1
|
Santos TB, Kramer-Soares JC, Coelho CAO, Oliveira MGM. Temporal association activates projections from the perirhinal cortex and ventral CA1 to the prelimbic cortex and from the prelimbic cortex to the basolateral amygdala. Cereb Cortex 2023; 33:11456-11470. [PMID: 37823340 DOI: 10.1093/cercor/bhad375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023] Open
Abstract
In trace fear conditioning, the prelimbic cortex exhibits persistent activity during the interval between the conditioned and unconditioned stimuli, which maintains a conditioned stimulus representation. Regions cooperating for this function or encoding the conditioned stimulus before the interval could send inputs to the prelimbic cortex, supporting learning. The basolateral amygdala has conditioned stimulus- and unconditioned stimulus-responsive neurons, convergently activated. The prelimbic cortex could directly project to the basolateral amygdala to associate the transient memory of the conditioned stimulus with the unconditioned stimulus. We investigated the neuronal circuit supporting temporal associations using contextual fear conditioning with a 5-s interval, in which 5 s separates the contextual conditioned stimulus from the unconditioned stimulus. Injecting retrobeads, we quantified c-Fos in prelimbic cortex- or basolateral amygdala-projecting neurons from 9 regions after contextual fear conditioning with a 5-s interval or contextual fear conditioning, in which the conditioned and unconditioned stimuli overlap. The contextual fear conditioning with a 5-s interval activated ventral CA1 and perirhinal cortex neurons projecting to the prelimbic cortex and prelimbic cortex neurons projecting to basolateral amygdala. Both fear conditioning activated ventral CA1 and lateral entorhinal cortex neurons projecting to basolateral amygdala and basolateral amygdala neurons projecting to prelimbic cortex. The perirhinal cortex → prelimbic cortex and ventral CA1 → prelimbic cortex connections are the first identified prelimbic cortex afferent projections participating in temporal associations. These results help to understand time-linked memories, a process required in episodic and working memories.
Collapse
Affiliation(s)
- Thays B Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Juliana C Kramer-Soares
- Departamento de Psicobiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
- Universidade Cruzeiro do Sul-UNICSUL, São Paulo 08060-070, Brazil
| | - Cesar A O Coelho
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Maria G M Oliveira
- Departamento de Psicobiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| |
Collapse
|
2
|
Santos TB, Kramer-Soares JC, de Oliveira Coelho CA, Oliveira MGM. Functional network of contextual and temporal memory has increased amygdala centrality and connectivity with the retrosplenial cortex, thalamus, and hippocampus. Sci Rep 2023; 13:13087. [PMID: 37567967 PMCID: PMC10421896 DOI: 10.1038/s41598-023-39946-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
In fear conditioning with time intervals between the conditioned (CS) and unconditioned (US) stimuli, a neural representation of the CS must be maintained over time to be associated with the later US. Usually, temporal associations are studied by investigating individual brain regions. It remains unknown, however, the effect of the interval at the network level, uncovering functional connections cooperating for the CS transient memory and its fear association. We investigated the functional network supporting temporal associations using a task in which a 5-s interval separates the contextual CS from the US (CFC-5s). We quantified c-Fos expression in forty-nine brain regions of male rats following the CFC-5s training, used c-Fos correlations to generate functional networks, and analyzed them by graph theory. Control groups were trained in contextual fear conditioning, in which CS and US overlap. The CFC-5s training additionally activated subdivisions of the basolateral, lateral, and medial amygdala; prelimbic, infralimbic, perirhinal, postrhinal, and intermediate entorhinal cortices; ventral CA1 and subiculum. The CFC-5s network had increased amygdala centrality and higher amygdala internal and external connectivity with the retrosplenial cortex, thalamus, and hippocampus. Amygdala and thalamic nuclei were network hubs. Functional connectivity among these brain regions could support CS transient memories and their association.
