice in a battery of tests under different anxiogenic conditions. The results evidenced that the double mutation of the PDK1 pleckstrin homology (PH) domain resulted in an enhancement of the negative valence system shown as an increase of responses of fear- and anxiety-like behaviors in anxiogenic situations. Interestingly, this seemed to be specific of YA and found regulated at middle age. In contrast, cognitive deficits, as measured in a spatial working memory task, were found in both YA and MA mutants and independently of the level of their anxious-like profiles. These distinct age- and function-dependent impacts would be in agreement with the distinct cortical and limbic deficits in the Akt signaling in the brain we have recently described in these same animals. The elicitation of age- and neuronal-dependent specific patterns suggests that fine-tuning the intensity of the PKB/Akt signal that enables diverse physiological response has also its in vivo translation into the negative valence system and age is a key regulatory factor.
Collapse
Affiliation(s)
- Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mikel Santana-Santana
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Ramón Bayascas
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Micale V, Drago F, Noerregaard PK, Elling CE, Wotjak CT. The Cannabinoid CB1 Antagonist TM38837 With Limited Penetrance to the Brain Shows Reduced Fear-Promoting Effects in Mice. Front Pharmacol 2019; 10:207. [PMID: 30949045 PMCID: PMC6435594 DOI: 10.3389/fphar.2019.00207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
Abstract
Rimonabant was the first selective CB1 antagonist/inverse agonist introduced into clinical practice to treat obesity and metabolic-related disorders. It was withdrawn from market due to the notably increased rates of psychiatric side effects. We have evaluated TM38837, a novel, largely peripherally restricted CB1 antagonist, in terms of fear-promoting consequences of systemic vs. intracerebral injections. Different groups of male C57BL/6 N mice underwent auditory fear conditioning, followed by re-exposure to the tone. Mice were treated per os (p.o.) with TM38837 (10, 30, or 100 mg/kg), rimonabant (10 mg/kg; a brain penetrating CB1 antagonist/inverse agonist which served as a positive control), or vehicle, 2 h prior the tone presentation. Only the high dose of TM38837 (100 mg/kg) induced a significant increase in freezing behavior, similar to that induced by rimonabant (10 mg/kg) (p < 0.001). If injected into the brain both TM38837 (10 or 30 μg/mouse) and rimonabant (1 or 10 μg/mouse) caused a sustained fear response to the tone, which was more pronounced after rimonabant treatment. Taken together, TM38837 was at least one order of magnitude less effective in promoting fear responses than rimonabant. Given the equipotency of the two CB1 antagonists with regard to weight loss and metabolic syndrome-like symptoms in rodent obesity models, our results point to a critical dose range in which TM3887 might be beneficial for indications such as obesity and metabolic disorders with limited risk of fear-promoting effects.
Collapse
Affiliation(s)
- Vincenzo Micale
- Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.,National Institute Mental Health, Klecany, Czechia
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | | | - Carsten T Wotjak
- Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
7
|
Wotjak CT. Sound check, stage design and screen plot - how to increase the comparability of fear conditioning and fear extinction experiments. Psychopharmacology (Berl) 2019; 236:33-48. [PMID: 30470861 PMCID: PMC6373201 DOI: 10.1007/s00213-018-5111-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022]
Abstract
In the recent decade, fear conditioning has evolved as a standard procedure for testing cognitive abilities such as memory acquisition, consolidation, recall, reconsolidation, and extinction, preferentially in genetically modified mice. The reasons for the popularity of this powerful approach are its ease to perform, the short duration of training and testing, and its well-described neural basis. So why to bother about flaws in standardization of test procedures and analytical routines? Simplicity does not preclude the existence of fallacies. A short survey of the literature revealed an indifferent use of acoustic stimuli in terms of quality (i.e., white noise vs. sine wave), duration, and intensity. The same applies to the shock procedures. In the present article, I will provide evidence for the importance of qualitative and quantitative parameters of conditioned and unconditioned stimuli for the experimental outcome. Moreover, I will challenge frequently applied interpretations of short-term vs. long-term extinction and spontaneous recovery. On the basis of these concerns, I suggest a guideline for standardization of fear conditioning experiments in mice to improve the comparability of the experimental data.
