1
|
Etemadi L, Jirenhed DA, Rasmussen A. Effects of working memory load and CS-US intervals on delay eyeblink conditioning. NPJ SCIENCE OF LEARNING 2023; 8:16. [PMID: 37210441 DOI: 10.1038/s41539-023-00167-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
Eyeblink conditioning is used in many species to study motor learning and make inferences about cerebellar function. However, the discrepancies in performance between humans and other species combined with evidence that volition and awareness can modulate learning suggest that eyeblink conditioning is not merely a passive form of learning that relies on only the cerebellum. Here we explored two ways to reduce the influence of volition and awareness on eyeblink conditioning: (1) using a short interstimulus interval, and (2) having participants do working memory tasks during the conditioning. Our results show that participants trained with short interstimulus intervals (150 ms and 250 ms) produce very few conditioned responses after 100 trials. Participants trained with a longer interstimulus interval (500 ms) who simultaneously did working memory tasks produced fewer conditioned responses than participants who watched a movie during the training. Our results suggest that having participants perform working memory tasks during eyeblink conditioning can be a viable strategy for studying cerebellar learning that is absent of influences from awareness and volition. This could enhance the comparability of the results obtained in human studies with those in animal models.
Collapse
Affiliation(s)
- Leila Etemadi
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund, Sweden
| | - Dan-Anders Jirenhed
- Associative Learning, Department of Experimental Medical Science, Lund, Sweden
| | - Anders Rasmussen
- Associative Learning, Department of Experimental Medical Science, Lund, Sweden.
- Erasmus Medical Center, Department of Neuroscience, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Goud TJ. Epigenetic and Long-Term Effects of Nicotine on Biology, Behavior, and Health. Pharmacol Res 2023; 192:106741. [PMID: 37149116 DOI: 10.1016/j.phrs.2023.106741] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/08/2023]
Abstract
Tobacco and nicotine use are associated with disease susceptibility and progression. Health challenges associated with nicotine and smoking include developmental delays, addiction, mental health and behavioral changes, lung disease, cardiovascular disease, endocrine disorders, diabetes, immune system changes, and cancer. Increasing evidence suggests that nicotine-associated epigenetic changes may mediate or moderate the development and progression of a myriad of negative health outcomes. In addition, nicotine exposure may confer increased lifelong susceptibility to disease and mental health challenges through alteration of epigenetic signaling. This review examines the relationship between nicotine exposure (and smoking), epigenetic changes, and maladaptive outcomes that include developmental disorders, addiction, mental health challenges, pulmonary disease, cardiovascular disease, endocrine disorders, diabetes, immune system changes, and cancer. Overall, findings support the contention that nicotine (or smoking) associated altered epigenetic signaling is a contributing factor to disease and health challenges.
Collapse
Affiliation(s)
- Thomas J Goud
- Department of Biobehavioral Health, The Pennsylvania State University, Penn State University, University Park, PA, USA.
| |
Collapse
|
3
|
Jhuang YC, Chang CH. Differential roles of nucleus reuniens and perirhinal cortex in Pavlovian trace fear conditioning in rats. Cereb Cortex 2022; 33:3498-3510. [PMID: 35952337 DOI: 10.1093/cercor/bhac287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
The nucleus reuniens (RE) and the perirhinal cortex (PRC) are two major relay stations that interconnect the hippocampus (HPC) and the medial prefrontal cortex (mPFC). Previous studies have shown that both the RE and the PRC are involved in the acquisition of trace fear conditioning. However, the respective contribution of the two regions is unclear. In this study, we used pharmacological approach to compare their roles. Our data suggested that inactivation of the RE or the PRC during conditioning partially impaired, whereas inactivation of both areas totally abolished, the encoding of trace fear. We next examined whether the impaired encoding of trace fear under RE inactivation can be rescued with enhanced cholinergic tone in the PRC, and vice versa. Against our hypothesis, regardless of whether the RE was on-line or not, animals failed to encode trace fear when further engaging cholinergic activities in the PRC. Conversely, depending on PRC activation level during conditioning, further recruiting cholinergic activities in the RE led to a down-shift of fear response during retrieval. Our results revealed that the RE and the PRC were necessary for the encoding of trace fear. Moreover, there was differential importance of cholinergic modulation during the process.
