1
|
Cohen N, Rabinowitch I. Resolving transitions between distinct phases of memory consolidation at high resolution in Caenorhabditis elegans. iScience 2024; 27:111147. [PMID: 39524366 PMCID: PMC11547966 DOI: 10.1016/j.isci.2024.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/26/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Memory consolidation following learning is a dynamic and complex process comprising several transitions between distinct memory phases. Although memory consolidation has been studied extensively, it remains difficult to draw an integral description that can delimit the transition points between specific memory phases at the behavioral, neuronal, and genetic levels. To this end, we have developed a rapid and robust aversive conditioning protocol for the nematode worm Caenorhabditis elegans, tracing memory consolidation within the first hour post conditioning and then up to 18 h post conditioning. This made it possible to uncover time-dependent involvement of primary sensory neurons, transcription and translation processes, and diverse gene populations in memory consolidation. The change in neuronal valence was strong enough to induce second order conditioning, and was amenable to considerable modulation in specific mutant strains. Together, our work lends memory consolidation to detailed temporal and spatial analysis, advancing system-wide understanding of learning and memory.
Collapse
Affiliation(s)
- Netanel Cohen
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Ithai Rabinowitch
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| |
Collapse
|
2
|
Hayden AN, Brandel KL, Pietryk EW, Merlau PR, Vijayakumar P, Leptich EJ, Gaytan ES, Williams MI, Ni CW, Chao HT, Rosenfeld JA, Arey RN. Behavioral screening reveals a conserved residue in Y-Box RNA-binding protein required for associative learning and memory in C. elegans. PLoS Genet 2024; 20:e1011443. [PMID: 39423228 PMCID: PMC11524487 DOI: 10.1371/journal.pgen.1011443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/30/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
RNA-binding proteins (RBPs) regulate translation and plasticity which are required for memory. RBP dysfunction has been linked to a range of neurological disorders where cognitive impairments are a key symptom. However, of the 2,000 RBPs in the human genome, many are uncharacterized with regards to neurological phenotypes. To address this, we used the model organism C. elegans to assess the role of 20 conserved RBPs in memory. We identified eight previously uncharacterized memory regulators, three of which are in the C. elegans Y-Box (CEY) RBP family. Of these, we determined that cey-1 is the closest ortholog to the mammalian Y-Box (YBX) RBPs. We found that CEY-1 is both necessary in the nervous system for memory ability and sufficient to promote memory. Leveraging human datasets, we found both copy number variation losses and single nucleotide variants in YBX1 and YBX3 in individuals with neurological symptoms. We identified one predicted deleterious YBX3 variant of unknown significance, p.Asn127Tyr, in two individuals with neurological symptoms. Introducing this variant into endogenous cey-1 locus caused memory deficits in the worm. We further generated two humanized worm lines expressing human YBX3 or YBX1 at the cey-1 locus to test evolutionary conservation of YBXs in memory and the potential functional significance of the p.Asn127Tyr variant. Both YBX1/3 can functionally replace cey-1, and introduction of p.Asn127Tyr into the humanized YBX3 locus caused memory deficits. Our study highlights the worm as a model to reveal memory regulators and identifies YBX dysfunction as a potential new source of rare neurological disease.
Collapse
Affiliation(s)
- Ashley N. Hayden
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Katie L. Brandel
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Edward W. Pietryk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul R. Merlau
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Priyadharshini Vijayakumar
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Emily J. Leptich
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Elizabeth S. Gaytan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Postbaccalaureate Research Education Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Meredith I. Williams
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Connie W. Ni
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Rice University, Houston, Texas, United States of America
| | - Hsiao-Tuan Chao
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas, United States of America
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics Laboratories, Houston, Texas, United States of America
| | - Rachel N. Arey
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
3
|
Hudgins AD, Zhou S, Arey RN, Rosenfeld MG, Murphy CT, Suh Y. A systems biology-based identification and in vivo functional screening of Alzheimer's disease risk genes reveal modulators of memory function. Neuron 2024; 112:2112-2129.e4. [PMID: 38692279 PMCID: PMC11223975 DOI: 10.1016/j.neuron.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/18/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Genome-wide association studies (GWASs) have uncovered over 75 genomic loci associated with risk for late-onset Alzheimer's disease (LOAD), but identification of the underlying causal genes remains challenging. Studies of induced pluripotent stem cell (iPSC)-derived neurons from LOAD patients have demonstrated the existence of neuronal cell-intrinsic functional defects. Here, we searched for genetic contributions to neuronal dysfunction in LOAD using an integrative systems approach that incorporated multi-evidence-based gene mapping and network-analysis-based prioritization. A systematic perturbation screening of candidate risk genes in Caenorhabditis elegans (C. elegans) revealed that neuronal knockdown of the LOAD risk gene orthologs vha-10 (ATP6V1G2), cmd-1 (CALM3), amph-1 (BIN1), ephx-1 (NGEF), and pho-5 (ACP2) alters short-/intermediate-term memory function, the cognitive domain affected earliest during LOAD progression. These results highlight the impact of LOAD risk genes on evolutionarily conserved memory function, as mediated through neuronal endosomal dysfunction, and identify new targets for further mechanistic interrogation.
Collapse
Affiliation(s)
- Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shiyi Zhou
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Rachel N Arey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael G Rosenfeld
- Department of Medicine, School of Medicine, University of California, La Jolla, CA, USA; Howard Hughes Medical Institute, University of California, La Jolla, CA, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; LSI Genomics, Princeton University, Princeton, NJ, USA.
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Weng Y, Zhou S, Morillo K, Kaletsky R, Lin S, Murphy CT. The neuron-specific IIS/FOXO transcriptome in aged animals reveals regulatory mechanisms of cognitive aging. eLife 2024; 13:RP95621. [PMID: 38922671 PMCID: PMC11208049 DOI: 10.7554/elife.95621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Cognitive decline is a significant health concern in our aging society. Here, we used the model organism C. elegans to investigate the impact of the IIS/FOXO pathway on age-related cognitive decline. The daf-2 Insulin/IGF-1 receptor mutant exhibits a significant extension of learning and memory span with age compared to wild-type worms, an effect that is dependent on the DAF-16 transcription factor. To identify possible mechanisms by which aging daf-2 mutants maintain learning and memory with age while wild-type worms lose neuronal function, we carried out neuron-specific transcriptomic analysis in aged animals. We observed downregulation of neuronal genes and upregulation of transcriptional regulation genes in aging wild-type neurons. By contrast, IIS/FOXO pathway mutants exhibit distinct neuronal transcriptomic alterations in response to cognitive aging, including upregulation of stress response genes and downregulation of specific insulin signaling genes. We tested the roles of significantly transcriptionally-changed genes in regulating cognitive functions, identifying novel regulators of learning and memory. In addition to other mechanistic insights, a comparison of the aged vs young daf-2 neuronal transcriptome revealed that a new set of potentially neuroprotective genes is upregulated; instead of simply mimicking a young state, daf-2 may enhance neuronal resilience to accumulation of harm and take a more active approach to combat aging. These findings suggest a potential mechanism for regulating cognitive function with age and offer insights into novel therapeutic targets for age-related cognitive decline.