Collapse
Affiliation(s)
- Thays Brenner Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-062, Brazil
| | - Juliana Carlota Kramer-Soares
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-062, Brazil
- Universidade Cruzeiro do Sul - UNICSUL, São Paulo, 08060-070, Brazil
| | | | | |
Collapse
|
3
|
Gastrin-releasing peptide regulates fear learning under stressed conditions via activation of the amygdalostriatal transition area. Mol Psychiatry 2022; 27:1694-1703. [PMID: 34997193 DOI: 10.1038/s41380-021-01408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 11/08/2022]
Abstract
The amygdala, a critical brain region responsible for emotional behavior, is crucially involved in the regulation of the effects of stress on emotional behavior. In the mammalian forebrain, gastrin-releasing peptide (GRP), a 27-amino-acid mammalian neuropeptide, which is a homolog of the 14-amino-acid amidated amphibian peptide bombesin, is highly expressed in the amygdala. The levels of GRP are markedly increased in the amygdala after acute stress; therefore, it is known as a stress-activated modulator. To determine the role of GRP in emotional behavior under stress, we conducted some behavioral and biochemical experiments with GRP-knockout (KO) mice. GRP-KO mice exhibited a longer freezing response than wild-type (WT) littermates in both contextual and auditory fear (also known as threat) conditioning tests only when they were subjected to acute restraint stress 20 min before the conditioning. To identify the critical neural circuits associated with the regulation of emotional memory by GRP, we conducted Arc/Arg3.1-reporter mapping in the amygdala with an Arc-Venus reporter transgenic mouse line. In the amygdalostriatal transition area (AST) and the lateral side of the basal nuclei, fear conditioning after restraint stress increased neuronal activity significantly in WT mice, and GRP KO was found to negate this potentiation only in the AST. These results indicate that the GRP-activated neurons in the AST are likely to suppress excessive fear expression through the regulation of downstream circuits related to fear learning following acute stress.
Collapse
|
4
|
Wang W, Wang R, Jiang Z, Li H, Zhu Z, Khalid A, Liu D, Pan F. Inhibiting Brd4 alleviated PTSD-like behaviors and fear memory through regulating immediate early genes expression and neuroinflammation in rats. J Neurochem 2021; 158:912-927. [PMID: 34050937 DOI: 10.1111/jnc.15439] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by depression/anxiety and memory failure, primarily fear memory. According to the reports, neuroinflammation and synaptic plasticity can play a role in the neurophysiological mechanisms underlying PTSD. Bromodomain-containing protein 4 (Brd4) intriguingly affects regulating of inflammatory responses and learning and memory. This study aimed to explore the effect of inhibiting Brd4 on depression/anxiety-like behaviors, spatial and fear memory, and underlying mechanisms in a model of PTSD. Inescapable foot shocks (IFS) with a sound reminder in 6 days were used to induce PTSD-like behaviors which were tested using contextual and cue fear tests, sucrose preference test, open-field test, elevated plus maze test, and Y-maze test. Meanwhile, the Brd4 inhibitor JQ1 was used as an intervention. The results found that IFS induced PTSD-like behaviors and indicated obvious Brd4 expression in microglia of the prefrontal cortex (PFC), hippocampus, and amygdala, pro-inflammatory cytokines over-expression, microglial activation, and nuclear factor-kappa B over-expression in PFC and hippocampus but not in amygdala. Meanwhile, the alterations of immediate early genes (IEGs) were found in PFC, hippocampus, and amygdala. Besides, dendritic spine density was reduced in PFC and hippocampus but was elevated in amygdala of rats with IFS. In addition, treatment with JQ1 significantly reduced freezing time in the contextual and cue fear test, reversed the behavioral impairment, decreased the elevated neuroinflammation, and normalized the alteration in IEGs and dendritic spine densities. The results suggested that Brd4 was involved in IFS-induced PTSD-like behaviors through regulating neuroinflammation, dynamics of IEGs, and synaptic plasticity.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Rui Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Zhijun Jiang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Haonan Li
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Zemeng Zhu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Arslan Khalid
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| |
Collapse
|
5
|
Meloni EG, Kaye KT, Venkataraman A, Carlezon WA. PACAP increases Arc/Arg 3.1 expression within the extended amygdala after fear conditioning in rats. Neurobiol Learn Mem 2018; 157:24-34. [PMID: 30458282 DOI: 10.1016/j.nlm.2018.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 11/24/2022]
Abstract