Collapse
Affiliation(s)
- Carsten T. Wotjak
- 0000 0000 9497 5095grid.419548.5Max Planck Institute of Psychiatry, RG “Neuronal Plasticity”, Kraepelinstr. 2-10, 80804 Munich, Germany
| |
Collapse
|
8
|
Abstract
The measurement of Pavlovian forms of fear extinction offers a relatively simple behavioral preparation that is nonetheless tractable, from a translational perspective, as an approach to study mechanisms of exposure therapy and biological underpinnings of anxiety and trauma-related disorders such as post-traumatic stress disorder (PTSD). Deficient fear extinction is considered a robust clinical endophenotype for these disorders and, as such, has particular significance in the current "age of RDoC (research domain criteria)." Various rodent models of impaired extinction have thus been generated with the objective of approximating this clinical, relapse prone aberrant extinction learning. These models have helped to reveal neurobiological correlates of extinction circuitry failure, gene variants, and other mechanisms underlying deficient fear extinction. In addition, they are increasingly serving as tools to investigate ways to therapeutically overcome poor extinction to support long-term retention of extinction memory and thus protection against various forms of fear relapse; modeled in the laboratory by measuring spontaneous recovery, reinstatement and renewal of fear. In the current article, we review models of impaired extinction built around (1) experimentally induced brain region and neural circuit disruptions (2) spontaneously-arising and laboratory-induced genetic modifications, or (3) exposure to environmental insults, including stress, drugs of abuse, and unhealthy diet. Collectively, these models have been instrumental in advancing in our understanding of extinction failure and underlying susceptibilities at the neural, genetic, molecular, and neurochemical levels; generating renewed interest in developing novel, targeted and effective therapeutic treatments for anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| |
Collapse
|
9
|
Davis SM, Rice M, Rudlong J, Eaton V, King T, Burman MA. Neonatal pain and stress disrupts later-life pavlovian fear conditioning and sensory function in rats: Evidence for a two-hit model. Dev Psychobiol 2018; 60:520-533. [PMID: 29749116 DOI: 10.1002/dev.21632] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Early life trauma has been linked to increased risks for anxiety, depression, and chronic pain. We used rodent models of acute and inflammatory neonatal pain to explore effects on fear conditioning and somatosensory function. Hindpaw needle pricks or handling on postnatal days (PNDs) 1-7 caused lasting impacts on affective and somatosensory function when assessed at later ages, PNDs 24 (postweaning), 45 (adolescence), or 66 (adulthood). First, auditory, but not contextual, freezing was mildly disrupted regardless of age. Second, a profound postfear conditioning tactile hypersensitivity was observed in neonatally stressed, postweaning rats. In the absence of fear conditioning, the mechanical hypersensitivity was not observed, consistent with a two-hit model of psychopathology. Injections of 2% α-carrageenan did not have the same lasting impact but was slightly protective against observed effects of neonatal vehicle injections. Basal and elicited corticosterone levels postweaning were not altered by neonatal pain or handling. These data demonstrate that neonatal adversity can have lasting impacts on affective and somatosensory function that differs regardless of age.