Collapse
Affiliation(s)
- Yifei Weng
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Shiyi Zhou
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Katherine Morillo
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Rachel Kaletsky
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- Princeton UniversityPrincetonUnited States
| | - Sarah Lin
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- Princeton UniversityPrincetonUnited States
| |
Collapse
|
5
|
Weng Y, Murphy CT. Male-specific behavioral and transcriptomic changes in aging C. elegans neurons. iScience 2024; 27:109910. [PMID: 38783998 PMCID: PMC11111838 DOI: 10.1016/j.isci.2024.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Aging is a complex biological process with sexually dimorphic aspects. Although cognitive aging of Caenorhabditis elegans hermaphrodites has been studied, less is known about cognitive decline in males. We found that cognitive aging has both sex-shared and sex-dimorphic characteristics, and we identified neuron-specific age-associated sex-differential targets. In addition to sex-shared neuronal aging genes, males differentially downregulate mitochondrial metabolic genes and upregulate GPCR genes with age, while the X chromosome exhibits increased gene expression in hermaphrodites and altered dosage compensation complex expression with age, indicating possible X chromosome dysregulation that contributes to sexual dimorphism in cognitive aging. Finally, the sex-differentially expressed gene hrg-7, an aspartic-type endopeptidase, regulates male cognitive aging but does not affect hermaphrodites' behaviors. These results suggest that males and hermaphrodites exhibit different age-related neuronal changes. This study will strengthen our understanding of sex-specific vulnerability and resilience and identify pathways to target with treatments that could benefit both sexes.
Collapse
Affiliation(s)
- Yifei Weng
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T. Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
6
|
Ange JS, Weng Y, Stevenson ME, Kaletsky R, Moore RS, Zhou S, Murphy CT. Adult Single-nucleus Neuronal Transcriptomes of Insulin Signaling Mutants Reveal Regulators of Behavior and Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579364. [PMID: 38370779 PMCID: PMC10871314 DOI: 10.1101/2024.02.07.579364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The insulin/insulin-like signaling (IIS) pathway regulates many of C. elegans' adult functions, including learning and memory 1 . While whole-worm and tissue-specific transcriptomic analyses have identified IIS targets 2,3 , a higher-resolution single-cell approach is required to identify changes that confer neuron-specific improvements in the long-lived insulin receptor mutant, daf-2 . To understand how behaviors that are controlled by a small number of neurons change in daf-2 mutants, we used the deep resolution of single-nucleus RNA sequencing to define each neuron type's transcriptome in adult wild-type and daf-2 mutants. First, we found surprising differences between wild-type L4 larval neurons and young adult neurons in chemoreceptor expression, synaptic genes, and learning and memory genes. These Day 1 adult neuron transcriptomes allowed us to identify adult AWC-specific regulators of chemosensory function and to predict neuron-to-neuron peptide/receptor pairs. We then identified gene expression changes that correlate with daf-2's improved cognitive functions, particularly in the AWC sensory neuron that controls learning and associative memory 4 , and used behavioral assays to test their roles in cognitive function. Combining deep single-neuron transcriptomics, genetic manipulation, and behavioral analyses enabled us to identify genes that may function in a single adult neuron to control behavior, including conserved genes that function in learning and memory. One-Sentence Summary Single-nucleus sequencing of adult wild-type and daf-2 C. elegans neurons reveals functionally relevant transcriptional changes, including regulators of chemosensation, learning, and memory.
Collapse
|
7
|
Rahmani A, McMillen A, Allen E, Minervini C, Chew YL. Behavioral Tests for Associative Learning in Caenorhabditis elegans. Methods Mol Biol 2024; 2746:21-46. [PMID: 38070077 DOI: 10.1007/978-1-0716-3585-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Learning is critical for survival as it provides the capacity to adapt to a changing environment. At the molecular and cellular level, learning leads to alterations within neural circuits that include synaptic rewiring, synaptic plasticity, and protein level/gene expression changes. There has been substantial progress in recent years on dissecting how learning and memory is regulated at the molecular and cellular level, including the use of compact invertebrate nervous systems as experimental models. This progress has been facilitated by the establishment of robust behavioral assays that generate a quantifiable readout of the extent to which animals learn and remember. This chapter will focus on protocols of behavioral tests for associative learning using the nematode Caenorhabditis elegans, with its unparalleled genetic tractability, compact nervous system of ~300 neurons, high level of conservation with mammalian systems, and amenability to a suite of behavioral tools and analyses. Specifically, we will provide a detailed description of the methods for two behavioral assays that model associative learning, one measuring appetitive olfactory learning and the other assaying aversive gustatory learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Anna McMillen
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Ericka Allen
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Caitlin Minervini
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
8
|
McMillen A, Chew Y. Neural mechanisms of dopamine function in learning and memory in Caenorhabditis elegans. Neuronal Signal 2024; 8:NS20230057. [PMID: 38572143 PMCID: PMC10987485 DOI: 10.1042/ns20230057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 04/05/2024] Open
Abstract
Research into learning and memory over the past decades has revealed key neurotransmitters that regulate these processes, many of which are evolutionarily conserved across diverse species. The monoamine neurotransmitter dopamine is one example of this, with countless studies demonstrating its importance in regulating behavioural plasticity. However, dopaminergic neural networks in the mammalian brain consist of hundreds or thousands of neurons, and thus cannot be studied at the level of single neurons acting within defined neural circuits. The nematode Caenorhabditis elegans (C. elegans) has an experimentally tractable nervous system with a completely characterized synaptic connectome. This makes it an advantageous system to undertake mechanistic studies into how dopamine encodes lasting yet flexible behavioural plasticity in the nervous system. In this review, we synthesize the research to date exploring the importance of dopaminergic signalling in learning, memory formation, and forgetting, focusing on research in C. elegans. We also explore the potential for dopamine-specific fluorescent biosensors in C. elegans to visualize dopaminergic neural circuits during learning and memory formation in real-time. We propose that the use of these sensors in C. elegans, in combination with optogenetic and other light-based approaches, will further illuminate the detailed spatiotemporal requirements for encoding behavioural plasticity in an accessible experimental system. Understanding the key molecules and circuit mechanisms that regulate learning and forgetting in more compact invertebrate nervous systems may reveal new druggable targets for enhancing memory storage and delaying memory loss in bigger brains.