Collapse
Affiliation(s)
- Yi-Ci Jhuang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Hui Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 30013, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
4
|
Coray R, Quednow BB. The role of serotonin in declarative memory: A systematic review of animal and human research. Neurosci Biobehav Rev 2022; 139:104729. [PMID: 35691469 DOI: 10.1016/j.neubiorev.2022.104729] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The serotonergic system is involved in diverse cognitive functions including memory. Of particular importance to daily life are declarative memories that contain information about personal experiences, general facts, and events. Several psychiatric or neurological diseases, such as depression, attention-deficit-hyperactivity disorder (ADHD), and dementia, show alterations in serotonergic signalling and attendant memory disorders. Nevertheless, understanding serotonergic neurotransmission and its influence on memory remained a challenge until today. In this systematic review, we summarize recent psychopharmacological studies in animals and humans from a psychological memory perspective, in consideration of task-specific requirements. This approach has the advantage that comparisons between serotonin (5-HT)-related neurochemical mechanisms and manipulations are each addressing specific mnemonic circuits. We conclude that applications of the same 5-HT-related treatments can differentially affect unrelated tasks of declarative memories. Moreover, the analysis of specific mnemonic phases (e.g., encoding vs. consolidation) reveals opposing impacts of increased or decreased 5-HT tones, with low 5-HT supporting spatial encoding but impairing the consolidation of objects and verbal memories. Promising targets for protein synthesis-dependent consolidation enhancements include 5-HT4 receptor agonists and 5-HT6 receptor antagonists, with the latter being of special interest for the treatment of age-related decline. Further implications are pointed out as base for the development of novel therapeutic targets for memory impairment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca Coray
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland.
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| |
Collapse
|
5
|
Giurfa M, Macri C. Neuroscience: Mechanisms for bridging stimuli in Pavlovian trace conditioning in flies. Curr Biol 2022; 32:R532-R535. [PMID: 35671730 DOI: 10.1016/j.cub.2022.04.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recent study revealed neural mechanisms underlying visual trace conditioning in flies. To associate visual stimuli with heat punishment, the activity of visual- and heat-processing circuits was extended into the gap between them. Distractors delivered during the gap disrupted learning, raising the question of the cognitive processes at play.
Collapse
Affiliation(s)
- Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse cedex 9, France; Institut Universitaire de France (IUF), Paris, France.
| | - Catherine Macri
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse cedex 9, France
| |
Collapse
|
6
|
Mason GJ, Lavery JM. What Is It Like to Be a Bass? Red Herrings, Fish Pain and the Study of Animal Sentience. Front Vet Sci 2022; 9:788289. [PMID: 35573409 PMCID: PMC9094623 DOI: 10.3389/fvets.2022.788289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Debates around fishes' ability to feel pain concern sentience: do reactions to tissue damage indicate evaluative consciousness (conscious affect), or mere nociception? Thanks to Braithwaite's discovery of trout nociceptors, and concerns that current practices could compromise welfare in countless fish, this issue's importance is beyond dispute. However, nociceptors are merely necessary, not sufficient, for true pain, and many measures held to indicate sentience have the same problem. The question of whether fish feel pain - or indeed anything at all - therefore stimulates sometimes polarized debate. Here, we try to bridge the divide. After reviewing key consciousness concepts, we identify "red herring" measures that should not be used to infer sentience because also present in non-sentient organisms, notably those lacking nervous systems, like plants and protozoa (P); spines disconnected from brains (S); decerebrate mammals and birds (D); and humans in unaware states (U). These "S.P.U.D. subjects" can show approach/withdrawal; react with apparent emotion; change their reactivity with food deprivation or analgesia; discriminate between stimuli; display Pavlovian learning, including some forms of trace conditioning; and even learn simple instrumental responses. Consequently, none of these responses are good indicators of sentience. Potentially more valid are aspects of working memory, operant conditioning, the self-report of state, and forms of higher order cognition. We suggest new experiments on humans to test these hypotheses, as well as modifications to tests for "mental time travel" and self-awareness (e.g., mirror self-recognition) that could allow these to now probe sentience (since currently they reflect perceptual rather than evaluative, affective aspects of consciousness). Because "bullet-proof" neurological and behavioral indicators of sentience are thus still lacking, agnosticism about fish sentience remains widespread. To end, we address how to balance such doubts with welfare protection, discussing concerns raised by key skeptics in this debate. Overall, we celebrate the rigorous evidential standards required by those unconvinced that fish are sentient; laud the compassion and ethical rigor shown by those advocating for welfare protections; and seek to show how precautionary principles still support protecting fish from physical harm.