Collapse
Affiliation(s)
- Seth M Davis
- Department of Psychology, University of New England, Biddeford, Maine.,Department of Biomedical Sciences, University of New England, Biddeford, Maine
| | - Makaela Rice
- Department of Psychology, University of New England, Biddeford, Maine
| | - Jacob Rudlong
- Department of Psychology, University of New England, Biddeford, Maine
| | - Victoria Eaton
- Department of Psychology, University of New England, Biddeford, Maine
| | - Tamara King
- Department of Biomedical Sciences, University of New England, Biddeford, Maine.,Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine
| | - Michael A Burman
- Department of Psychology, University of New England, Biddeford, Maine.,Department of Biomedical Sciences, University of New England, Biddeford, Maine
| |
Collapse
|
10
|
Exposure to an obesogenic diet during adolescence leads to abnormal maturation of neural and behavioral substrates underpinning fear and anxiety. Brain Behav Immun 2018; 70:96-117. [PMID: 29428401 PMCID: PMC7700822 DOI: 10.1016/j.bbi.2018.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/08/2018] [Accepted: 01/21/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) and obesity are highly prevalent in adolescents. Emerging findings from our laboratory and others are consistent with the novel hypothesis that obese individuals may be predisposed to developing PTSD. Given that aberrant fear responses are pivotal in the pathogenesis of PTSD, the objective of this study was to determine the impact of an obesogenic Western-like high-fat diet (WD) on neural substrates associated with fear. METHODS Adolescent Lewis rats (n = 72) were fed with either the experimental WD (41.4% kcal from fat) or the control diet. The fear-potentiated startle paradigm was used to determine sustained and phasic fear responses. Diffusion tensor imaging metrics and T2 relaxation times were used to determine the structural integrity of the fear circuitry including the medial prefrontal cortex (mPFC) and the basolateral complex of the amygdala (BLA). RESULTS The rats that consumed the WD exhibited attenuated fear learning and fear extinction. These behavioral impairments were associated with oversaturation of the fear circuitry and astrogliosis. The BLA T2 relaxation times were significantly decreased in the WD rats relative to the controls. We found elevated fractional anisotropy in the mPFC of the rats that consumed the WD. We show that consumption of a WD may lead to long-lasting damage to components of the fear circuitry. CONCLUSIONS Our findings demonstrate that consumption of an obesogenic diet during adolescence has a profound impact in the maturation of the fear neurocircuitry. The implications of this research are significant as they identify potential biomarkers of risk for psychopathology in the growing obese population.
Collapse
|
11
|
Heinz DE, Genewsky A, Wotjak CT. Enhanced anandamide signaling reduces flight behavior elicited by an approaching robo-beetle. Neuropharmacology 2017; 126:233-241. [DOI: 10.1016/j.neuropharm.2017.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 01/22/2023]
|
12
|
Heterozygosity for the Mood Disorder-Associated Variant Gln460Arg Alters P2X7 Receptor Function and Sleep Quality. J Neurosci 2017; 37:11688-11700. [PMID: 29079688 DOI: 10.1523/jneurosci.3487-16.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
A single nucleotide polymorphism substitution from glutamine (Gln, Q) to arginine (Arg, R) at codon 460 of the purinergic P2X7 receptor (P2X7R) has repeatedly been associated with mood disorders. The P2X7R-Gln460Arg variant per se is not compromised in its function. However, heterologous expression of P2X7R-Gln460Arg together with wild-type P2X7R has recently been demonstrated to impair receptor function. Here we show that this also applies to humanized mice coexpressing both human P2X7R variants. Primary hippocampal cells derived from heterozygous mice showed an attenuated calcium uptake upon agonist stimulation. While humanized mice were unaffected in their behavioral repertoire under basal housing conditions, mice that harbor both P2X7R variants showed alterations in their sleep quality resembling signs of a prodromal disease stage. Also healthy heterozygous human subjects showed mild changes in sleep parameters. These results indicate that heterozygosity for the wild-type P2X7R and its mood disorder-associated variant P2X7R-Gln460Arg represents a genetic risk factor, which is potentially able to convey susceptibility to mood disorders.SIGNIFICANCE STATEMENT Depression and bipolar disorder are the most common mood disorders. The P2X7 receptor (P2X7R) regulates many cellular functions. Its polymorphic variant Gln460Arg has repeatedly been associated with mood disorders. Genetically engineered mice, with human P2X7R, revealed that heterozygous mice (i.e., they coexpress the disease-associated Gln460Arg variant together with its normal version) have impaired receptor function and showed sleep disturbances. Human participants with the heterozygote genotype also had subtle alterations in their sleep profile. Our findings suggest that altered P2X7R function in heterozygote individuals disturbs sleep and might increase the risk for developing mood disorders.
