1
|
ELAV Proteins Bind and Stabilize C/EBP mRNA in the Induction of Long-Term Memory in Aplysia. J Neurosci 2020; 41:947-959. [PMID: 33298536 DOI: 10.1523/jneurosci.2284-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/22/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022] Open
Abstract
Long-term memory (LTM) formation is a critical survival process by which an animal retains information about prior experiences to guide future behavior. In the experimentally advantageous marine mollusk Aplysia, LTM for sensitization can be induced by the presentation of two aversive shocks to the animal's tail. Each of these training trials recruits distinct growth factor signaling systems that promote LTM formation. Specifically, whereas intact TrkB signaling during Trial 1 promotes an initial and transient increase of the immediate early gene apc/ebp mRNA, a prolonged increase in apc/ebp gene expression required for LTM formation requires the addition of TGFβ signaling during Trial 2. Here we explored the molecular mechanisms by which Trial 2 achieves the essential prolonged gene expression of apc/ebp We find that this prolonged gene expression is not dependent on de novo transcription, but that apc/ebp mRNA synthesized by Trial 1 is post-transcriptionally stabilized by interacting with the RNA-binding protein ApELAV. This interaction is promoted by p38 MAPK activation initiated by TGFβ. We further demonstrate that blocking the interaction of ApELAV with its target mRNA during Trial 2 blocks both the prolonged increase in apc/ebp gene expression and the behavioral induction of LTM. Collectively, our findings elucidate both when and how ELAV proteins are recruited for the stabilization of mRNA in LTM formation. Stabilization of a transiently expressed immediate early gene mRNA by a repeated training trial may therefore serve as a "filter" for learning, permitting only specific events to cause lasting transcriptional changes and behavioral LTM.SIGNIFICANCE STATEMENT: In the present paper, we significantly extend the general field of molecular processing in long-term memory (LTM) by describing a novel form of pretranslational processing required for LTM, which relies on the stabilization of a newly synthesized mRNA by a class of RNA binding proteins (ELAVs). There are now compelling data showing that important processing can occur after transcription of a gene, but before translation of the message into protein. Although the potential importance of ELAV proteins in LTM formation has previously been reported, the specific actions of ELAV proteins during LTM formation remained to be understood. Our new findings thus complement and extend this literature by demonstrating when and how this post-transcriptional gene regulation is mediated in the induction of LTM.
Collapse
|
2
|
Xu C, Li Q, Efimova O, Jiang X, Petrova M, K Vinarskaya A, Kolosov P, Aseyev N, Koshkareva K, Ierusalimsky VN, Balaban PM, Khaitovich P. Identification of Immediate Early Genes in the Nervous System of Snail Helix lucorum. eNeuro 2019; 6:ENEURO.0416-18.2019. [PMID: 31053606 PMCID: PMC6584072 DOI: 10.1523/eneuro.0416-18.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/02/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023] Open
Abstract
Immediate early genes (IEGs) are useful markers of neuronal activation and essential components of neuronal response. While studies of gastropods have provided many insights into the basic learning and memory mechanisms, the genome-wide assessment of IEGs has been mainly restricted to vertebrates. In this study, we identified IEGs in the terrestrial snail Helix lucorum In the absence of the genome, we conducted de novo transcriptome assembly using reads with short and intermediate lengths cumulatively covering more than 98 billion nucleotides. Based on this assembly, we identified 37 proteins corresponding to contigs differentially expressed (DE) in either the parietal ganglia (PaG) or two giant interneurons located within the PaG of the snail in response to the neuronal stimulation. These proteins included homologues of well-known mammalian IEGs, such as c-jun/jund, C/EBP, c-fos/fosl2, and Egr1, as well as homologues of genes not yet implicated in the neuronal response.
Collapse
Affiliation(s)
- Chuan Xu
- CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Gesellschaft Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian Li
- CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Gesellschaft Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Olga Efimova
- Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Xi Jiang
- CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Gesellschaft Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Marina Petrova
- CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Gesellschaft Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Alia K Vinarskaya
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Peter Kolosov
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Nikolay Aseyev
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Kira Koshkareva
- Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | | | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Philipp Khaitovich
- Skolkovo Institute of Science and Technology, Moscow 143026, Russia
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Comparative Biology Laboratory, Chinese Academy of Sciences-Max Planck Gesellschaft Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
3
|
Sommerlandt FMJ, Brockmann A, Rössler W, Spaethe J. Immediate early genes in social insects: a tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity. Cell Mol Life Sci 2019; 76:637-651. [PMID: 30349993 PMCID: PMC6514070 DOI: 10.1007/s00018-018-2948-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/31/2023]
Abstract
Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying complex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research directions.