Collapse
Affiliation(s)
- Anna McMillen
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Yee Lian Chew
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, 5042, South Australia, Australia
| |
Collapse
|
9
|
Wen X, Yang H, Li Z, Chu W. Alcohol degradation, learning, and memory-enhancing effect of Acetobacter pasteurianus BP2201 in Caenorhabditis elegans model. J Appl Microbiol 2023; 134:lxad253. [PMID: 37934610 DOI: 10.1093/jambio/lxad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/18/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
AIMS This study aimed to investigate the probiotic effects of Acetobacter pasteurianus BP2201, isolated from brewing mass, for the treatment of alcohol-induced learning and memory ability impairments in a Caenorhabditis elegans model. METHODS AND RESULTS Acetobacter pasteurianus BP2201 was examined for probiotic properties, including acid and bile salt resistance, ethanol degradation, antioxidant efficacy, hemolytic activity, and susceptibility to antibiotics. The strain displayed robust acid and bile salt tolerance, efficient ethanol degradation, potent antioxidant activity, and susceptibility to specific antibiotics. Additionally, in the C. elegans model, administering A. pasteurianus BP2201 significantly improved alcohol-induced learning and memory impairments. CONCLUSIONS Acetobacter pasteurianus BP2201 proves to be a promising candidate strain for the treatment of learning and memory impairments induced by alcohol intake.
Collapse
Affiliation(s)
- Xin Wen
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Huazhong Yang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongqi Li
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
10
|
Stevenson ME, Bieri G, Kaletsky R, St Ange J, Remesal L, Pratt KJB, Zhou S, Weng Y, Murphy CT, Villeda SA. Neuronal activation of G αq EGL-30/GNAQ late in life rejuvenates cognition across species. Cell Rep 2023; 42:113151. [PMID: 37713310 PMCID: PMC10627507 DOI: 10.1016/j.celrep.2023.113151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023] Open
Abstract
Loss of cognitive function with age is devastating. EGL-30/GNAQ and Gαq signaling pathways are highly conserved between C. elegans and mammals, and murine Gnaq is enriched in hippocampal neurons and declines with age. We found that activation of EGL-30 in aged worms triples memory span, and GNAQ gain of function significantly improved memory in aged mice: GNAQ(gf) in hippocampal neurons of 24-month-old mice (equivalent to 70- to 80-year-old humans) rescued age-related impairments in well-being and memory. Single-nucleus RNA sequencing revealed increased expression of genes regulating synaptic function, axon guidance, and memory in GNAQ-treated mice, and worm orthologs of these genes were required for long-term memory extension in worms. These experiments demonstrate that C. elegans is a powerful model to identify mammalian regulators of memory, leading to the identification of a pathway that improves memory in extremely old mice. To our knowledge, this is the oldest age at which an intervention has improved age-related cognitive decline.
Collapse
Affiliation(s)
- Morgan E Stevenson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gregor Bieri
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA
| | - Rachel Kaletsky
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jonathan St Ange
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - L Remesal
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA
| | - Karishma J B Pratt
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA
| | - Shiyi Zhou
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yifei Weng
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Saul A Villeda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Lin TA, How CM, Yen PL, Liao VHC. Sulfate-modified nanosized polystyrene impairs memory by inhibiting ionotropic glutamate receptors and the cAMP-response element binding protein (CREB) pathway in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162404. [PMID: 36868277 DOI: 10.1016/j.scitotenv.2023.162404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastic contamination is an emerging environmental concern worldwide. In particular, sulfate anionic surfactants often appear along with nanosized plastic particles in personal care products, suggesting that sulfate-modified nanosized polystyrene (S-NP) may occur, remain, and spread into the environment. However, whether S-NP adversely affects learning and memory is unknown. In this study, we used a positive butanone training protocol to evaluate the effects of S-NP exposure on short-term associative memory (STAM) and long-term associative memory (LTAM) in Caenorhabditis elegans. We observed that long-term S-NP exposure impairs both STAM and LTAM in C. elegans. We also observed that mutations in the glr-1, nmr-1, acy-1, unc-43, and crh-1 genes eliminated the STAM and LTAM impairment induced by S-NP, and the mRNA levels of these genes were also decreased upon S-NP exposure. These genes encode ionotropic glutamate receptors (iGluRs), cyclic adenosine monophosphate (cAMP)/Ca2+ signaling proteins, and cAMP-response element binding protein (CREB)/CRH-1 signaling proteins. Moreover, S-NP exposure inhibited the expression of the CREB-dependent LTAM genes nid-1, ptr-15, and unc-86. Our findings provide new insights into long-term S-NP exposure and the impairment of STAM and LTAM, which involve the highly conserved iGluRs and CRH-1/CREB signaling pathways.
Collapse
Affiliation(s)
- Ting-An Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chun Ming How
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
12
|
Wu CH, Hsu WL, Tsai CC, Chao HR, Wu CY, Chen YH, Lai YR, Chen CH, Tsai MH. 7,10,13,16-Docosatetraenoic acid impairs neurobehavioral development by increasing reactive oxidative species production in Caenorhabditis elegans. Life Sci 2023; 319:121500. [PMID: 36796717 DOI: 10.1016/j.lfs.2023.121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
AIMS To investigate human breast milk (HBM) lipids that may adversely affect infant neurodevelopment. MAIN METHODS We performed multivariate analyses that combined lipidomics and psychologic Bayley-III scales to identify which HBM lipids are involved in regulating infant neurodevelopment. We observed a significant moderate negative correlation between 7,10,13,16-docosatetraenoic acid (omega-6, C22H36O2, the common name adrenic acid, AdA) and adaptive behavioral development. We further studied the effects of AdA on neurodevelopment by using Caenorhabditis elegans (C. elegans) as a model. Worms from larval stages L1 to L4 were supplemented with AdA at 5 nominal concentrations (0 μM [control], 0.1 μM, 1 μM, 10 μM, and 100 μM) and subjected to behavioral and mechanistic analyses. KEY FINDINGS Supplementation with AdA from larval stages L1 to L4 impaired neurobehavioral development, such as locomotive behaviors, foraging ability, chemotaxis behavior, and aggregation behavior. Furthermore, AdA upregulated the production of intracellular reactive oxygen species. AdA-induced oxidative stress blocked serotonin synthesis and serotoninergic neuron activity and inhibited expression of daf-16 and the daf-16-regulated genes mtl-1, mtl-2, sod-1, and sod-3, resulting in attenuation of the lifespan in C. elegans. SIGNIFICANCE Our study reveals that AdA is a harmful HBM lipid that may have adverse effects on infant adaptive behavioral development. We believe this information may be critical for AdA administration guidance in children's health care.