Collapse
|
13
|
Acoustic startle response in rats predicts inter-individual variation in fear extinction. Neurobiol Learn Mem 2017; 139:157-164. [PMID: 28131759 DOI: 10.1016/j.nlm.2017.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 11/23/2022]
Abstract
Although a large portion of the population is exposed to a traumatic event at some point, only a small percentage of the population develops post-traumatic stress disorder (PTSD), suggesting the presence of predisposing factors. Abnormal acoustic startle response (ASR) has been shown to be associated with PTSD, implicating it as a potential predictor of the development of PTSD-like behavior. Since poor extinction and retention of extinction learning are characteristic of PTSD patients, it is of interest to determine if abnormal ASR is predictive of development of such deficits. To determine whether baseline ASR has utility in predicting the development of PTSD-like behavior, the relationship between baseline ASR and freezing behavior following Pavlovian fear conditioning was examined in a group of adult, male Sprague-Dawley rats. Baseline acoustic startle response (ASR) was assessed preceding exposure to a Pavlovian fear conditioning paradigm where freezing behavior was measured during fear conditioning, extinction training, and extinction testing. Although there was no relationship between baseline ASR and fear memory following conditioning, rats with low baseline ASR had significantly lower magnitude of retention of the extinction memory than rats with high baseline ASR. The results suggest that baseline ASR has value as a predictive index of the development of a PTSD-like phenotype.
Collapse
|
14
|
Ayers L, Agostini A, Schulkin J, Rosen JB. Effects of oxytocin on background anxiety in rats with high or low baseline startle. Psychopharmacology (Berl) 2016; 233:2165-2172. [PMID: 27004789 PMCID: PMC4864502 DOI: 10.1007/s00213-016-4267-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/29/2016] [Indexed: 01/17/2023]
Abstract
RATIONALE Oxytocin has antianxiety properties in humans and rodents. However, the antianxiety effects have been variable. OBJECTIVES To reduce variability and to strengthen the antianxiety effect of oxytocin in fear-potentiated startle, two experiments were performed. First, different amounts of light-shock pairings were given to determine the optimal levels of cue-specific fear conditioning and non-predictable startle (background anxiety). Second, the antianxiety effects of oxytocin were examined in rats with high and low pre-fear conditioning baseline startle to determine if oxytocin differentially affects high and low trait anxiety rats. METHODS Baseline pre-fear conditioning startle responses were first measured. Rats then received 1, 5, or 10 light-shock pairings. Fear-potentiated startle was then tested with two trial types: light-cued startle and non-cued startle trials. In the second experiment, rats fear conditioned with 10 light-shock pairings were administered either saline or oxytocin before a fear-potentiated startle test. Rats were categorized as low or high startlers by their pre-fear conditioning startle amplitude. RESULTS Ten shock pairings produced the largest non-cued startle responses (background anxiety), without increasing cue-specific fear-potentiated startle compared to one and five light-shock pairings. Cue-specific fear-potentiated startle was unaffected by oxytocin. Oxytocin reduced background anxiety only in rats with low pre-fear startle responses. CONCLUSIONS Oxytocin has population selective antianxiety effects on non-cued unpredictable threat, but only in rats with low pre-fear baseline startle responses. The low startle responses are reminiscent of humans with low startle responses and high trait anxiety.