Collapse
Affiliation(s)
- G. J. Mason
- Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
7
|
Namkung H, Thomas KL, Hall J, Sawa A. Parsing neural circuits of fear learning and extinction across basic and clinical neuroscience: Towards better translation. Neurosci Biobehav Rev 2022; 134:104502. [PMID: 34921863 DOI: 10.1016/j.neubiorev.2021.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022]
Abstract
Over the past decades, studies of fear learning and extinction have advanced our understanding of the neurobiology of threat and safety learning. Animal studies can provide mechanistic/causal insights into human brain regions and their functional connectivity involved in fear learning and extinction. Findings in humans, conversely, may further enrich our understanding of neural circuits in animals by providing macroscopic insights at the level of brain-wide networks. Nevertheless, there is still much room for improvement in translation between basic and clinical research on fear learning and extinction. Through the lens of neural circuits, in this article, we aim to review the current knowledge of fear learning and extinction in both animals and humans, and to propose strategies to fill in the current knowledge gap for the purpose of enhancing clinical benefits.
Collapse
Affiliation(s)
- Ho Namkung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK; School of Biosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK; School of Medicine, Cardiff University, Cardiff, UK
| | - Akira Sawa
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21287, USA.
| |
Collapse
|
8
|
Grover D, Chen JY, Xie J, Li J, Changeux JP, Greenspan RJ. Differential mechanisms underlie trace and delay conditioning in Drosophila. Nature 2022; 603:302-308. [PMID: 35173333 DOI: 10.1038/s41586-022-04433-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Two forms of associative learning-delay conditioning and trace conditioning-have been widely investigated in humans and higher-order mammals1. In delay conditioning, an unconditioned stimulus (for example, an electric shock) is introduced in the final moments of a conditioned stimulus (for example, a tone), with both ending at the same time. In trace conditioning, a 'trace' interval separates the conditioned stimulus and the unconditioned stimulus. Trace conditioning therefore relies on maintaining a neural representation of the conditioned stimulus after its termination (hence making distraction possible2), to learn the conditioned stimulus-unconditioned stimulus contingency3; this makes it more cognitively demanding than delay conditioning4. Here, by combining virtual-reality behaviour with neurogenetic manipulations and in vivo two-photon brain imaging, we show that visual trace conditioning and delay conditioning in Drosophila mobilize R2 and R4m ring neurons in the ellipsoid body. In trace conditioning, calcium transients during the trace interval show increased oscillations and slower declines over repeated training, and both of these effects are sensitive to distractions. Dopaminergic activity accompanies signal persistence in ring neurons, and this is decreased by distractions solely during trace conditioning. Finally, dopamine D1-like and D2-like receptor signalling in ring neurons have different roles in delay and trace conditioning; dopamine D1-like receptor 1 mediates both forms of conditioning, whereas the dopamine D2-like receptor is involved exclusively in sustaining ring neuron activity during the trace interval of trace conditioning. These observations are similar to those previously reported in mammals during arousal5, prefrontal activation6 and high-level cognitive learning7,8.
Collapse
Affiliation(s)
- Dhruv Grover
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA
| | - Jen-Yung Chen
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA
| | - Jiayun Xie
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA
| | - Jinfang Li
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA
| | - Jean-Pierre Changeux
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA.,CNRS UMR 3571, Institut Pasteur, Paris, France.,College de France, Paris, France
| | - Ralph J Greenspan
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA. .,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Wu YT, Chang CH. Functional Reuniens and Rhomboid Nuclei Are Required for Proper Acquisition and Expression of Cued and Contextual Fear in Trace Fear Conditioning. Int J Neuropsychopharmacol 2021; 25:319-327. [PMID: 34958668 PMCID: PMC9017769 DOI: 10.1093/ijnp/pyab094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/10/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The reuniens (Re) and rhomboid (Rh) nuclei (ReRh) of the midline thalamus interconnect the hippocampus and the medial prefrontal cortex. The hippocampus and medial prefrontal cortex are both involved in the acquisition of trace fear conditioning, in which a conditioned stimulus (tone) and an aversive unconditioned stimulus (footshock) are paired but separated in time with a trace interval. Earlier, we demonstrated that ReRh inactivation during trace conditioning impaired the acquisition of cued fear. In contrast, ReRh inactivation during both conditioning and test resulted in heightened fear to tones during retrieval. Because there was a generalized contextual fear on top of heightened fear to tones in the latter experiment, here we aimed to examine the specific importance of the functional ReRh in cued fear and contextual fear through introducing prolonged contextual exposure. METHODS The ReRh were pharmacologically inactivated with muscimol (or saline as controls) before each experimental session. RESULTS We showed that although ReRh inactivation before trace fear conditioning impaired the acquisition of cued fear, the animals still acquired a certain level of fear to the tones. However, without the functional ReRh throughout the entire behavioral sessions, these animals showed heightened contextual fear that did not decline much with the passage of time, which generalized to the other context, and fear to tones reoccurred when the tones were presented. CONCLUSIONS Our results suggested that functional ReRh are important for proper acquisition and expression of fear to context and tones acquired under trace procedure.