Collapse
Affiliation(s)
- Frank M J Sommerlandt
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
4
|
Patel U, Perez L, Farrell S, Steck D, Jacob A, Rosiles T, Krause E, Nguyen M, Calin-Jageman RJ, Calin-Jageman IE. Transcriptional changes before and after forgetting of a long-term sensitization memory in Aplysia californica. Neurobiol Learn Mem 2018; 155:474-485. [PMID: 30243850 PMCID: PMC6365195 DOI: 10.1016/j.nlm.2018.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 01/06/2023]
Abstract
Most long-term memories are forgotten, becoming progressively less likely to be recalled. Still, some memory fragments may persist, as savings memory (easier relearning) can be detected long after recall has become impossible. What happens to a memory trace during forgetting that makes it inaccessible for recall and yet still effective to spark easier re-learning? We are addressing this question by tracking the transcriptional changes that accompany learning and then forgetting of a long-term sensitization memory in the tail-elicited siphon withdrawal reflex of Aplysia californica. First, we tracked savings memory. We found that even though recall of sensitization fades completely within 1 week of training, savings memory is still detectable at 2 weeks post training. Next, we tracked the time-course of regulation of 11 transcripts we previously identified as potentially being regulated after recall has become impossible. Remarkably, 3 transcripts still show strong regulation 2 weeks after training and an additional 4 are regulated for at least 1 week. These long-lasting changes in gene expression always begin early in the memory process, within 1 day of training. We present a synthesis of our results tracking gene expression changes accompanying sensitization and provide a testable model of how sensitization memory is forgotten.
Collapse
Affiliation(s)
- Ushma Patel
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Leticia Perez
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Steven Farrell
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Derek Steck
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Athira Jacob
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Tania Rosiles
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Everett Krause
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Melissa Nguyen
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Robert J Calin-Jageman
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Irina E Calin-Jageman
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States.
| |
Collapse
|
5
|
Conte C, Herdegen S, Kamal S, Patel J, Patel U, Perez L, Rivota M, Calin-Jageman RJ, Calin-Jageman IE. Transcriptional correlates of memory maintenance following long-term sensitization of Aplysia californica. Learn Mem 2017; 24:502-515. [PMID: 28916625 PMCID: PMC5602346 DOI: 10.1101/lm.045450.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022]
Abstract
We characterized the transcriptional response accompanying maintenance of long-term sensitization (LTS) memory in the pleural ganglia of Aplysia californica using microarray (N = 8) and qPCR (N = 11 additional samples). We found that 24 h after memory induction there is strong regulation of 1198 transcripts (748 up and 450 down) in a pattern that is almost completely distinct from what is observed during memory encoding (1 h after training). There is widespread up-regulation of transcripts related to all levels of protein production, from transcription (e.g., subunits of transcription initiation factors) to translation (e.g., subunits of eIF1, eIF2, eIF3, eIF4, eIF5, and eIF2B) to activation of components of the unfolded protein response (e.g., CREB3/Luman, BiP, AATF). In addition, there are widespread changes in transcripts related to cytoskeleton function, synaptic targeting, synaptic function, neurotransmitter regulation, and neuronal signaling. Many of the transcripts identified have previously been linked to memory and plasticity (e.g., Egr, menin, TOB1, IGF2 mRNA binding protein 1/ZBP-1), though the majority are novel and/or uncharacterized. Interestingly, there is regulation that could contribute to metaplasticity potentially opposing or even eroding LTS memory (down-regulation of adenylate cyclase and a putative serotonin receptor, up-regulation of FMRFa and a FMRFa receptor). This study reveals that maintenance of a "simple" nonassociative memory is accompanied by an astonishingly complex transcriptional response.
Collapse
Affiliation(s)
- Catherine Conte
- Neuroscience Program, Dominican University, River Forest, Illinois 60305, USA
| | - Samantha Herdegen
- Neuroscience Program, Dominican University, River Forest, Illinois 60305, USA
| | - Saman Kamal
- Neuroscience Program, Dominican University, River Forest, Illinois 60305, USA
| | - Jency Patel
- Neuroscience Program, Dominican University, River Forest, Illinois 60305, USA
| | - Ushma Patel
- Neuroscience Program, Dominican University, River Forest, Illinois 60305, USA
| | - Leticia Perez
- Neuroscience Program, Dominican University, River Forest, Illinois 60305, USA
| | - Marissa Rivota
- Neuroscience Program, Dominican University, River Forest, Illinois 60305, USA
| | | | | |
Collapse
|
6
|
Sun X, Lin Y. Npas4: Linking Neuronal Activity to Memory. Trends Neurosci 2016; 39:264-275. [PMID: 26987258 DOI: 10.1016/j.tins.2016.02.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 01/16/2023]
Abstract
Immediate-early genes (IEGs) are rapidly activated after sensory and behavioral experience and are believed to be crucial for converting experience into long-term memory. Neuronal PAS domain protein 4 (Npas4), a recently discovered IEG, has several characteristics that make it likely to be a particularly important molecular link between neuronal activity and memory: it is among the most rapidly induced IEGs, is expressed only in neurons, and is selectively induced by neuronal activity. By orchestrating distinct activity-dependent gene programs in different neuronal populations, Npas4 affects synaptic connections in excitatory and inhibitory neurons, neural circuit plasticity, and memory formation. It may also be involved in circuit homeostasis through negative feedback and psychiatric disorders. We summarize these findings and discuss their implications.