Collapse
Affiliation(s)
- Luke Ayers
- Department of Psychology, Widener University, Chester, PA
| | - Andrew Agostini
- Department of Psychological and Brain Sciences, University of
Delaware, Newark, DE
| | - Jay Schulkin
- Department of Neuroscience, Georgetown University, Washington,
DC
| | - Jeffrey B. Rosen
- Department of Psychological and Brain Sciences, University of
Delaware, Newark, DE
| |
Collapse
|
15
|
Parental origin impairment of synaptic functions and behaviors in cytoplasmic FMRP interacting protein 1 (Cyfip1) deficient mice. Brain Res 2015; 1629:340-50. [PMID: 26474913 DOI: 10.1016/j.brainres.2015.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 09/01/2015] [Accepted: 10/06/2015] [Indexed: 11/30/2022]
Abstract
CYFIP1 maps to the interval between proximal breakpoint 1 (BP1) and breakpoint 2 (BP2) of chromosomal 15q11-q13 deletions that are implicated in the Angelman (AS) and Prader-Willi syndrome (PWS). There is only one breakpoint (BP3) at the distal end of deletion. CYFIP1 is deleted in AS patients with the larger class I deletion (BP1 to BP3) and the neurological presentations in these patients are more severe than that of patients with class II (BP2 to BP3) deletion. The haploinsufficiency of CYFIP1 is hypothesized to contribute to more severe clinical presentations in class I AS patients. The expression of CYFIP1 is suggested to be bi-allelic in literature but the possibility of parental origin of expression is not completely excluded. We generated and characterized Cyfip1 mutant mice. Homozygous Cyfip1 mice were early embryonic lethal. However, there was a parental origin specific effect between paternal Cyfip1 deficiency (m+/p-) and maternal deficiency (m-/p+) on both synaptic transmissions and behaviors in hippocampal CA1 synapses despite no evidence supporting the parental origin difference for the expression. Both m-/p+ and m+/p- showed the impaired input-output response and paired-pulse facilitation. While the long term-potentiation and group I mGluR mediated long term depression induced by DHPG was not different between Cyfip1 m-/p+ and m+/p- mice, the initial DHPG induced response was significantly enhanced in m-/p+ but not in m+/p- mice. m+/p- but not m-/p+ mice displayed increased freezing in cued fear conditioning and abnormal transitions in zero-maze test. The impaired synaptic transmission and behaviors in haploinsufficiency of Cyfip1 mice provide the evidence supporting the role of CYFIP1 modifying the clinical presentation of class I AS patients and in human neuropsychiatric disorders.
Collapse
|
16
|
Selective breeding for high anxiety introduces a synonymous SNP that increases neuropeptide S receptor activity. J Neurosci 2015; 35:4599-613. [PMID: 25788677 DOI: 10.1523/jneurosci.4764-13.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuropeptide S (NPS) has generated substantial interest due to its anxiolytic and fear-attenuating effects in rodents, while a corresponding receptor polymorphism associated with increased NPS receptor (NPSR1) surface expression and efficacy has been implicated in an increased risk of panic disorder in humans. To gain insight into this paradox, we examined the NPS system in rats and mice bred for high anxiety-related behavior (HAB) versus low anxiety-related behavior, and, thereafter, determined the effect of central NPS administration on anxiety- and fear-related behavior. The HAB phenotype was accompanied by lower basal NPS receptor (Npsr1) expression, which we could confirm via in vitro dual luciferase promoter assays. Assessment of shorter Npsr1 promoter constructs containing a sequence mutation that introduces a glucocorticoid receptor transcription factor binding site, confirmed via oligonucleotide pull-down assays, revealed increased HAB promoter activity-an effect that was prevented by dexamethasone. Analogous to the human NPSR1 risk isoform, functional analysis of a synonymous single nucleotide polymorphism in the coding region of HAB rodents revealed that it caused a higher cAMP response to NPS stimulation. Assessment of the behavioral consequence of these differences revealed that intracerebroventricular NPS reversed the hyperanxiety of HAB rodents as well as the impaired cued-fear extinction in HAB rats and the enhanced fear expression in HAB mice, respectively. These results suggest that alterations in the NPS system, conserved across rodents and humans, contribute to innate anxiety and fear, and that HAB rodents are particularly suited to resolve the apparent discrepancy between the preclinical and clinical findings to date.