Collapse
Affiliation(s)
- Yi-ting Wu
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-hui Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan,Correspondence: Dr Chun-hui Chang, PhD, Institute of Systems Neuroscience, National Tsing Hua University, Kuang-Fu Rd, Sec 2, No 101, Hsinchu, Taiwan, 30013 ()
| |
Collapse
|
10
|
Zhang Y, Zeng Z. A Multi-functional Memristive Pavlov Associative Memory Circuit Based on Neural Mechanisms. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:978-993. [PMID: 34460383 DOI: 10.1109/tbcas.2021.3108354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pavlov conditioning is a typical associative memory, which involves associative learning between the gustatory and auditory cortex, known as Pavlov associative memory. Inspired by neural mechanisms and biological phenomena of Pavlov associative memory, this paper proposes a multi-functional memristive Pavlov associative memory circuit. In addition to learning and forgetting, whose rates change with the number of associative learning times, the circuit also achieves other innovative functions. First, consolidation learning, which refers to the continued learning process after acquiring associative memory, changes the rates of learning and forgetting. Secondly, the natural forgetting rate tends to zero when the associative memory has been acquired several times, which means the formation of long-term memory. Thirdly, the generalization and differentiation of associative memory caused by similar stimuli are realized through a simplified memristive feedforward neural network. Besides, this circuit implements the associative learning function of interval stimuli through a simpler structure, which refers to "the longer the stimuli interval, the slower the learning rate". The above functions are realized by the time interval module, variable rates module, and generalization and differentiation module. It has been shown that the proposed circuit has good robustness, and can reduce the influence of parasitic capacitance, memristive conductance drift, and input noise on circuit functions. Through further research, this circuit is expected to be used in robot platforms to realize human-like perception and associative cognitive functions.
Collapse
|
11
|
Lindquist DH. Emotion in motion: A three-stage model of aversive classical conditioning. Neurosci Biobehav Rev 2020; 115:363-377. [DOI: 10.1016/j.neubiorev.2020.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023]
|
12
|
Durieux L, Mathis V, Herbeaux K, Muller M, Barbelivien A, Mathis C, Schlichter R, Hugel S, Majchrzak M, Lecourtier L. Involvement of the lateral habenula in fear memory. Brain Struct Funct 2020; 225:2029-2044. [DOI: 10.1007/s00429-020-02107-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
|
13
|
Xia D, Min C, Chen Y, Ling R, Chen M, Li X. Repetitive Pain in Neonatal Male Rats Impairs Hippocampus-Dependent Fear Memory Later in Life. Front Neurosci 2020; 14:722. [PMID: 32733201 PMCID: PMC7360690 DOI: 10.3389/fnins.2020.00722] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/17/2020] [Indexed: 11/13/2022] Open
Abstract
Preterm infants in neonatal intensive care units are inevitably subjected to numerous painful procedures. However, little is known about the consequences of early pain experience on fear memory formation later in life. We hypothesized that exposure to repetitive pain in early life triggered hippocampal synaptic plasticity and resulted in memory deficiency in prepubertal and adult rats. From the day of birth (P0) to postnatal day 7 (P7), neonatal male rat pups were randomly assigned to either needle pricks or tactile touches repetitively every 6 h. Trace fear conditioning was performed on rats on P24-P26 and P87-P89. On P24 and P87, rats were sacrificed for molecular and electrophysiological studies. On P24-26 and P87-89, rats that experienced neonatal needle treatment showed a significant reduction in freezing time in the contextual fear conditioning (P < 0.05) and trace fear conditioning tests (P < 0.05). Moreover, repetitive neonatal procedural pain caused a significant decrease in the magnitude of hippocampal long-term potentiation induced by high-frequency stimulation. Furthermore, rats that experienced neonatal needle treatment demonstrated sustained downregulation of NR1, NR2A, NR2B, and GluR1 expression in the hippocampus. Therefore, neonatal pain is related to deficits in hippocampus-related fear memory later in life and might be caused by impairments in hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Dongqing Xia
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Cuiting Min
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yinhua Chen
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ru Ling
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mengying Chen