Collapse
Affiliation(s)
- Chia-Hsiu Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wen-Li Hsu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ching-Chung Tsai
- Department of Pediatrics, E-Da Hospital, No. 8, Yida Rd., Kaohsiung 82445, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Institute of Food Safety Management, College of Agriculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Ching-Ying Wu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan; Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.
| | - Yi-Hsuan Chen
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yun-Ru Lai
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chu-Huang Chen
- Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX 77030, USA; New York Heart Research Foundation, Mineola, NY 11501, USA; Institute for Biomedical Sciences, Shinshu University, Nagano 390-8621, Japan.
| | - Ming-Hsien Tsai
- Department of Child Care, College of Humanities and Social Sciences, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
13
|
Brandel-Ankrapp KL, Arey RN. Uncovering novel regulators of memory using C. elegans genetic and genomic analysis. Biochem Soc Trans 2023; 51:161-171. [PMID: 36744642 PMCID: PMC10518207 DOI: 10.1042/bst20220455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
How organisms learn and encode memory is an outstanding question in neuroscience research. Specifically, how memories are acquired and consolidated at the level of molecular and gene pathways remains unclear. In addition, memory is disrupted in a wide variety of neurological disorders; therefore, discovering molecular regulators of memory may reveal therapeutic targets for these disorders. C. elegans are an excellent model to uncover molecular and genetic regulators of memory. Indeed, the nematode's invariant neuronal lineage, fully mapped genome, and conserved associative behaviors have allowed the development of a breadth of genetic and genomic tools to examine learning and memory. In this mini-review, we discuss novel and exciting genetic and genomic techniques used to examine molecular and genetic underpinnings of memory from the level of the whole-worm to tissue-specific and cell-type specific approaches with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Katie L. Brandel-Ankrapp
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, U.S.A
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, U.S.A
| | - Rachel N. Arey
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, U.S.A
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, U.S.A
| |
Collapse
|
14
|
McKay A, Costa EK, Chen J, Hu CK, Chen X, Bedbrook CN, Khondker RC, Thielvoldt M, Priya Singh P, Wyss-Coray T, Brunet A. An automated feeding system for the African killifish reveals the impact of diet on lifespan and allows scalable assessment of associative learning. eLife 2022; 11:e69008. [PMID: 36354233 PMCID: PMC9788828 DOI: 10.7554/elife.69008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/09/2022] [Indexed: 11/11/2022] Open
Abstract
The African turquoise killifish is an exciting new vertebrate model for aging studies. A significant challenge for any model organism is the control over its diet in space and time. To address this challenge, we created an automated and networked fish feeding system. Our automated feeder is designed to be open-source, easily transferable, and built from widely available components. Compared to manual feeding, our automated system is highly precise and flexible. As a proof of concept for the feeding flexibility of these automated feeders, we define a favorable regimen for growth and fertility for the African killifish and a dietary restriction regimen where both feeding time and quantity are reduced. We show that this dietary restriction regimen extends lifespan in males (but not in females) and impacts the transcriptomes of killifish livers in a sex-specific manner. Moreover, combining our automated feeding system with a video camera, we establish a quantitative associative learning assay to provide an integrative measure of cognitive performance for the killifish. The ability to precisely control food delivery in the killifish opens new areas to assess lifespan and cognitive behavior dynamics and to screen for dietary interventions and drugs in a scalable manner previously impossible with traditional vertebrate model organisms.
Collapse
Affiliation(s)
- Andrew McKay
- Department of Genetics, Stanford UniversityStanfordUnited States
- Biology Graduate Program, Stanford UniversityStanfordUnited States
| | - Emma K Costa
- Department of Neurology and Neurological Sciences, Stanford UniversityStanfordUnited States
- Neurosciences Interdepartmental Program, Stanford University School of MedicineStanfordUnited States
| | - Jingxun Chen
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Chi-Kuo Hu
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Xiaoshan Chen
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Claire N Bedbrook
- Department of Genetics, Stanford UniversityStanfordUnited States
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | | | | | | | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford UniversityStanfordUnited States
- Glenn Laboratories for the Biology of Aging, Stanford UniversityStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
| | - Anne Brunet
- Department of Genetics, Stanford UniversityStanfordUnited States
- Glenn Laboratories for the Biology of Aging, Stanford UniversityStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
15
|
Jones A, Jha R. Exploring the associative learning capabilities of the segmented attractor network for lifelong learning. Front Artif Intell 2022; 5:910407. [PMID: 35978653 PMCID: PMC9376266 DOI: 10.3389/frai.2022.910407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
This work explores the process of adapting the segmented attractor network to a lifelong learning setting. Taking inspirations from Hopfield networks and content-addressable memory, the segmented attractor network is a powerful tool for associative memory applications. The network's performance as an associative memory is analyzed using multiple metrics. In addition to the network's general hit rate, its capability to recall unique memories and their frequency is also evaluated with respect to time. Finally, additional learning techniques are implemented to enhance the network's recall capacity in the application of lifelong learning. These learning techniques are based on human cognitive functions such as memory consolidation, prediction, and forgetting.
Collapse
Affiliation(s)
- Alexander Jones
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | | |
Collapse
|
16
|
Invited review: Unearthing the mechanisms of age-related neurodegenerative disease using Caenorhabditis elegans. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111166. [PMID: 35176489 DOI: 10.1016/j.cbpa.2022.111166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
As human life expectancy increases, neurodegenerative diseases present a growing public health threat, for which there are currently few effective treatments. There is an urgent need to understand the molecular and genetic underpinnings of these disorders so new therapeutic targets can be identified. Here we present the argument that the simple nematode worm Caenorhabditis elegans is a powerful tool to rapidly study neurodegenerative disorders due to their short lifespan and vast array of genetic tools, which can be combined with characterization of conserved neuronal processes and behavior orthologous to those disrupted in human disease. We review how pre-existing C. elegans models provide insight into human neurological disease as well as an overview of current tools available to study neurodegenerative diseases in the worm, with an emphasis on genetics and behavior. We also discuss open questions that C. elegans may be particularly well suited for in future studies and how worms will be a valuable preclinical model to better understand these devastating neurological disorders.
Collapse
|
17
|
Pribic MR, Black AH, Beale AD, Gauvin JA, Chiang LN, Rose JK. Association of Two Opposing Responses Results in the Emergence of a Novel Conditioned Response. Front Behav Neurosci 2022; 16:852266. [PMID: 35571277 PMCID: PMC9102977 DOI: 10.3389/fnbeh.2022.852266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Recent studies examining association of opposing responses, contrasting emotional valences, or counter motivational states have begun to elucidate how learning and memory processes can translate to clinical therapies for trauma or addiction. In the current study, association of opposing responses is tested in C. elegans. Due to its relatively simple and well-described nervous system, it was hypothesized that association of two oppositional stimuli presented in a delayed conditioning protocol would strengthen the behavioral response to the first stimulus (alpha conditioning). To test this, C. elegans were exposed to a tone vibration stimulus (to activate a mechanosensory-driven locomotor reversal response) paired with a blue light (to activate a forward locomotor response) at a 2-s delay. After five pairings, behavior was measured following a tone-alone stimulus. Worms that received stimulus pairing did not show an enhanced response to the first presented stimulus (tone vibration) but rather showed a marked increase in time spent in pause (cessation of movement), a new behavioral response (beta conditioning). This increase in pause behavior was accompanied by changes in measures of both backward and forward locomotion. Understanding the dynamics of conditioned behavior resulting from pairing of oppositional responses could provide further insight into how learning processes occur and may be applied.