The stress-related neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is implicated in neuromodulation of learning and memory. PACAP can alter synaptic plasticity and has direct actions on neurons in the amygdala and hippocampus that could contribute to its acute and persistent effects on the consolidation and expression of conditioned fear. We recently demonstrated that intracerebroventricular (ICV) infusion of PACAP prior to fear conditioning (FC) results in initial amnestic-like effects followed by hyper-expression of conditioned freezing with repeated testing, and analyses of immediate-early gene c-Fos expression suggested that the central nucleus of the amygdala (CeA), but not the lateral/basolateral amygdala (LA/BLA) or hippocampus, are involved in these PACAP effects. Here, we extend that work by examining the expression of the synaptic plasticity marker activity-regulated cytoskeleton-associated protein (Arc/Arg 3.1) after PACAP administration and FC. Male Sprague-Dawley rats were implanted with cannula for ICV infusion of PACAP-38 (1.5 µg) or vehicle followed by FC and tests for conditioned freezing. One hour after FC, Arc protein expression was significantly elevated in the CeA and bed nucleus of the stria terminalis (BNST), interconnected structures that are key elements of the extended amygdala, in rats that received the combination of PACAP + FC. In contrast, Arc expression within the subdivisions of the hippocampus, or the LA/BLA, were unchanged. A subpopulation of Arc-positive cells in both the CeA and BNST also express PKCdelta, an intracellular marker that has been used to identify microcircuits that gate conditioned fear in the CeA. Consistent with our previous findings, on the following day conditioned freezing behavior was reduced in rats that had been given the combination of PACAP + FC-an amnestic-like effect-and Arc expression levels had returned to baseline. Given the established role of Arc in modifying synaptic plasticity and memory formation, our findings suggest that PACAP-induced overexpression of Arc following fear conditioning may disrupt neuroplastic changes within populations of CeA and BNST neurons normally responsible for encoding fear-related cues that, in this case, results in altered fear memory consolidation. Hence, PACAP systems may represent an axis on which stress and experience-driven neurotransmission converge to alter emotional memory, and mediate pathologies that are characteristic of psychiatric illnesses such as post-traumatic stress disorder.
Collapse
Affiliation(s)
- Edward G Meloni
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478, United States.
| | - Karen T Kaye
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478, United States
| | - Archana Venkataraman
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478, United States
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478, United States
| |
Collapse
|
6
|
Collins SM, Galvez R. Neocortical SHANK1 regulation of forebrain dependent associative learning. Neurobiol Learn Mem 2018; 155:173-179. [PMID: 30053575 DOI: 10.1016/j.nlm.2018.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 11/18/2022]
Abstract
Learning-induced neocortical synaptic plasticity is a well-established mechanism mediating memory consolidation. Classic learning paradigms elicit synaptic changes in various brain regions including the neocortex. Work from our laboratory has further suggested synaptic remodeling in primary somatosensory cortex (S1) during forebrain-dependent associative learning. While this process of synaptic remodeling is largely believed to contribute to memory consolidation, the underlying processes mediating this plasticity are poorly understood. Interestingly, abnormal expression of the synaptic scaffolding protein SHANK1 has been linked with aberrant synaptic plasticity and learning impairments, suggesting that it plays a critical role in these processes. However, a direct analysis of the role for SHANK1 during learning in the neocortex, the most likely site for memory storage, has never been adequately explored. To directly examine SHANK1's potential role during learning and memory, the following study set out to both examine neocortical SHANK1 expression during a learning event and determine the consequences of reducing neocortical SHANK1 expression on learning. The current study found that SHANK1 expression is transiently increased during periods of learning-induced dendritic spine plasticity in the neocortex. Furthermore, shRNA-mediated neocortical SHANK1 knockdown significantly impairs acquisition for the forebrain-dependent associative learning task (whisker-trace-eyeblink conditioning). Consistent with these findings, SHANK1 has been implicated in various neurological disorders. Collectively, these findings suggest a role for SHANK1 in neocortical learning-induced dendritic spine plasticity underlying learning and normal cognition; thus, providing potential insight into neurological mechanisms mediating abnormalities of impaired cognition.
