1
|
Configural learning memory can be transformed from intermediate-term to long-term in pond snail Lymnaea stagnalis. Physiol Behav 2021; 239:113509. [PMID: 34175362 DOI: 10.1016/j.physbeh.2021.113509] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 01/28/2023]
Abstract
A lab bred W-strain of Lymnaea stagnalis exhibits configural learning (CL). CL is a form of higher order associative learning wherein when snails experience two contrasting stimuli together such as predatory odour (CE: crayfish effluent) and food odour (C: carrot odour) they learn and associate risk with food. The memory for CL has been shown to last 3 h. Here, we show that when only a single CL-training session is given only a 3 h memory is formed. Memory is not present 24 h after the training session. However, memory can be enhanced and snails show long term memory (24 h memory) when trained for a second time within a 7-day time period after the first CL-training. We further hypothesised that Green tea exposure will enhance memory persistence as catechins in green tea are shown to be cognitive enhancers. We thus subjected snails to CL training followed by green tea exposure which resulted in enhanced memory persistence and it occurred during memory consolidation phase. Thus, we show for the first time that CL intermediate-term memory can be transformed to long-term memory by green tea and multiple trainings in a lab bred strain of Lymnaea.
Collapse
|
2
|
Nikitin VP, Kozyrev SA, Solntseva SV, Nikitin PV. Protein synthesis inhibitor administration before a reminder caused recovery from amnesia induced by memory reconsolidation impairment with NMDA glutamate receptor antagonist. Brain Res Bull 2021; 171:44-55. [PMID: 33722648 DOI: 10.1016/j.brainresbull.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 11/15/2022]
Abstract
Memory recovery in amnestic animals is one of the most poorly studied processes. In this paper, we examine the role of protein synthesis and a reminder in the mechanisms of amnesia and memory recovery in grape snails trained to conditioned food aversion. Amnesia was induced by the impairment of memory reconsolidation using NMDA (N-methyl d-aspartate) glutamate receptor antagonists. In an early stage of amnesia (day 3), injections of protein synthesis inhibitors into animals combined with a reminder by a conditioned stimulus (CS) led to the recovery of aversive reactions to its presentation. Two types of changes in reactions to CS were revealed. In most animals, a persistent recovery of memory retrieval was found that lasted for at least 10 days. In other snails, aversive responses to CS persisted for 24 h. Isolated injections of inhibitors, injections of inhibitors and a reminder by the learning environment (without presenting a CS), usage of a differentiating stimulus instead of a CS, or inhibitor injections after the reminder did not affect the development of amnesia. The administration of protein synthesis inhibitors and a reminder in the late period after amnesia induction (10 days) did not affect its development or caused a short-term memory recovery. We suggest that amnesia is an active process that develops over time. The reminder induces the reactivation of the amnesia process dependent on protein synthesis, while the administration of protein synthesis inhibitors leads to the impairment of amnesia reactivation and recovery of the state formed before amnesia induction (i.e., recovery of conditioned food aversion memory).
Collapse
Affiliation(s)
- V P Nikitin
- P.K. Anokhin Institute of Normal Physiology, 125315, Baltiyskaya Street, 8, Moscow, Russia.
| | - S A Kozyrev
- P.K. Anokhin Institute of Normal Physiology, 125315, Baltiyskaya Street, 8, Moscow, Russia.
| | - S V Solntseva
- P.K. Anokhin Institute of Normal Physiology, 125315, Baltiyskaya Street, 8, Moscow, Russia.
| | - P V Nikitin
- P.K. Anokhin Institute of Normal Physiology, 125315, Baltiyskaya Street, 8, Moscow, Russia.