Collapse
Affiliation(s)
- Micaela R. Pribic
- Biology Department, Western Washington University, Bellingham, WA, United States
| | - Aristide H. Black
- Department of Psychology, Western Washington University, Bellingham, WA, United States
| | - Asia D. Beale
- Department of Psychology, Western Washington University, Bellingham, WA, United States
| | - Jessica A. Gauvin
- Department of Psychology, Western Washington University, Bellingham, WA, United States
| | - Lisa N. Chiang
- Department of Psychology, Western Washington University, Bellingham, WA, United States
| | - Jacqueline K. Rose
- Department of Psychology, Western Washington University, Bellingham, WA, United States
| |
Collapse
|
18
|
Shrestha P, Klann E. Spatiotemporally resolved protein synthesis as a molecular framework for memory consolidation. Trends Neurosci 2022; 45:297-311. [PMID: 35184897 PMCID: PMC8930706 DOI: 10.1016/j.tins.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/25/2023]
Abstract
De novo protein synthesis is required for long-term memory consolidation. Dynamic regulation of protein synthesis occurs via a complex interplay of translation factors and modulators. Many components of the protein synthesis machinery have been targeted either pharmacologically or genetically to establish its requirement for memory. The combination of ligand/light-gating and genetic strategies, that is, chemogenetics and optogenetics, has begun to reveal the spatiotemporal resolution of protein synthesis in specific cell types during memory consolidation. This review summarizes current knowledge of the macroscopic and microscopic neural substrates for protein synthesis in memory consolidation. In addition, we highlight future directions for determining the localization and timing of de novo protein synthesis for memory consolidation with tools that permit unprecedented spatiotemporal precision.
Collapse
Affiliation(s)
- Prerana Shrestha
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10012, USA; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
19
|
Rahmani A, Chew YL. Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem 2021; 159:417-451. [PMID: 34528252 DOI: 10.1111/jnc.15510] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Learning is an essential biological process for survival since it facilitates behavioural plasticity in response to environmental changes. This process is mediated by a wide variety of genes, mostly expressed in the nervous system. Many studies have extensively explored the molecular and cellular mechanisms underlying learning and memory. This review will focus on the advances gained through the study of the nematode Caenorhabditis elegans. C. elegans provides an excellent system to study learning because of its genetic tractability, in addition to its invariant, compact nervous system (~300 neurons) that is well-characterised at the structural level. Importantly, despite its compact nature, the nematode nervous system possesses a high level of conservation with mammalian systems. These features allow the study of genes within specific sensory-, inter- and motor neurons, facilitating the interrogation of signalling pathways that mediate learning via defined neural circuits. This review will detail how learning and memory can be studied in C. elegans through behavioural paradigms that target distinct sensory modalities. We will also summarise recent studies describing mechanisms through which key molecular and cellular pathways are proposed to affect associative and non-associative forms of learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Gourgou E, Adiga K, Goettemoeller A, Chen C, Hsu AL. Caenorhabditis elegans learning in a structured maze is a multisensory behavior. iScience 2021; 24:102284. [PMID: 33889812 PMCID: PMC8050377 DOI: 10.1016/j.isci.2021.102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 03/04/2021] [Indexed: 11/05/2022] Open
Abstract
We show that C. elegans nematodes learn to associate food with a combination of proprioceptive cues and information on the structure of their surroundings (maze), perceived through mechanosensation. By using the custom-made Worm-Maze platform, we demonstrate that C. elegans young adults can locate food in T-shaped mazes and, following that experience, learn to reach a specific maze arm. C. elegans learning inside the maze is possible after a single training session, it resembles working memory, and it prevails over conflicting environmental cues. We provide evidence that the observed learning is a food-triggered multisensory behavior, which requires mechanosensory and proprioceptive input, and utilizes cues about the structural features of nematodes' environment and their body actions. The CREB-like transcription factor and dopamine signaling are also involved in maze performance. Lastly, we show that the observed aging-driven decline of C. elegans learning ability in the maze can be reversed by starvation.
Collapse
Affiliation(s)
- Eleni Gourgou
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Institute of Gerontology, University of Michigan Medical School, Ann Arbor, MI 41809, USA
| | - Kavya Adiga
- Department of Internal Medicine, Division of Geriatrics & Palliative Medicine, University of Michigan Medical School, Ann Arbor, MI 41809, USA
| | - Anne Goettemoeller
- Neuroscience Program, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI 41809, USA
| | - Chieh Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, 112 Taiwan
| | - Ao-Lin Hsu
- Department of Internal Medicine, Division of Geriatrics & Palliative Medicine, University of Michigan Medical School, Ann Arbor, MI 41809, USA
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, 112 Taiwan
- Research Center for Healthy Aging and Institute of New Drug Development, China Medical University, Taichung, 404, Taiwan
| |
Collapse
|
21
|
Majoral D, Zemmar A, Vicente R. A model for time interval learning in the Purkinje cell. PLoS Comput Biol 2020; 16:e1007601. [PMID: 32040505 PMCID: PMC7034954 DOI: 10.1371/journal.pcbi.1007601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/21/2020] [Accepted: 12/11/2019] [Indexed: 11/18/2022] Open
Abstract
Recent experimental findings indicate that Purkinje cells in the cerebellum represent time intervals by mechanisms other than conventional synaptic weights. These findings add to the theoretical and experimental observations suggesting the presence of intra-cellular mechanisms for adaptation and processing. To account for these experimental results we propose a new biophysical model for time interval learning in a Purkinje cell. The numerical model focuses on a classical delay conditioning task (e.g. eyeblink conditioning) and relies on a few computational steps. In particular, the model posits the activation by the parallel fiber input of a local intra-cellular calcium store which can be modulated by intra-cellular pathways. The reciprocal interaction of the calcium signal with several proteins forming negative and positive feedback loops ensures that the timing of inhibition in the Purkinje cell anticipates the interval between parallel and climbing fiber inputs during training. We systematically test the model ability to learn time intervals at the 150-1000 ms time scale, while observing that learning can also extend to the multiple seconds scale. In agreement with experimental observations we also show that the number of pairings required to learn increases with inter-stimulus interval. Finally, we discuss how this model would allow the cerebellum to detect and generate specific spatio-temporal patterns, a classical theory for cerebellar function.
Collapse
Affiliation(s)
- Daniel Majoral
- Department of Neurosurgery, Henan Provincial People’s Hospital of Zengzhou University, School of Clinical Medicine, Henan University, Zengzhou, Henan, China
- Computational Neuroscience Lab, Institute of Computer Science, University of Tartu, Tartu, Estonia
- * E-mail: (DM); (RV)
| | - Ajmal Zemmar
- Department of Neurosurgery, Henan Provincial People’s Hospital of Zengzhou University, School of Clinical Medicine, Henan University, Zengzhou, Henan, China
- Department of Biology and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Raul Vicente
- Department of Neurosurgery, Henan Provincial People’s Hospital of Zengzhou University, School of Clinical Medicine, Henan University, Zengzhou, Henan, China
- Computational Neuroscience Lab, Institute of Computer Science, University of Tartu, Tartu, Estonia
- * E-mail: (DM); (RV)
| |
Collapse
|
22
|
Arey RN, Kaletsky R, Murphy CT. Nervous system-wide profiling of presynaptic mRNAs reveals regulators of associative memory. Sci Rep 2019; 9:20314. [PMID: 31889133 PMCID: PMC6937282 DOI: 10.1038/s41598-019-56908-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Presynaptic protein synthesis is important in the adult central nervous system; however, the nervous system-wide set of mRNAs localized to presynaptic areas has yet to be identified in any organism. Here we differentially labeled somatic and synaptic compartments in adult C. elegans with fluorescent proteins, and isolated synaptic and somatic regions from the same population of animals. We used this technique to determine the nervous system-wide presynaptic transcriptome by deep sequencing. Analysis of the synaptic transcriptome reveals that synaptic transcripts are predicted to have specialized functions in neurons. Differential expression analysis identified 542 genes enriched in synaptic regions relative to somatic regions, with synaptic functions conserved in higher organisms. We find that mRNAs for pumilio RNA-binding proteins are abundant in synaptic regions, which we confirmed through high-sensitivity in situ hybridization. Presynaptic PUMILIOs regulate associative memory. Our approach enables the identification of new mechanisms that regulate synaptic function and behavior.