Collapse
|
17
|
Kao CY, Stalla G, Stalla J, Wotjak CT, Anderzhanova E. Norepinephrine and corticosterone in the medial prefrontal cortex and hippocampus predict PTSD-like symptoms in mice. Eur J Neurosci 2015; 41:1139-48. [PMID: 25720329 DOI: 10.1111/ejn.12860] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/26/2015] [Indexed: 12/24/2022]
Abstract
This study measured changes in brain extracellular norepinephrine (NE) and free corticosterone (CORT) levels in a mouse model of post-traumatic stress disorder and related them to hyperarousal and fear memory retention. To this end, microdialysis in the medial prefrontal cortex (mPFC) and the hippocampus (HPC) of male C57BL/6NCrl mice was performed during an acoustic startle response (ASR) and following an electric foot shock (FS), as well as during an ASR and recall of contextual fear (CF) 1 day later. Changes in ASR-stimulated NE levels in the mPFC corresponded to ASR 34 days after FS. Changes in basal and ASR-stimulated extracellular NE levels in the HPC, in contrast, were related to expression of early (day 2) and late (day 34) CF after FS. The increase in extracellular NE levels correlated in a U-shape manner with arousal levels and CF, thus suggesting a non-direct relationship. Stress of different modalities/strength (ASR, FS and CF) caused a similar relative increase in free CORT levels both in the mPFC and the HPC. One day after FS, ASR-induced increases in the CORT content in the mPFC tended to correlate with the FS-potentiated ASR in a U-shape manner. Taken together, these data show that the intracerebral increase in free CORT was likely related to an immediate response to stress, whereas NE neurotransmission in the forebrain predicted arousal and CF 1 month after trauma.
Collapse
Affiliation(s)
- C-Y Kao
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
18
|
Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther 2014; 149:150-90. [PMID: 25550231 PMCID: PMC4380664 DOI: 10.1016/j.pharmthera.2014.12.004] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 12/20/2022]
Abstract
Pathological fear and anxiety are highly debilitating and, despite considerable advances in psychotherapy and pharmacotherapy they remain insufficiently treated in many patients with PTSD, phobias, panic and other anxiety disorders. Increasing preclinical and clinical evidence indicates that pharmacological treatments including cognitive enhancers, when given as adjuncts to psychotherapeutic approaches [cognitive behavioral therapy including extinction-based exposure therapy] enhance treatment efficacy, while using anxiolytics such as benzodiazepines as adjuncts can undermine long-term treatment success. The purpose of this review is to outline the literature showing how pharmacological interventions targeting neurotransmitter systems including serotonin, dopamine, noradrenaline, histamine, glutamate, GABA, cannabinoids, neuropeptides (oxytocin, neuropeptides Y and S, opioids) and other targets (neurotrophins BDNF and FGF2, glucocorticoids, L-type-calcium channels, epigenetic modifications) as well as their downstream signaling pathways, can augment fear extinction and strengthen extinction memory persistently in preclinical models. Particularly promising approaches are discussed in regard to their effects on specific aspects of fear extinction namely, acquisition, consolidation and retrieval, including long-term protection from return of fear (relapse) phenomena like spontaneous recovery, reinstatement and renewal of fear. We also highlight the promising translational value of the preclinial research and the clinical potential of targeting certain neurochemical systems with, for example d-cycloserine, yohimbine, cortisol, and L-DOPA. The current body of research reveals important new insights into the neurobiology and neurochemistry of fear extinction and holds significant promise for pharmacologically-augmented psychotherapy as an improved approach to treat trauma and anxiety-related disorders in a more efficient and persistent way promoting enhanced symptom remission and recovery.