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Repeated ketamine administration induces recognition memory impairment together with morphological changes in neurons from ventromedial prefrontal cortex, dorsal striatum, and hippocampus. Behav Pharmacol 2020; 31:633-640. [DOI: 10.1097/fbp.0000000000000571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Raeder F, Karbach L, Struwe H, Margraf J, Zlomuzica A. Low Perceived Self-Efficacy Impedes Discriminative Fear Learning. Front Psychol 2019; 10:1191. [PMID: 31275188 PMCID: PMC6591439 DOI: 10.3389/fpsyg.2019.01191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/06/2019] [Indexed: 11/29/2022] Open
Abstract
Perceived self-efficacy refers to a subject’s expectation about the outcomes his/her behavior will have in a challenging situation. Low self-efficacy has been implicated in the origins and maintenance of phobic behavior. Correlational studies suggest an association between perceived self-efficacy and learning. The experimental manipulation of perceived self-efficacy offers an interesting approach to examine the impact of self-efficacy beliefs on cognitive and emotional functions. Recently, a positive effect of an experimentally induced increased self-efficacy on associative learning has been demonstrated. Changes in associative learning constitute a central hallmark of pathological fear and anxiety. Such alterations in the acquisition and extinction of conditioned fear may be related to cognitive and neurobiological factors that predict a certain vulnerability to anxiety disorders. The present study builds on previous own work by investigating the effect of an experimentally induced low perceived self-efficacy on fear acquisition, extinction and extinction retrieval in a differential fear conditioning task. Our results suggest that a negative verbal feedback, which leads to a decreased self-efficacy, is associated with changes in the acquisition of conditioned fear. During fear acquisition, the negative verbal feedback group showed decreased discrimination of fear responses between the aversive and safe conditioned stimuli (CS) relative to a group receiving a neutral feedback. The effects of the negative verbal feedback on the acquisition of fear discrimination learning were indexed by an impaired ability to discriminate the probability of receiving a shock during acquisition upon presentation of the aversive (CS+) relative to the safe stimuli (CS−). However, the effects of low self-efficacy on discrimination learning were limited to fear acquisition. No differences between the groups were observed during extinction and extinction retrieval. Furthermore, analysis of other outcome measures, i.e., skin conductance responses and CS valence ratings, revealed no group differences during the different phases of fear conditioning. In conclusion, lower perceived self-efficacy alters cognitive/expectancy components of discrimination during fear learning but not evaluative components and physiological responding. The pattern of findings suggests a selective, detrimental role of low(er) self-efficacy on the subject’s ability to learn the association between ambiguous cues and threat/safety.
Collapse
Affiliation(s)
- Friederike Raeder
- Ruhr University Bochum, Faculty of Psychology, Mental Health Research and Treatment Center, Bochum, Germany
| | - Lioba Karbach
- Ruhr University Bochum, Faculty of Psychology, Mental Health Research and Treatment Center, Bochum, Germany
| | - Helena Struwe
- Ruhr University Bochum, Faculty of Psychology, Mental Health Research and Treatment Center, Bochum, Germany
| | - Jürgen Margraf
- Ruhr University Bochum, Faculty of Psychology, Mental Health Research and Treatment Center, Bochum, Germany
| | - Armin Zlomuzica
- Ruhr University Bochum, Faculty of Psychology, Mental Health Research and Treatment Center, Bochum, Germany
| |
Collapse
|
16
|
Tian Y, Yang C, Cui Y, Su F, Wang Y, Wang Y, Yuan P, Shang S, Li H, Zhao J, Zhu D, Tang S, Cao P, Liu Y, Wang X, Wang L, Zeng W, Jiang H, Zhao F, Luo M, Xiong W, Qiu Z, Li XY, Zhang C. An Excitatory Neural Assembly Encodes Short-Term Memory in the Prefrontal Cortex. Cell Rep 2019; 22:1734-1744. [PMID: 29444427 DOI: 10.1016/j.celrep.2018.01.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/01/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022] Open
Abstract
Short-term memory (STM) is crucial for animals to hold information for a small period of time. Persistent or recurrent neural activity, together with neural oscillations, is known to encode the STM at the cellular level. However, the coding mechanisms at the microcircuitry level remain a mystery. Here, we performed two-photon imaging on behaving mice to monitor the activity of neuronal microcircuitry. We discovered a neuronal subpopulation in the medial prefrontal cortex (mPFC) that exhibited emergent properties in a context-dependent manner underlying a STM-like behavior paradigm. These neuronal subpopulations exclusively comprise excitatory neurons and mainly represent a group of neurons with stronger functional connections. Microcircuitry plasticity was maintained for minutes and was absent in an animal model of Alzheimer's disease (AD). Thus, these results point to a functional coding mechanism that relies on the emergent behavior of a functionally defined neuronal assembly to encode STM.