Collapse
Affiliation(s)
- Rachel N Arey
- Department of Molecular and Cellular Biology and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Rachel Kaletsky
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Coleen T Murphy
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
23
|
Murphy CT. Being open to the unexpected. Mol Biol Cell 2019; 30:2862-2864. [PMID: 31671037 PMCID: PMC6822587 DOI: 10.1091/mbc.e19-07-0380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
I am grateful to have received the 2019 Women in Cell Biology Mid-Career Award from the American Society for Cell Biology. My lab has been studying aging and longevity regulation since 2005, but along the way we have had some surprises. These unexpected findings have morphed from detours to main directions, changing how I view biology. As I look back I've come to appreciate the importance and joy that can come from being open to these surprise interests and rigorously pursuing them.
Collapse
Affiliation(s)
- Coleen T Murphy
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544
| |
Collapse
|
24
|
Zhu M, Xu X, Li Y, Wang P, Niu S, Zhang K, Huang X. Biosynthesis of the Nematode Attractant 2-Heptanone and Its Co-evolution Between the Pathogenic Bacterium Bacillus nematocida and Non-pathogenic Bacterium Bacillus subtilis. Front Microbiol 2019; 10:1489. [PMID: 31312190 PMCID: PMC6614512 DOI: 10.3389/fmicb.2019.01489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/14/2019] [Indexed: 11/13/2022] Open
Abstract
Methylketones are broadly distributed in nature and perform a variety of functions. Most microorganisms are thought to produce methylketone by abortive β-oxidation of fatty acid catalytic metabolism. However, two methylketone synthetase genes in wild tomatoes are reported to synthesize methylketone using intermediates of the fatty acids biosynthetic pathway. In our previous study on Trojan horse-like interactions between the bacterium Bacillus nematocida B16 and its host worm, the chemical 2-heptanone was found to be an important attractant for the hosts. So here we used this model to investigate the genes involved in synthesizing 2-heptanone in microorganisms. We identified a novel methylketone synthase gene yneP in B. nematocida B16 and found enhancement of de novo fatty acid synthesis during 2-heptanone production. Interestingly, a homolog of yneP' existed in the non-pathogenic species Bacillus subtilis 168, a close relative of B. nematocida B16 that was unable to lure worms, but GC-MS assay showed no 2-heptanone production. However, overexpression of yneP' from B. subtilis in both heterologous and homologous systems demonstrated that it was not a pseudogene. The transcriptional analysis between those two genes had few differences under the same conditions. It was further shown that the failure to detect 2-heptanone in B. subtilis 168 was at least partly due to its conversion into 6-methyl-2-heptanone by methylation. Our study revealed methylketone biosynthesis of Bacillus species, and provided a co-evolution paradigm of second metabolites during the interactions between pathogenic/non-pathogenic bacteria and host.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaowei Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources, Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
25
|
Hoffman C, Aballay A. Role of neurons in the control of immune defense. Curr Opin Immunol 2019; 60:30-36. [PMID: 31117013 DOI: 10.1016/j.coi.2019.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 11/28/2022]
Abstract
Studies in recent years have strengthened the notion that neural mechanisms are involved in the control of immune responses. From initial studies that highlighted the vagus nerve control of inflammatory responses in vertebrates, many advances have been made, including the dissection of specific neural circuits that are involved in controlling immunity. Part of this has been facilitated by the use of a tractable model animal, Caenorhabditis elegans, in which individual neurons involved in sensing pathogens and controlling the immune response have been identified. Importantly, some of the underlying mechanisms involved in the neural control of immune pathways appear to be present in evolutionarily diverse species. This review focuses on some major developments in vertebrates and C. elegans, and how these discoveries may lead to advances in understanding neural-immune connections that govern inflammatory responses.
Collapse
Affiliation(s)
- Casandra Hoffman
- Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 6351 Richard Jones Hall, Mail Code: L220, Portland, OR 97239, United States
| | - Alejandro Aballay
- Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 6351 Richard Jones Hall, Mail Code: L220, Portland, OR 97239, United States.
| |
Collapse
|
26
|
Eliezer Y, Deshe N, Hoch L, Iwanir S, Pritz CO, Zaslaver A. A Memory Circuit for Coping with Impending Adversity. Curr Biol 2019; 29:1573-1583.e4. [PMID: 31056393 PMCID: PMC6538972 DOI: 10.1016/j.cub.2019.03.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/20/2019] [Accepted: 03/26/2019] [Indexed: 11/28/2022]
Abstract
Organisms’ capacity to anticipate future conditions is key for survival. Associative memories are instrumental for learning from past experiences, yet little is known about the processes that follow memory retrieval and their potential advantage in preparing for impending developments. Here, using C. elegans nematodes, we demonstrate that odor-evoked retrieval of aversive memories induces rapid and protective stress responses, which increase animal survival prospects when facing imminent adversities. The underlying mechanism relies on two sensory neurons: one is necessary during the learning period, and the other is necessary and sufficient for memory retrieval. Downstream of memory reactivation, serotonin secreted from two head neurons mediates the systemic stress response. Thus, evoking stressful memories, stored within individual sensory neurons, allows animals to anticipate upcoming dire conditions and provides a head start to initiate rapid and protective responses that ultimately increase animal fitness. Reactivation of an aversive memory induces a fast protective stress response The fast response provides the animals with a fitness advantage One neuron is necessary for memory formation Another neuron is necessary and sufficient for memory reactivation
Collapse
Affiliation(s)
- Yifat Eliezer
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Noa Deshe
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Lihi Hoch
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Shachar Iwanir
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Christian O Pritz
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Alon Zaslaver
- Department of Genetics, Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
27
|
Cejnar P, Vysata O, Valis M, Prochazka A. The Complex Behaviour of a Simple Neural Oscillator Model in the Human Cortex. IEEE Trans Neural Syst Rehabil Eng 2018; 27:337-347. [PMID: 30507514 DOI: 10.1109/tnsre.2018.2883618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The brain is a complex organ responsible for memory storage and reasoning; however, the mechanisms underlying these processes remain unknown. This paper forms a contribution to a lot of theoretical studies devoted to regular or chaotic oscillations of interconnected neurons assuming that the smallest information unit in the brain is not a neuron but, instead, a coupling of inhibitory and excitatory neurons forming a simple oscillator. Several coefficients of variation for peak intervals and correlation coefficients for peak interval histograms are evaluated and the sensitivity of such oscillator units is tested to changes in initial membrane potentials, interconnection signal delays, and changes in synaptic weights based on known histologically verified neuron couplings. Results present only a low dependence of oscillation patterns to changes in initial membrane potentials or interconnection signal delays in comparison to a strong sensitivity to changes in synaptic weights showing the stability and robustness of encoded oscillating patterns to signal outages or remoteness of interconnected neurons. Presented simulations prove that the selected neuronal couplings are able to produce a variety of different behavioural patterns, with periodicity ranging from milliseconds to thousands of milliseconds between the spikes. Many detected different intrinsic frequencies then support the idea of possibly large informational capacity of such memory units.