Collapse
Affiliation(s)
- Sean M Collins
- Psychology Department, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, United States
| | - Roberto Galvez
- Psychology Department, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, United States; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, United States.
| |
Collapse
|
7
|
Serine Racemase and D-serine in the Amygdala Are Dynamically Involved in Fear Learning. Biol Psychiatry 2018; 83:273-283. [PMID: 29025687 PMCID: PMC5806199 DOI: 10.1016/j.biopsych.2017.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND The amygdala is a central component of the neural circuitry that underlies fear learning. N-methyl-D-aspartate receptor-dependent plasticity in the amygdala is required for pavlovian fear conditioning and extinction. N-methyl-D-aspartate receptor activation requires the binding of a coagonist, D-serine, which is synthesized from L-serine by the neuronal enzyme serine racemase (SR). However, little is known about SR and D-serine function in the amygdala. METHODS We used immunohistochemical methods to characterize the cellular localization of SR and D-serine in the mouse and human amygdala. Using biochemical and molecular techniques, we determined whether trace fear conditioning and extinction engages the SR/D-serine system in the brain. D-serine was administered systemically to mice to evaluate its effect on fear extinction. Finally, we investigated whether the functional single nucleotide polymorphism rs4523957, which is an expression quantitative trait locus of the human serine racemase (SRR) gene, was associated with fear-related phenotypes in a highly traumatized human cohort. RESULTS We demonstrate that approximately half of the neurons in the amygdala express SR, including both excitatory and inhibitory neurons. We find that the acquisition and extinction of fear memory engages the SR/D-serine system in the mouse amygdala and that D-serine administration facilitates fear extinction. We also demonstrate that the SRR single nucleotide polymorphism, rs4523957, is associated with posttraumatic stress disorder in humans, consistent with the facilitatory effect of D-serine on fear extinction. CONCLUSIONS These new findings have important implications for understanding D-serine-mediated N-methyl-D-aspartate receptor plasticity in the amygdala and how this system could contribute to disorders with maladaptive fear circuitry.
Collapse
|
8
|
Loh R, Collins S, Galvez R. Neocortical prodynorphin expression is transiently increased with learning: Implications for time- and learning-dependent neocortical kappa opioid receptor activation. Behav Brain Res 2017; 335:145-150. [PMID: 28802836 DOI: 10.1016/j.bbr.2017.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/31/2017] [Accepted: 08/05/2017] [Indexed: 01/04/2023]
Abstract
There are several lines of evidence that indicate a prominent role for the opioid system in the acquisition and consolidation of learned associations. Specifically, kappa opioid receptor (KOR) modulation has been demonstrated to alter various behavioral tasks including whisker trace eyeblink conditioning (WTEB). WTEB is an associative conditioning paradigm in which a neutral conditioned stimulus (CS; Whisker stimulation) is paired following a short stimulus free trace interval with a salient unconditioned stimulus that elicits a blink response (US; Eye shock). Work from our laboratory has shown that WTEB conditioning is dependent upon and induces plasticity in primary somatosensory cortex (S1), a likely site for memory storage. Our subsequent studies have shown that WTEB acquisition or consolidation are impaired when the initial or later phase of KOR activation in S1 is respectively blocked. Interestingly, this mechanism by which KOR is activated in S1 during learning remains unexplored. Dynorphin (DYN), KOR's endogenous ligand, is synthesized from the precursor prodynorphin (PD) that is synthesized from preprodynorphin (PPD). In S1, most PPD is found in inhibitory GABAergic somatostatin interneurons (SOM), suggesting that these SOM interneurons are upstream regulators of learning induced KOR activation. Using immunofluorescence to investigate the expression of PD and SOM, the current study found that PD/SOM expression was transiently increased in S1 during learning. Interestingly, these findings have direct implications towards a time- and learning-dependent role for KOR activation in neocortical mechanisms mediating learning.