Collapse
Affiliation(s)
- Yonglu Tian
- State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences and Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chaojuan Yang
- State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences and Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Yaxuan Cui
- State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences and Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Feng Su
- State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences and Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China; School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Yongjie Wang
- Center for Mitochondrial Biology and Medicine, and Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China; Department of Physiology, Institute of Neuroscience and Collaborative Innovation Center for Brain Science, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yangzhen Wang
- State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences and Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China; School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peijiang Yuan
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Shujiang Shang
- State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences and Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing 100050, China
| | - Desheng Zhu
- State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences and Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Shiming Tang
- State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences and Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Peng Cao
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yunbo Liu
- Institute of Laboratory Animal Science, Peking Union Medical College/Chinese Academy of Medical Science, Beijing 100021, China
| | - Xunli Wang
- Laboratory Animal Center, Fujian University of Tradition Chinese Medicine, Fuzhou, Fujian Province 350122, China
| | - Liecheng Wang
- Department of Physiology, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Wenbo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, CAS, Wuhan, Hubei Province 430071, China
| | - Haifei Jiang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, CAS, Wuhan, Hubei Province 430071, China
| | - Fei Zhao
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, CAS, Wuhan, Hubei Province 430071, China
| | - Minhua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, CAS, Wuhan, Hubei Province 430071, China
| | - Wei Xiong
- School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zilong Qiu
- CAS Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS, Shanghai 200031, China.
| | - Xiang-Yao Li
- Department of Physiology, Institute of Neuroscience and Collaborative Innovation Center for Brain Science, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| | - Chen Zhang
- State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences and Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China.
| |
Collapse
|
17
|
Wu GY, Liu SL, Yao J, Sun L, Wu B, Yang Y, Li X, Sun QQ, Feng H, Sui JF. Medial Prefrontal Cortex-Pontine Nuclei Projections Modulate Suboptimal Cue-Induced Associative Motor Learning. Cereb Cortex 2019; 28:880-893. [PMID: 28077515 DOI: 10.1093/cercor/bhw410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Indexed: 11/14/2022] Open
Abstract
Diverse and powerful mechanisms have evolved to enable organisms to modulate learning and memory under a variety of survival conditions. Cumulative evidence has shown that the prefrontal cortex (PFC) is closely involved in many higher-order cognitive functions. However, when and how the medial PFC (mPFC) modulates associative motor learning remains largely unknown. Here, we show that delay eyeblink conditioning (DEC) with the weak conditioned stimulus (wCS) but not the strong CS (sCS) elicited a significant increase in the levels of c-Fos expression in caudal mPFC. Both optogenetic inhibition and activation of the bilateral caudal mPFC, or its axon terminals at the pontine nucleus (PN) contralateral to the training eye, significantly impaired the acquisition, recent and remote retrieval of DEC with the wCS but not the sCS. However, direct optogenetic activation of the contralateral PN had no significant effect on the acquisition, recent and remote retrieval of DEC. These results are of great importance in understanding the elusive role of the mPFC and its projection to PN in subserving the associative motor learning under suboptimal learning cue.