Collapse
|
28
|
Blazie SM, Jin Y. Pharming for Genes in Neurotransmission: Combining Chemical and Genetic Approaches in Caenorhabditis elegans. ACS Chem Neurosci 2018; 9:1963-1974. [PMID: 29432681 DOI: 10.1021/acschemneuro.7b00509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Synaptic transmission is central to nervous system function. Chemical and genetic screens are valuable approaches to probe synaptic mechanisms in living animals. The nematode Caenorhabditis elegans is a prime system to apply these methods to discover genes and dissect the cellular pathways underlying neurotransmission. Here, we review key approaches to understand neurotransmission and the action of psychiatric drugs in C. elegans. We start with early studies on cholinergic excitatory signaling at the neuromuscular junction, and move into mechanisms mediated by biogenic amines. Finally, we discuss emerging work toward understanding the mechanisms driving synaptic plasticity with a focus on regulation of protein translation.
Collapse
Affiliation(s)
- Stephen M. Blazie
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
29
|
Arey RN, Stein GM, Kaletsky R, Kauffman A, Murphy CT. Activation of G αq Signaling Enhances Memory Consolidation and Slows Cognitive Decline. Neuron 2018; 98:562-574.e5. [PMID: 29656871 DOI: 10.1016/j.neuron.2018.03.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/06/2017] [Accepted: 03/21/2018] [Indexed: 01/25/2023]
Abstract
Perhaps the most devastating decline with age is the loss of memory. Therefore, identifying mechanisms to restore memory function with age is critical. Using C. elegans associative learning and memory assays, we identified a gain-of-function Gαq signaling pathway mutant that forms a long-term (cAMP response element binding protein [CREB]-dependent) memory following one conditioned stimulus-unconditioned stimulus (CS-US) pairing, which usually requires seven CS-US pairings. Increased CREB activity in AIM interneurons reduces the threshold for memory consolidation through transcription of a set of previously identified "long-term memory" genes. Enhanced Gαq signaling in the AWC sensory neuron is both necessary and sufficient for improved memory and increased AIM CREB activity, and activation of Gαq specifically in aged animals rescues the ability to form memory. Activation of Gαq in AWC sensory neurons non-cell autonomously induces consolidation after one CS-US pairing, enabling both cognitive function maintenance with age and restoration of memory function in animals with impaired memory performance without decreased longevity.
Collapse
Affiliation(s)
- Rachel N Arey
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Geneva M Stein
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rachel Kaletsky
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Amanda Kauffman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
30
|
Nag P, Aggarwal PR, Ghosh S, Narula K, Tayal R, Maheshwari N, Chakraborty N, Chakraborty S. Interplay of neuronal and non-neuronal genes regulates intestinal DAF-16-mediated immune response during Fusarium infection of Caenorhabditis elegans. Cell Death Discov 2017; 3:17073. [PMID: 29152379 PMCID: PMC5684781 DOI: 10.1038/cddiscovery.2017.73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/02/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022] Open
Abstract
Although precisely controlled innate immune response is governed by conserved cellular events in phylogenetically diverse hosts, the underlying molecular mechanisms by which this process is regulated against a multi-host pathogen remain unknown. Fusarium oxysporum is a model multi-host pathogen, known to be associated with neuronal stress in humans and vascular wilt in plants. The interaction between innate immune and neuronal pathways is the basis of many diverse biological responses. How these processes are coordinated in response to fungal disease is not well understood. Here, we show that F. oxysporum f. sp. ciceri causes neuronal stress and intestinal disintegration, ultimately leading to the death of Caenorhabditis elegans. To explore the regulatory framework of Fusarium-associated disease, we analysed the gene expression during infection, integrated temporal gene expression, and network analysis with genetic inactivation data in Caenorhabditis elegans. We identified 1024 genes showing significant changes in expression (corrected P-values <0.05) in response to Fusarium infection. Co-expression network analysis of our data identified prognostic genes related to disease progression. These genes were dynamically expressed in various neuronal and non-neuronal tissues exhibiting diverse biological functions, including cellular homeostasis, organ patterning, stress response, and lipid metabolism. The RNA-seq analysis further identified shared and unique signalling pathways regulated by DAF-16/FOXO and SIR-2.1 linking neuronal stress, which facilitates negative regulation of intestinal innate immunity. Genetic analysis revealed that GCY-5 in ASE functions upstream of DAF-16, whereas ASI-specific SRD-1 regulates behavioural immunity. Overall, our results indicate that a ubiquitous response occurs during Fusarium infection mediated by highly conserved regulatory components and pathways, which can be exploited further for the identification of disease-responsive genes conserved among animals and plants. Finally, this study provided a novel insight into cross-species immune signalling and may facilitate the discovery of cellular therapeutic targets for Fusarium-associated disease.