Collapse
Affiliation(s)
- N Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - C Schmuckermair
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - N Whittle
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - A Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
19
|
Hansen RT, Conti M, Zhang HT. Mice deficient in phosphodiesterase-4A display anxiogenic-like behavior. Psychopharmacology (Berl) 2014; 231:2941-54. [PMID: 24563185 DOI: 10.1007/s00213-014-3480-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/24/2014] [Indexed: 12/26/2022]
Abstract
RATIONALE Phosphodiesterases (PDEs) are a super family of enzymes responsible for the halting of intracellular cyclic nucleotide signaling and may represent novel therapeutic targets for treatment of cognitive disorders. PDE4 is of considerable interest to cognitive research because it is highly expressed in the brain, particularly in the cognition-related brain regions. Recently, the functional role of PDE4B and PDE4D, two of the four PDE4 subtypes (PDE4A, B, C, and D), in behavior has begun to be identified; however, the role of PDE4A in the regulation of behavior is still unknown. OBJECTIVES The purpose of this study was to characterize the functional role of PDE4A in behavior. METHODS The role of PDE4A in behavior was evaluated through a battery of behavioral tests using PDE4A knockout (KO) mice; urine corticosterone levels were also measured. RESULTS PDE4A KO mice exhibited improved memory in the step-through-passive-avoidance test. They also displayed anxiogenic-like behavior in elevated-plus maze, holeboard, light-dark transition, and novelty suppressed feeding tests. Consistent with the anxiety profile, PDE4A KO mice had elevated corticosterone levels compared with wild-type controls post-stress. Interestingly, PDE4A KO mice displayed no change in object recognition, Morris water maze, forced swim, tail suspension, and duration of anesthesia induced by co-administration of xylazine and ketamine (suggesting that PDE4A KO may not be emetic). CONCLUSIONS These results suggest that PDE4A may be important in the regulation of emotional memory and anxiety-like behavior, but not emesis. PDE4A could possibly represent a novel therapeutic target in the future for anxiety or disorders affecting memory.
Collapse
Affiliation(s)
- Rolf T Hansen
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Dr, Morgantown, WV, 26506-9137, USA
| | | | | |
Collapse
|
20
|
Sweet TB, Panda N, Hein AM, Das SL, Hurley SD, Olschowka JA, Williams JP, O'Banion MK. Central Nervous System Effects of Whole-Body Proton Irradiation. Radiat Res 2014; 182:18-34. [DOI: 10.1667/rr13699.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tara Beth Sweet
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Nirlipta Panda
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Amy M. Hein
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Shoshana L. Das
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Sean D. Hurley
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - John A. Olschowka
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - M. Kerry O'Banion
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
21
|
Ma MCJ, Atanur SS, Aitman TJ, Kwitek AE. Genomic structure of nucleotide diversity among Lyon rat models of metabolic syndrome. BMC Genomics 2014; 15:197. [PMID: 24628878 PMCID: PMC4003853 DOI: 10.1186/1471-2164-15-197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 03/01/2014] [Indexed: 12/29/2022] Open
Abstract
Background The metabolic syndrome (MetS), a complex disorder involving hypertension, obesity, dyslipidemia and insulin resistance, is a major risk factor for heart disease, stroke, and diabetes. The Lyon Hypertensive (LH), Lyon Normotensive (LN) and Lyon Low-pressure (LL) rats are inbred strains simultaneously derived from a common outbred Sprague Dawley colony by selection for high, normal, and low blood pressure, respectively. Further studies found that LH is a MetS susceptible strain, while LN is resistant and LL has an intermediate phenotype. Whole genome sequencing determined that, while the strains are phenotypically divergent, they are nearly 98% similar at the nucleotide level. Using the sequence of the three strains, we applied an approach that harnesses the distribution of Observed Strain Differences (OSD), or nucleotide diversity, to distinguish genomic regions of identity-by-descent (IBD) from those with divergent ancestry between the three strains. This information was then used to fine-map QTL identified in a cross between LH and LN rats in order to identify candidate genes causing the phenotypes. Results We identified haplotypes that, in total, contain at least 95% of the identifiable polymorphisms between the Lyon strains that are likely of differing ancestral origin. By intersecting the identified haplotype blocks with Quantitative Trait Loci (QTL) previously identified in a cross between LH and LN strains, the candidate QTL regions have been narrowed by 78%. Because the genome sequence has been determined, we were further able to identify putative functional variants in genes that are candidates for causing the QTL. Conclusions Whole genome sequence analysis between the LH, LN, and LL strains identified the haplotype structure of these three strains and identified candidate genes with sequence variants predicted to affect gene function. This approach, merged with additional integrative genetics approaches, will likely lead to novel mechanisms underlying complex disease and provide new drug targets and therapies. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-197) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Anne E Kwitek