| |
Collapse
|
3
|
Rivi V, Benatti C, Colliva C, Radighieri G, Brunello N, Tascedda F, Blom JMC. Lymnaea stagnalis as model for translational neuroscience research: From pond to bench. Neurosci Biobehav Rev 2019; 108:602-616. [PMID: 31786320 DOI: 10.1016/j.neubiorev.2019.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to illustrate how a reductionistic, but sophisticated, approach based on the use of a simple model system such as the pond snail Lymnaea stagnalis (L. stagnalis), might be useful to address fundamental questions in learning and memory. L. stagnalis, as a model, provides an interesting platform to investigate the dialog between the synapse and the nucleus and vice versa during memory and learning. More importantly, the "molecular actors" of the memory dialogue are well-conserved both across phylogenetic groups and learning paradigms, involving single- or multi-trials, aversion or reward, operant or classical conditioning. At the same time, this model could help to study how, where and when the memory dialog is impaired in stressful conditions and during aging and neurodegeneration in humans and thus offers new insights and targets in order to develop innovative therapies and technology for the treatment of a range of neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- V Rivi
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - C Benatti
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - C Colliva
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - G Radighieri
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - N Brunello
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - F Tascedda
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - J M C Blom
- Dept. of Education and Human Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
4
|
Totani Y, Kotani S, Odai K, Ito E, Sakakibara M. Real-Time Analysis of Animal Feeding Behavior With a Low-Calculation-Power CPU. IEEE Trans Biomed Eng 2019; 67:1197-1205. [PMID: 31395534 DOI: 10.1109/tbme.2019.2933243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Our goal was to develop an automated system to determine whether animals have learned and changed their behavior in real-time using a low calculation-power central processing unit (CPU). The bottleneck of real-time analysis is the speed of image recognition. For fast image recognition, 99.5% of the image was excluded from image recognition by distinguishing between the subject and the background. We achieved this by applying a binarization and connected-component labeling technique. This task is important for developing a fully automated learning apparatus. The use of such an automated system can improve the efficiency and accuracy of biological studies. The pond snail Lymnaea stagnails can be classically conditioned to avoid food that naturally elicits feeding behavior, and to consolidate this aversion into long-term memory. Determining memory status in the snail requires real-time analysis of the number of bites the snail makes in response to food presentation. The main algorithm for counting bites comprises two parts: extracting the mouth images from the recorded video and measuring the bite rate corresponding to the memory status. Reinforcement-supervised learning and image recognition were used to extract the mouth images. A change in the size of the mouth area was used as the cue for counting the number of bites. The accuracy of the final judgment of whether or not the snail had learned was the same as that determined by human observation. This method to improve the processing speed of image recognition has the potential for broad application beyond biological fields.
Collapse
|
5
|
Totani Y, Aonuma H, Oike A, Watanabe T, Hatakeyama D, Sakakibara M, Lukowiak K, Ito E. Monoamines, Insulin and the Roles They Play in Associative Learning in Pond Snails. Front Behav Neurosci 2019; 13:65. [PMID: 31001093 PMCID: PMC6454038 DOI: 10.3389/fnbeh.2019.00065] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/14/2019] [Indexed: 12/28/2022] Open
Abstract
Molluscan gastropods have long been used for studying the cellular and molecular mechanisms underlying learning and memory. One such gastropod, the pond snail Lymnaea stagnalis, exhibits long-term memory (LTM) following both classical and operant conditioning. Using Lymnaea, we have successfully elucidated cellular mechanisms of learning and memory utilizing an aversive classical conditioning procedure, conditioned taste aversion (CTA). Here, we present the behavioral changes following CTA training and show that the memory score depends on the duration of food deprivation. Then, we describe the relationship between the memory scores and the monoamine contents of the central nervous system (CNS). A comparison of learning capability in two different strains of Lymnaea, as well as the filial 1 (F1) cross from the two strains, presents how the memory scores are correlated in these populations with monoamine contents. Overall, when the memory scores are better, the monoamine contents of the CNS are lower. We also found that as the insulin content of the CNS decreases so does the monoamine contents which are correlated with higher memory scores. The present review deepens the relationship between monoamine and insulin contents with the memory score.