Collapse
Affiliation(s)
- Xiaochen Sun
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Molecular and Cellular Neuroscience Graduate Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yingxi Lin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Herdegen S, Conte C, Kamal S, Calin-Jageman RJ, Calin-Jageman IE. Immediate and persistent transcriptional correlates of long-term sensitization training at different CNS loci in Aplysia californica. PLoS One 2014; 9:e114481. [PMID: 25486125 PMCID: PMC4259342 DOI: 10.1371/journal.pone.0114481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
Repeated noxious stimulation produces long-term sensitization of defensive withdrawal reflexes in Aplysia californica, a form of long-term memory that requires changes in both transcription and translation. Previous work has identified 10 transcripts which are rapidly up-regulated after long-term sensitization training in the pleural ganglia. Here we use quantitative PCR to begin examining how these transcriptional changes are expressed in different CNS loci related to defensive withdrawal reflexes at 1 and 24 hours after long-term sensitization training. Specifically, we sample from a) the sensory wedge of the pleural ganglia, which exclusively contains the VC nociceptor cell bodies that help mediate input to defensive withdrawal circuits, b) the remaining pleural ganglia, which contain withdrawal interneurons, and c) the pedal ganglia, which contain many motor neurons. Results from the VC cluster show different temporal patterns of regulation: 1) rapid but transient up-regulation of Aplysia homologs of C/EBP, C/EBPγ, and CREB1, 2) delayed but sustained up-regulation of BiP, Tolloid/BMP-1, and sensorin, 3) rapid and sustained up-regulation of Egr, GlyT2, VPS36, and an uncharacterized protein (LOC101862095), and 4) an unexpected lack of regulation of Aplysia homologs of calmodulin (CaM) and reductase-related protein (RRP). Changes in the remaining pleural ganglia mirror those found in the VC cluster at 1 hour but with an attenuated level of regulation. Because these samples had almost no expression of the VC-specific transcript sensorin, our data suggests that sensitization training likely induces transcriptional changes in either defensive withdrawal interneurons or neurons unrelated to defensive withdrawal. In the pedal ganglia, we observed only a rapid but transient increase in Egr expression, indicating that long-term sensitization training is likely to induce transcriptional changes in motor neurons but raising the possibility of different transcriptional endpoints in this cell type.
Collapse
Affiliation(s)
- Samantha Herdegen
- Neuroscience Program, Dominican University, River Forest, Illinois, United States of America
| | - Catherine Conte
- Neuroscience Program, Dominican University, River Forest, Illinois, United States of America
| | - Saman Kamal
- Neuroscience Program, Dominican University, River Forest, Illinois, United States of America
| | - Robert J. Calin-Jageman
- Neuroscience Program, Dominican University, River Forest, Illinois, United States of America
- * E-mail: (RC-J); (IC-J)
| | - Irina E. Calin-Jageman
- Neuroscience Program, Dominican University, River Forest, Illinois, United States of America
- * E-mail: (RC-J); (IC-J)
| |
Collapse
|
8
|
Herdegen S, Holmes G, Cyriac A, Calin-Jageman IE, Calin-Jageman RJ. Characterization of the rapid transcriptional response to long-term sensitization training in Aplysia californica. Neurobiol Learn Mem 2014; 116:27-35. [PMID: 25117657 DOI: 10.1016/j.nlm.2014.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/17/2014] [Accepted: 07/24/2014] [Indexed: 11/24/2022]
Abstract
We used a custom-designed microarray and quantitative PCR to characterize the rapid transcriptional response to long-term sensitization training in the marine mollusk Aplysia californica. Aplysia were exposed to repeated noxious shocks to one side of the body, a procedure known to induce a long-lasting, transcription-dependent increase in reflex responsiveness that is restricted to the side of training. One hour after training, pleural ganglia from the trained and untrained sides of the body were harvested; these ganglia contain the sensory nociceptors which help mediate the expression of long-term sensitization memory. Microarray analysis from 8 biological replicates suggests that long-term sensitization training rapidly regulates at least 81 transcripts. We used qPCR to test a subset of these transcripts and found that 83% were confirmed in the same samples, and 86% of these were again confirmed in an independent sample. Thus, our new microarray design shows strong convergent and predictive validity for analyzing the transcriptional correlates of memory in Aplysia. Fully validated transcripts include some previously identified as regulated in this paradigm (ApC/EBP and ApEgr) but also include novel findings. Specifically, we show that long-term sensitization training rapidly up-regulates the expression of transcripts which may encode Aplysia homologs of a C/EBPγ transcription factor, a glycine transporter (GlyT2), and a vacuolar-protein-sorting-associated protein (VPS36).
Collapse
Affiliation(s)
- Samantha Herdegen
- Neuroscience Program, Dominican University, River Forest, IL, United States
| | - Geraldine Holmes
- Neuroscience Program, Dominican University, River Forest, IL, United States
| | - Ashly Cyriac
- Neuroscience Program, Dominican University, River Forest, IL, United States
| | | | | |
Collapse
|