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
22
|
Yen YC, Anderzhanova E, Bunck M, Schuller J, Landgraf R, Wotjak CT. Co-segregation of hyperactivity, active coping styles, and cognitive dysfunction in mice selectively bred for low levels of anxiety. Front Behav Neurosci 2013; 7:103. [PMID: 23966915 PMCID: PMC3744008 DOI: 10.3389/fnbeh.2013.00103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/26/2013] [Indexed: 11/13/2022] Open
Abstract
We established mouse models of extremes in trait anxiety, which are based on selective breeding for low vs. normal vs. high open-arm exploration on the elevated plus-maze. Genetically selected low anxiety-related behavior (LAB) coincided with hyperactivity in the home cage. Given the fact that several psychiatric disorders such as schizophrenia, mania, and attention deficit hyperactivity disorder (ADHD) share hyperactivity symptom, we systematically examined LAB mice with respect to unique and overlapping endophenotypes of the three diseases. To this end Venn diagrams were used as an instrument for discrimination of possible models. We arranged the endophenotypes in Venn diagrams and translated them into different behavioral tests. LAB mice showed elevated levels of locomotion in the open field (OF) test with deficits in habituation, compared to mice bred for normal (NAB) and high anxiety-related behavior (HAB). Cross-breeding of hypoactive HAB and hyperactive LAB mice resulted in offspring showing a low level of locomotion comparable to HAB mice, indicating that the HAB alleles are dominant over LAB alleles in determining the level of locomotion. In a holeboard test, LAB mice spent less time in hole exploration, as shown in patients with schizophrenia and ADHD; however, LAB mice displayed no impairments in social interaction and prepulse inhibition (PPI), implying a unlikelihood of LAB as an animal model of schizophrenia. Although LAB mice displayed hyperarousal, active coping styles, and cognitive deficits, symptoms shared by mania and ADHD, they failed to reveal the classic manic endophenotypes, such as increased hedonia and object interaction. The neuroleptic haloperidol reduced locomotor activity in all mouse lines. The mood stabilizer lithium and the psychostimulant amphetamine, in contrast, selectively reduced hyperactivity in LAB mice. Based on the behavioral and pharmacological profiles, LAB mice are suggested as a novel rodent model of ADHD-like symptoms.
Collapse
Affiliation(s)
- Yi-Chun Yen
- Department of Neuronal Plasticity, Max Planck Institute of Psychiatry Munich, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Eagle AL, Knox D, Roberts MM, Mulo K, Liberzon I, Galloway MP, Perrine SA. Single prolonged stress enhances hippocampal glucocorticoid receptor and phosphorylated protein kinase B levels. Neurosci Res 2012. [PMID: 23201176 DOI: 10.1016/j.neures.2012.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Animal models of posttraumatic stress disorder (PTSD) can explore neurobiological mechanisms by which trauma enhances fear and anxiety reactivity. Single prolonged stress (SPS) shows good validity in producing PTSD-like behavior. While SPS-induced behaviors have been linked to enhanced glucocorticoid receptor (GR) expression, the molecular ramifications of enhanced GR expression have yet to be identified. Phosphorylated protein kinase B (pAkt) is critical for stress-mediated enhancement in general anxiety and memory, and may be regulated by GRs. However, it is currently unknown if pAkt levels are modulated by SPS, as well as if the specificity of GR and pAkt related changes contribute to anxiety-like behavior after SPS. The current study set out to examine the effects of SPS on GR and pAkt protein levels in the amygdala and hippocampus and to examine the specificity of these changes to unconditioned anxiety-like behavior. Levels of GR and pAkt were increased in the hippocampus, but not amygdala. Furthermore, SPS had no effect on unconditioned anxiety-like behavior suggesting that generalized anxiety is not consistently observed following SPS. The results suggest that SPS-enhanced GR expression is associated with phosphorylation of Akt, and also suggest that these changes are not related to an anxiogenic phenotype.
Collapse
Affiliation(s)
- Andrew L Eagle
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | |
Collapse
|