Collapse
Affiliation(s)
- Yuki Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Akira Oike
- Department of Biology, Waseda University, Tokyo, Japan
| | - Takayuki Watanabe
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Manabu Sakakibara
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Nikitin VP, Solntseva SV, Kozyrev SA, Nikitin PV, Shevelkin AV. NMDA or 5-HT receptor antagonists impair memory reconsolidation and induce various types of amnesia. Behav Brain Res 2018; 345:72-82. [PMID: 29499285 DOI: 10.1016/j.bbr.2018.02.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/10/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
Elucidation of amnesia mechanisms is one of the central problems in neuroscience with immense practical application. Previously, we found that conditioned food presentation combined with injection of a neurotransmitter receptor antagonist or protein synthesis inhibitor led to amnesia induction. In the present study, we investigated the time course and features of two amnesias: induced by impairment of memory reconsolidation using an NMDA glutamate receptor antagonist (MK-801) and a serotonin receptor antagonist (methiothepin, MET) on snails trained with food aversion conditioning. During the early period of amnesia (<10th day), the unpaired presentation of conditioned stimuli (CS) or unconditioned stimuli (US) in the same training context did not have an effect on both types of amnesia. Retraining an on 1st or 3rd day of amnesia induction facilitated memory formation, i.e. the number of CS + US pairings was lower than at initial training. On the 10th or 30th day after the MET/reminder, the number of CS + US pairings did not change between initial training and retraining. Retraining on the 10th or 30th day following the MK-801/reminder in the same or a new context of learning resulted in short, but not long-term, memory, and the number of CS + US pairings was higher than at the initial training. This type of amnesia was specific to the CS we used at initial training, since long-term memory for another kind of CS could be formed in the same snails. The attained results suggest that disruption of memory reconsolidation using antagonists of serotonin or NMDA glutamate receptors induced amnesias with different abilities to form long-term memory during the late period of development.
Collapse
Affiliation(s)
- V P Nikitin
- P.K. Anokhin Institute of Normal Physiology, Moscow, Russian Federation.
| | - S V Solntseva
- P.K. Anokhin Institute of Normal Physiology, Moscow, Russian Federation
| | - S A Kozyrev
- P.K. Anokhin Institute of Normal Physiology, Moscow, Russian Federation
| | - P V Nikitin
- P.K. Anokhin Institute of Normal Physiology, Moscow, Russian Federation; Burdenko Neurosurgical Institute, Moscow, Russian Federation
| | - A V Shevelkin
- Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
7
|
Takigami S, Sunada H, Lukowiak K, Ito E, Sakakibara M. An automated learning apparatus for classical conditioning of Lymnaea stagnalis. J Neurosci Methods 2016; 259:115-121. [PMID: 26617319 DOI: 10.1016/j.jneumeth.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND The pond snail Lymnaea stagnalis is capable of taste avoidance classical conditioning (TAC) with sucrose as the conditional stimulus (CS) and mechanical prodding as the unconditional stimulus (US). After successful training, feeding behavior is significantly suppressed in response to CS presentation. NEW METHOD An automated apparatus is described for the training of multiple snails up to 10 snails at the same time. The new apparatus employs an electrical shock obtained from a 9-V dry cell to deliver a consistent and effective current amplitude of 0.4μA (i.e., the US). RESULTS Using this apparatus, 10 snails can be conditioned simultaneously. We found that the optimal parameters to result in both short (STM) and long-term memory (LTM) were 15 paired presentations of the CS and US with a 5-min inter-trial interval (ITI) and 0.2-s current duration. However, both STM and LTM were observed with other ITIs tested. Successful TAC with only a single pairing of the CS-US occurred with a CS of 100mM sucrose solution for 60s followed by a US of 9V with 0.4μA for 5s. COMPARISON WITH EXISTING METHOD The use of automated training apparatus for TAC will enable us to better examine the relationship between strength of CS and US.