Collapse
Affiliation(s)
- Guang-Yan Wu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.,Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Shu-Lei Liu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.,Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Lin Sun
- Institute of Physical Education, Southwest University, Chongqing400715, China
| | - Bing Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xuan Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jian-Feng Sui
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.,Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
18
|
Deperrois N, Moiseeva V, Gutkin B. Minimal Circuit Model of Reward Prediction Error Computations and Effects of Nicotinic Modulations. Front Neural Circuits 2019; 12:116. [PMID: 30687021 PMCID: PMC6336136 DOI: 10.3389/fncir.2018.00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/14/2018] [Indexed: 11/29/2022] Open
Abstract
Dopamine (DA) neurons in the ventral tegmental area (VTA) are thought to encode reward prediction errors (RPE) by comparing actual and expected rewards. In recent years, much work has been done to identify how the brain uses and computes this signal. While several lines of evidence suggest the interplay of the DA and the inhibitory interneurons in the VTA implements the RPE computation, it still remains unclear how the DA neurons learn key quantities, for example the amplitude and the timing of primary rewards during conditioning tasks. Furthermore, endogenous acetylcholine and exogenous nicotine, also likely affect these computations by acting on both VTA DA and GABA (γ -aminobutyric acid) neurons via nicotinic-acetylcholine receptors (nAChRs). To explore the potential circuit-level mechanisms for RPE computations during classical-conditioning tasks, we developed a minimal computational model of the VTA circuitry. The model was designed to account for several reward-related properties of VTA afferents and recent findings on VTA GABA neuron dynamics during conditioning. With our minimal model, we showed that the RPE can be learned by a two-speed process computing reward timing and magnitude. By including models of nAChR-mediated currents in the VTA DA-GABA circuit, we showed that nicotine should reduce the acetylcholine action on the VTA GABA neurons by receptor desensitization and potentially boost DA responses to reward-related signals in a non-trivial manner. Together, our results delineate the mechanisms by which RPE are computed in the brain, and suggest a hypothesis on nicotine-mediated effects on reward-related perception and decision-making.
Collapse
Affiliation(s)
- Nicolas Deperrois
- Group for Neural Theory, LNC2 INSERM U960, DEC, École Normale Supérieure PSL University, Paris, France
| | - Victoria Moiseeva
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Boris Gutkin
- Group for Neural Theory, LNC2 INSERM U960, DEC, École Normale Supérieure PSL University, Paris, France.,Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
19
|
Pedersen M, Asprusten TT, Godang K, Leegaard TM, Osnes LT, Skovlund E, Tjade T, Øie MG, Wyller VBB. Predictors of chronic fatigue in adolescents six months after acute Epstein-Barr virus infection: A prospective cohort study. Brain Behav Immun 2019; 75:94-100. [PMID: 30261303 DOI: 10.1016/j.bbi.2018.09.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/08/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022] Open
Abstract
INTRODUCTION Acute Epstein-Barr virus (EBV) infection is a trigger of chronic fatigue and Chronic Fatigue Syndrome (CFS). This study investigated baseline predictors of chronic fatigue six months after an acute EBV infection. MATERIALS AND METHODS A total of 200 adolescents (12-20 years old) with acute EBV infection were assessed for 149 possible baseline predictors and followed prospectively. We performed linear regression to assess possible associations between baseline predictors and fatigue (Chalder Fatigue Questionnaire total score) six months after the acute EBV infection. A total of 70 healthy controls were included for cross-sectional reference. This study is part of the CEBA-project (Chronic fatigue following acute Epstein-Barr virus infection in adolescents). RESULTS In the final multiple linear regression model, fatigue six months after acute EBV infection was significantly and independently predicted by the following baseline variables (regression coefficient B[95% CI]): Sensory sensitivity (0.8[0.09-1.6]), pain severity (0.2[0.02-0.3]), functional impairment (1000 steps/day) (-0.3[-0.5 to -0.08]), negative emotions (anxiety) (0.4[0.2-0.6]), verbal memory (correct word recognition) (1.7[0.1-3.3]), plasma C-reactive protein (2.8[1.1-4.4] for CRP values >0.86) and plasma Vitamin B12 (-0.005[-0.01 to -0.001]). CONCLUSIONS Development of fatigue after acute EBV infection is to a larger extent predicted by baseline variables related to symptoms and functions than to baseline variables reflecting infectious and immune processes. TRIAL REGISTRATION ClinicalTrials, ID: NCT02335437, https://clinicaltrials.gov/ct2/show/NCT02335437.