Collapse
Affiliation(s)
- Ryan Loh
- Psychology Department, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA.
| | - Sean Collins
- Psychology Department, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA.
| | - Roberto Galvez
- Psychology Department, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Vagus Nerve Stimulation Enhances Extinction of Conditioned Fear in Rats and Modulates Arc Protein, CaMKII, and GluN2B-Containing NMDA Receptors in the Basolateral Amygdala. Neural Plast 2016; 2016:4273280. [PMID: 27957346 PMCID: PMC5120198 DOI: 10.1155/2016/4273280] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022] Open
Abstract
Vagus nerve stimulation (VNS) enhances the consolidation of extinction of conditioned fear. High frequency stimulation of the infralimbic cortex (IL) produces long-term potentiation in the basolateral amygdala (BLA) in rats given VNS-paired extinction training, whereas the same stimulation produces long-term depression in sham-treated rats. The present study investigated the state of synaptic plasticity-associated proteins in the BLA that could be responsible for this shift. Male Sprague-Dawley rats were separated into 4 groups: auditory fear conditioning only (fear-conditioned); fear conditioning + 20 extinction trials (extended-extinction); fear conditioning + 4 extinction trials paired with sham stimulation (sham-extinction); fear conditioning + 4 extinction trials paired with VNS (VNS-extinction). Freezing was significantly reduced in extended-extinction and VNS-extinction rats. Western blots were used to quantify expression and phosphorylation state of synaptic plasticity-associated proteins such as Arc, CaMKII, ERK, PKA, and AMPA and NMDA receptors. Results show significant increases in GluN2B expression and phosphorylated CaMKII in BLA samples from VNS- and extended-extinction rats. Arc expression was significantly reduced in VNS-extinction rats compared to all groups. Administration of the GluN2B antagonist ifenprodil immediately after fear extinction training blocked consolidation of extinction learning. Results indicate a role for BLA CaMKII-induced GluN2B expression and reduced Arc protein in VNS-enhanced extinction.
Collapse
|
10
|
Felsenberg J, Dyck Y, Feige J, Ludwig J, Plath JA, Froese A, Karrenbrock M, Nölle A, Heufelder K, Eisenhardt D. Differences in long-term memory stability and AmCREB level between forward and backward conditioned honeybees (Apis mellifera). Front Behav Neurosci 2015; 9:91. [PMID: 25964749 PMCID: PMC4410603 DOI: 10.3389/fnbeh.2015.00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/30/2015] [Indexed: 12/25/2022] Open
Abstract
In classical conditioning a predictive relationship between a neutral stimulus (conditioned stimulus; CS) and a meaningful stimulus (unconditioned stimulus; US) is learned when the CS precedes the US. In backward conditioning the sequence of the stimuli is reversed. In this situation animals might learn that the CS signals the end or the absence of the US. In honeybees 30 min and 24 h following backward conditioning a memory for the excitatory and inhibitory properties of the CS could be retrieved, but it remains unclear whether a late long-term memory is formed that can be retrieved 72 h following backward conditioning. Here we examine this question by studying late long-term memory formation in forward and backward conditioning of the proboscis extension response (PER). We report a difference in the stability of memory formed upon forward and backward conditioning with the same number of conditioning trials. We demonstrate a transcription-dependent memory 72 h after forward conditioning but do not observe a 72 h memory after backward conditioning. Moreover we find that protein degradation is differentially involved in memory formation following these two conditioning protocols. We report differences in the level of a transcription factor, the cAMP response element binding protein (CREB) known to induce transcription underlying long-term memory formation, following forward and backward conditioning. Our results suggest that these alterations in CREB levels might be regulated by the proteasome. We propose that the differences observed are due to the sequence of stimulus presentation between forward and backward conditioning and not to differences in the strength of the association of both stimuli.