Collapse
Affiliation(s)
- Satoshi Takigami
- Graduate School of Bioscience, Tokai University, 317 Nishino, Numazu 410-0321, Shizuoka, Japan
| | - Hiroshi Sunada
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Manabu Sakakibara
- Graduate School of Bioscience, Tokai University, 317 Nishino, Numazu 410-0321, Shizuoka, Japan.
| |
Collapse
|
8
|
Function of insulin in snail brain in associative learning. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:969-81. [PMID: 26233474 DOI: 10.1007/s00359-015-1032-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 12/23/2022]
Abstract
Insulin is well known as a hormone regulating glucose homeostasis across phyla. Although there are insulin-independent mechanisms for glucose uptake in the mammalian brain, which had contributed to a perception of the brain as an insulin-insensitive organ for decades, the finding of insulin and its receptors in the brain revolutionized the concept of insulin signaling in the brain. However, insulin's role in brain functions, such as cognition, attention, and memory, remains unknown. Studies using invertebrates with their open blood-vascular system have the promise of promoting a better understanding of the role played by insulin in mediating/modulating cognitive functions. In this review, the relationship between insulin and its impact on long-term memory (LTM) is discussed particularly in snails. The pond snail Lymnaea stagnalis has the ability to undergo conditioned taste aversion (CTA), that is, it associatively learns and forms LTM not to respond with a feeding response to a food that normally elicits a robust feeding response. We show that molluscan insulin-related peptides are up-regulated in snails exhibiting CTA-LTM and play a key role in the causal neural basis of CTA-LTM. We also survey the relevant literature of the roles played by insulin in learning and memory in other phyla.
Collapse
|
9
|
Ito E, Yamagishi M, Hatakeyama D, Watanabe T, Fujito Y, Dyakonova V, Lukowiak K. Memory block: a consequence of conflict resolution. ACTA ACUST UNITED AC 2015; 218:1699-704. [PMID: 25883377 DOI: 10.1242/jeb.120329] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/05/2015] [Indexed: 11/20/2022]
Abstract
Food deprivation for 1 day in the pond snail Lymnaea stagnalis before aversive classical conditioning results in optimal conditioned taste aversion (CTA) and long-term memory (LTM) formation, whereas 5-day food deprivation before training does not. We hypothesize that snails do in fact learn and form LTM when trained after prolonged food deprivation, but that severe food deprivation blocks their ability to express memory. We trained 5-day food-deprived snails under various conditions, and found that memory was indeed formed but is overpowered by severe food deprivation. Moreover, CTA-LTM was context dependent and was observed only when the snails were in a context similar to that in which the training occurred.
Collapse
Affiliation(s)
- Etsuro Ito
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Miki Yamagishi
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Dai Hatakeyama
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Takayuki Watanabe
- Laboratory of Neurocybernetics, Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Yutaka Fujito
- Department of Systems Neuroscience, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Varvara Dyakonova
- Laboratory of Comparative Physiology, Institute for Developmental Biology, RAS, Moscow 119909, Russia
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
10
|
Sunada H, Takigami S, Lukowiak K, Sakakibara M. Electrophysiological characteristics of feeding-related neurons after taste avoidance Pavlovian conditioning in Lymnaea stagnalis. Biophysics (Nagoya-shi) 2014; 10:121-33. [PMID: 27493506 PMCID: PMC4629664 DOI: 10.2142/biophysics.10.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/20/2014] [Indexed: 01/14/2023] Open
Abstract
Taste avoidance conditioning (TAC) was carried out on the pond snail, Lymnaea stagnalis. The conditional stimulus (CS) was sucrose which elicits feeding behavior; while the unconditional stimulus (US) was a tactile stimulus to the head which causes feeding to be suppressed. The neuronal circuit that drives feeding behavior in Lymnaea is well worked out. We therefore compared the physiological characteristics on 3 classes of neurons involved with feeding behavior especially in response to the CS in conditioned vs. control snails. The cerebral giant cell (CGC) modulates feeding behavior, N1 medial neuron (N1M) is one of the central pattern generator neurons that organizes feeding behavior, while B3 is a motor neuron active during the rasp phase of feeding. We found the resting membrane potential in CGC was hyperpolarized significantly in conditioned snails but impulse activity remained the same between conditioned vs. control snails. There was, however, a significant increase in spontaneous activity and a significant depolarization of N1M’s resting membrane potential in conditioned snails. These changes in N1M activity as a result of training are thought to be due to withdrawal interneuron RPeD11 altering the activity of the CGCs. Finally, in B3 there was: 1) a significant decrease in the amplitude and the frequency of the post-synaptic potentials; 2) a significant hyperpolarization of resting membrane potential in conditioned snails; and 3) a disappearance of bursting activity typically initiated by the CS. These neuronal modifications are consistent with the behavioral phenotype elicited by the CS following conditioning.