Collapse
Affiliation(s)
- Papri Nag
- National Institute of Plant Genome Research,
Aruna Asaf Ali Marg, New Delhi, India
| | - Pooja Rani Aggarwal
- National Institute of Plant Genome Research,
Aruna Asaf Ali Marg, New Delhi, India
| | - Sudip Ghosh
- National Institute of Plant Genome Research,
Aruna Asaf Ali Marg, New Delhi, India
| | - Kanika Narula
- National Institute of Plant Genome Research,
Aruna Asaf Ali Marg, New Delhi, India
| | - Rajul Tayal
- National Institute of Plant Genome Research,
Aruna Asaf Ali Marg, New Delhi, India
| | - Nidhi Maheshwari
- National Institute of Plant Genome Research,
Aruna Asaf Ali Marg, New Delhi, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research,
Aruna Asaf Ali Marg, New Delhi, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research,
Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
31
|
Nishijima S, Maruyama IN. Appetitive Olfactory Learning and Long-Term Associative Memory in Caenorhabditis elegans. Front Behav Neurosci 2017; 11:80. [PMID: 28507513 PMCID: PMC5410607 DOI: 10.3389/fnbeh.2017.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/13/2017] [Indexed: 01/06/2023] Open
Abstract
Because of the relative simplicity of its nervous system, Caenorhabditis elegans is a useful model organism to study learning and memory at cellular and molecular levels. For appetitive conditioning in C. elegans, food has exclusively been used as an unconditioned stimulus (US). It may be difficult to analyze neuronal circuits for associative memory since food is a multimodal combination of olfactory, gustatory, and mechanical stimuli. Here, we report classical appetitive conditioning and associative memory in C. elegans, using 1-nonanol as a conditioned stimulus (CS), and potassium chloride (KCl) as a US. Before conditioning, C. elegans innately avoided 1-nonanol, an aversive olfactory stimulus, and was attracted by KCl, an appetitive gustatory stimulus, on assay agar plates. Both massed training without an intertrial interval (ITI) and spaced training with a 10-min ITI induced significant levels of memory of association regarding the two chemicals. Memory induced by massed training decayed within 6 h, while that induced by spaced training was retained for more than 6 h. Animals treated with inhibitors of transcription or translation formed the memory induced by spaced training less efficiently than untreated animals, whereas the memory induced by massed training was not significantly affected by such treatments. By definition, therefore, memories induced by massed training and spaced training are classified as short-term memory (STM) and long-term memory (LTM), respectively. When animals conditioned by spaced training were exposed to 1-nonanol alone, their learning index was lower than that of untreated animals, suggesting that extinction learning occurs in C. elegans. In support of these results, C. elegans mutants defective in nmr-1, encoding an NMDA receptor subunit, formed both STM and LTM less efficiently than wild-type animals, while mutations in crh-1, encoding a ubiquitous transcription factor CREB required for memory consolidation, affected LTM, but not STM. The paradigm established in the present study should allow us to elucidate neuronal circuit plasticity for appetitive learning and memory in C. elegans.
Collapse
Affiliation(s)
| | - Ichiro N. Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan
| |
Collapse
|
32
|
Arey RN, Murphy CT. Conserved regulators of cognitive aging: From worms to humans. Behav Brain Res 2016; 322:299-310. [PMID: 27329151 DOI: 10.1016/j.bbr.2016.06.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/27/2016] [Accepted: 06/17/2016] [Indexed: 01/25/2023]
Abstract
Cognitive decline is a major deficit that arises with age in humans. While some research on the underlying causes of these problems can be done in humans, harnessing the strengths of small model systems, particularly those with well-studied longevity mutants, such as the nematode C. elegans, will accelerate progress. Here we review the approaches being used to study cognitive decline in model organisms and show how simple model systems allow the rapid discovery of conserved molecular mechanisms, which will eventually enable the development of therapeutics to slow cognitive aging.
Collapse
Affiliation(s)
- Rachel N Arey
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Coleen T Murphy
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
33
|
Li LB, Lei H, Arey RN, Li P, Liu J, Murphy CT, Xu XZS, Shen K. The Neuronal Kinesin UNC-104/KIF1A Is a Key Regulator of Synaptic Aging and Insulin Signaling-Regulated Memory. Curr Biol 2016; 26:605-15. [PMID: 26877087 DOI: 10.1016/j.cub.2015.12.068] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/23/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
Aging is the greatest risk factor for a number of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. Furthermore, normal aging is associated with a decline in sensory, motor, and cognitive functions. Emerging evidence suggests that synapse alterations, rather than neuronal cell death, are the causes of neuronal dysfunctions in normal aging and in early stages of neurodegenerative diseases. However, little is known about the mechanisms underlying age-related synaptic decline. Here, we uncover a surprising role of the anterograde molecular motor UNC-104/KIF1A as a key regulator of neural circuit deterioration in aging C. elegans. Through analyses of synapse protein localization, synaptic transmission, and animal behaviors, we find that reduced function of UNC-104 accelerates motor circuit dysfunction with age, whereas upregulation of UNC-104 significantly improves motor function at advanced ages and also mildly extends lifespan. In addition, UNC-104-overexpressing animals outperform wild-type controls in associative learning and memory tests. Further genetic analyses suggest that UNC-104 functions downstream of the DAF-2-signaling pathway and is regulated by the FOXO transcription factor DAF-16, which contributes to the effects of DAF-2 in neuronal aging. Together, our cellular, electrophysiological, and behavioral analyses highlight the importance of axonal transport in the maintenance of synaptic structural integrity and function during aging and raise the possibility of targeting kinesins to slow age-related neural circuit dysfunction.
Collapse
Affiliation(s)
- Ling-Bo Li
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Haoyun Lei
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; College of Life Science and Technology, Huazhong University of Science Technology, Wuhan, Hubei 430074, China
| | - Rachel N Arey
- Department of Molecular Biology and LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Pengpeng Li
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jianfeng Liu
- College of Life Science and Technology, Huazhong University of Science Technology, Wuhan, Hubei 430074, China
| | - Coleen T Murphy
- Department of Molecular Biology and LSI Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - X Z Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Kang Shen
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
34
|
Kaletsky R, Lakhina V, Arey R, Williams A, Landis J, Ashraf J, Murphy CT. The C. elegans adult neuronal IIS/FOXO transcriptome reveals adult phenotype regulators. Nature 2015; 529:92-6. [PMID: 26675724 PMCID: PMC4708089 DOI: 10.1038/nature16483] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/25/2015] [Indexed: 12/30/2022]
Abstract
Insulin/IGF-1 signaling (IIS) is a critical regulator of an organism’s most important biological decisions, from growth, development, and metabolism to reproduction and longevity. It primarily does so through the activity of the DAF-16/FOXO transcription factor, whose global targets were identified in C. elegans using whole-worm transcriptional analyses more than a decade ago1. IIS and FOXO also regulate important neuronal and adult behavioral phenotypes, such as the maintenance of memory2 and axon regeneration3 with age, in both mammals4 and C. elegans, but the neuron-specific IIS/FOXO targets that regulate these functions are still unknown. By isolating adult C. elegans neurons for transcriptional profiling, we identified both the wild-type and IIS/FOXO adult neuronal transcriptomes for the first time. IIS/FOXO neuron-specific targets are distinct from canonical IIS/FOXO-regulated longevity and metabolism targets, and are required for IIS/daf-2 mutants’ extended memory. We also discovered that the activity of the forkhead transcription factor FKH-9 in neurons is required for daf-2’s ability to regenerate axons with age, and its activity in non-neuronal tissues is required for daf-2’s long lifespan. Together, neuron-specific and canonical IIS/FOXO-regulated targets enable the coordinated extension of neuronal activities, metabolism, and longevity under low insulin-signaling conditions.
Collapse
Affiliation(s)
- Rachel Kaletsky
- Department of Molecular Biology &LSI Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Vanisha Lakhina
- Department of Molecular Biology &LSI Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Rachel Arey
- Department of Molecular Biology &LSI Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - April Williams
- Department of Molecular Biology &LSI Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Jessica Landis
- Department of Molecular Biology &LSI Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Jasmine Ashraf
- Department of Molecular Biology &LSI Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Coleen T Murphy
- Department of Molecular Biology &LSI Genomics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|