Collapse
Affiliation(s)
- Johannes Felsenberg
- FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Freie Universität Berlin Berlin, Germany
| | - Yan Dyck
- FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Freie Universität Berlin Berlin, Germany
| | - Janina Feige
- FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Freie Universität Berlin Berlin, Germany
| | - Jenny Ludwig
- FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Freie Universität Berlin Berlin, Germany
| | - Jenny Aino Plath
- FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Freie Universität Berlin Berlin, Germany
| | - Anja Froese
- FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Freie Universität Berlin Berlin, Germany
| | - Melanie Karrenbrock
- FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Freie Universität Berlin Berlin, Germany
| | - Anna Nölle
- FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Freie Universität Berlin Berlin, Germany
| | - Karin Heufelder
- FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Freie Universität Berlin Berlin, Germany
| | - Dorothea Eisenhardt
- FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Freie Universität Berlin Berlin, Germany
| |
Collapse
|
11
|
Abstract
Numerous investigations have definitively shown amygdalar involvement in delay and contextual fear conditioning. However, much less is known about amygdala contributions to trace fear conditioning, and what little evidence exists is conflicting as noted in previous studies. This discrepancy may result from selective targeting of individual nuclei within the amygdala. The present experiments further examine the contributions of amygdalar subnuclei to trace, delay, and contextual fear conditioning. Rats were trained using a 10-trial trace, delay, or unpaired fear conditioning procedure. Pretraining lesions targeting the entire basolateral amygdala (BLA) resulted in a deficit in trace, delay, and contextual fear conditioning. Immediate post-training infusions of the protein synthesis inhibitor, cycloheximide, targeting the basal nucleus of the amygdala (BA) attenuated trace and contextual fear memory expression, but had no effect on delay fear conditioning. However, infusions targeting the lateral nucleus of the amygdala (LA) immediately following conditioning attenuated contextual fear memory expression, but had no effect on delay or trace fear conditioning. In follow-up experiments, rats were trained using a three-trial delay conditioning procedure. Immediate post-training infusions targeting the LA produced deficits in both delay tone and context fear, while infusions targeting the BA produced deficits in context but not delay tone fear. These data fully support a role for the BLA in trace, delay, and contextual fear memories. Specifically, these data suggest that the BA may be more critical for trace fear conditioning, whereas the LA may be more critical for delay fear memories.
Collapse
|
12
|
The functional profile of the human amygdala in affective processing: Insights from intracranial recordings. Cortex 2014; 60:10-33. [DOI: 10.1016/j.cortex.2014.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 01/30/2014] [Accepted: 06/04/2014] [Indexed: 11/21/2022]
|
13
|
Staples MC, Porch MW, Savage DD. Impact of combined prenatal ethanol and prenatal stress exposures on markers of activity-dependent synaptic plasticity in rat dentate gyrus. Alcohol 2014; 48:523-32. [PMID: 25129673 DOI: 10.1016/j.alcohol.2014.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 11/16/2022]
Abstract
Prenatal ethanol exposure and prenatal stress can each cause long-lasting deficits in hippocampal synaptic plasticity and disrupt learning and memory processes. However, the mechanisms underlying these perturbations following a learning event are still poorly understood. We examined the effects of prenatal ethanol exposure and prenatal stress exposure, either alone or in combination, on the cytosolic expression of activity-regulated cytoskeletal (ARC) protein and the synaptosomal expression of AMPA-glutamate receptor subunits (GluA1 and GluA2) in dentate gyrus of female adult offspring under baseline conditions and after 2-trial trace conditioning (TTTC). Surprisingly, baseline cytoplasmic ARC expression was significantly elevated in both prenatal treatment groups. In contrast, synaptosomal GluA1 receptor subunit expression was decreased in both prenatal treatment groups. GluA2 subunit expression was elevated in the prenatal stress group. TTTC did not alter ARC levels compared to an unpaired behavioral control (UPC) group in any of the 4 prenatal treatment groups. In contrast, TTTC significantly elevated both synaptosomal GluA1 and GluA2 subunit expression relative to the UPC group in control offspring, an effect that was not observed in any of the other 3 prenatal treatment groups. Given ARC's role in regulating synaptosomal AMPA receptors, these results suggest that prenatal ethanol-induced or prenatal stress exposure-induced increases in baseline ARC levels could contribute to reductions in both baseline and activity-dependent changes in AMPA receptors in a manner that diminishes the role of AMPA receptors in dentate gyrus synaptic plasticity and hippocampal-sensitive learning.
Collapse
Affiliation(s)
- Miranda C Staples
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Morgan W Porch
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Daniel D Savage
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|