Collapse
Affiliation(s)
- Hiroshi Sunada
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Satoshi Takigami
- Course of Bioscience, Graduate School of Bioscience, Tokai University, Graduate School, 317 Nishino, Numazu 410-0321, Shizuoka, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Manabu Sakakibara
- Course of Bioscience, Graduate School of Bioscience, Tokai University, Graduate School, 317 Nishino, Numazu 410-0321, Shizuoka, Japan; Department of Biological Science and Technology, School of High-Technology for Human Welfare, Tokai University, 317 Nishino, Numazu 410-0321, Shizuoka, Japan
| |
Collapse
|
11
|
Takigami S, Sunada H, Lukowiak K, Kuzirian AM, Alkon DL, Sakakibara M. Protein kinase C mediates memory consolidation of taste avoidance conditioning in Lymnaea stagnalis. Neurobiol Learn Mem 2014; 111:9-18. [PMID: 24613854 DOI: 10.1016/j.nlm.2014.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 02/05/2014] [Accepted: 02/23/2014] [Indexed: 11/25/2022]
Abstract
In Lymnaea stagnalis, in order to obtain a 10 min short-term memory (STM) of taste avoidance conditioning (TAC) at least 10 paired presentations of a conditioned stimulus (CS), sucrose, and an unconditioned stimulus (US), tactile stimulation to the animal's head, are required. Pre-exposure of snails to the protein kinase C (PKC) α and ε activator bryostatin (Bryo) facilitated STM formation in that only 5 paired CS-US trials were required. Typically 20 paired presentations of the CS-US are required for formation of STM and LTM. However, 20 paired presentations do not result in STM or LTM if snails are pre-incubated with a PKC inhibitor, Ro-32-0432. We also found that LTM lasting longer than 48 h was acquired with Bryo incubation for 45 min even after termination of the conditioning paradigm. These data suggest that activation of the α and ε isozymes of PKC is crucially involved in the formation of LTM and provide further support for a mechanism that has been conserved across the evolution of species ranging from invertebrate molluscs to higher mammals.
Collapse
Affiliation(s)
- Satoshi Takigami
- Graduate School of Bioscience, Tokai University, 410-0321 Numazu, Shizuoka, Japan
| | - Hiroshi Sunada
- Hotchkiss Brain Institute, University of Calgary, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alan M Kuzirian
- Program in Sensory Physiology & Behavior, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Daniel L Alkon
- Blanchette Rockefeller Neuroscience Institute, 9601 Medical Center Drive, Rockville, MD 20850-3332, USA
| | - Manabu Sakakibara
- Graduate School of Bioscience, Tokai University, 410-0321 Numazu, Shizuoka, Japan; School of High-Technology for Human Welfare, Tokai University, 410-0321 Numazu, Shizuoka, Japan.
| |
Collapse
|
12
|
Ito E, Yamagishi M, Takigami S, Sakakibara M, Fujito Y, Lukowiak K. The Yerkes-Dodson law and appropriate stimuli for conditioned taste aversion in Lymnaea. J Exp Biol 2014; 218:336-9. [DOI: 10.1242/jeb.113266] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The pond snail Lymnaea stagnalis can learn conditioned taste aversion and then consolidate it into long-term memory (LTM). A high voltage electric shock was used as the unconditioned stimulus (US), whereas we previously used KCl. We varied both the strength of the conditioned stimulus (CS) and US to determine if the so-called Yerkes-Dodson law prevailed. This is an empirical relationship between the state of arousal and LTM formation, showing that there is an optimal level of arousal leading to memory formation. However, too little or too much arousal results in poorer LTM. We found here that the most appropriate stimuli to use in taste aversion training in Lymnaea were a 10 mmol l-1 sucrose solution as the CS and a 3-s electric shock as the US.
Collapse
|