Collapse
Affiliation(s)
- Maria Pedersen
- Institute of Clinical Medicine, University of Oslo, Norway; Dept. of Pediatrics, Akershus University Hospital, Norway
| | - Tarjei Tørre Asprusten
- Institute of Clinical Medicine, University of Oslo, Norway; Dept. of Pediatrics, Akershus University Hospital, Norway
| | - Kristin Godang
- Section of Specialized Endocrinology, Dept. of Endocrinology, Oslo University Hospital, Norway.
| | - Truls Michael Leegaard
- Institute of Clinical Medicine, University of Oslo, Norway; Dept. of Microbiology and Infection Control, Akershus University Hospital, Norway.
| | - Liv Toril Osnes
- Dept. of Immunology and Transfusion Medicine, Oslo University Hospital, Norway.
| | - Eva Skovlund
- Dept. of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway; Norwegian Institute of Public Health, Norway.
| | | | - Merete Glenne Øie
- Dept. of Psychology, University of Oslo, Norway; Dept. of Research, Innlandet Hospital Trust, Norway.
| | - Vegard Bruun Bratholm Wyller
- Institute of Clinical Medicine, University of Oslo, Norway; Dept. of Pediatrics, Akershus University Hospital, Norway.
| |
Collapse
|
20
|
Mooney-Leber SM, Gould TJ. The long-term cognitive consequences of adolescent exposure to recreational drugs of abuse. ACTA ACUST UNITED AC 2018; 25:481-491. [PMID: 30115770 PMCID: PMC6097759 DOI: 10.1101/lm.046672.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
Abstract
During adolescence, the brain continues to undergo vital developmental processes. In turn, complex behavioral and cognitive skills emerge. Unfortunately, neurobiological development during adolescence can be influenced by environmental factors such as drug exposure. Engaging in drug use during adolescence has been a long-standing health concern, especially how it predicts or relates to drug using behavior later in life. However, recent findings suggest that other behavioral domains, such as learning and memory, are also vulnerable to adolescent drug use. Moreover, it is becoming increasingly apparent that deficits in learning and memory following adolescent drug use endure into adulthood, well after drug exposure has subsided. Although persistent effects suggest an interaction between drug exposure and ongoing development during adolescence, the exact acute and long-term consequences of adolescent drug exposure on substrates of learning and memory are not fully understood. Thus, this review will summarize human and animal findings on the enduring cognitive deficits due to adolescent drug exposure. Moreover, due to the fact that adolescents are more likely to consume drugs of abuse legally available to adults, this review will focus on alcohol, nicotine, and marijuana. Further, given the critical role of the frontal cortex and hippocampus in various learning and memory domains, the impact adolescent use of the previous listed drugs on the neurobiology within these regions will also be discussed.
Collapse
Affiliation(s)
- Sean M Mooney-Leber
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
21
|
Pituitary adenylate cyclase-activating polypeptide (PACAP) signaling in the prefrontal cortex modulates cued fear learning, but not spatial working memory, in female rats. Neuropharmacology 2018; 133:145-154. [DOI: 10.1016/j.neuropharm.2018.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 12/04/2017] [Accepted: 01/07/2018] [Indexed: 11/19/2022]
|
22
|
Local Inhibition of PERK Enhances Memory and Reverses Age-Related Deterioration of Cognitive and Neuronal Properties. J Neurosci 2017; 38:648-658. [PMID: 29196323 DOI: 10.1523/jneurosci.0628-17.2017] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 10/25/2017] [Accepted: 11/10/2017] [Indexed: 01/08/2023] Open
Abstract
Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is one of four known kinases that respond to cellular stress by deactivating the eukaryotic initiation factor 2 α (eIF2α) or other signal transduction cascades. Recently, both eIF2α and its kinases were found to play a role in normal and pathological brain function. Here, we show that reduction of either the amount or the activity of PERK, specifically in the CA1 region of the hippocampus in young adult male mice, enhances neuronal excitability and improves cognitive function. In addition, this manipulation rescues the age-dependent cellular phenotype of reduced excitability and memory decline. Specifically, the reduction of PERK expression in the CA1 region of the hippocampus of middle-aged male mice using a viral vector rejuvenates hippocampal function and improves hippocampal-dependent learning. These results delineate a mechanism for behavior and neuronal aging and position PERK as a promising therapeutic target for age-dependent brain malfunction.SIGNIFICANCE STATEMENT We found that local reduced protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) expression or activity in the hippocampus enhances neuronal excitability and cognitive function in young normal mice, that old CA1 pyramidal cells have reduced excitability and increased PERK expression that can be rescued by reducing PERK expression in the hippocampus, and that reducing PERK expression in the hippocampus of middle-aged mice enhances hippocampal-dependent learning and memory and restores it to normal performance levels of young mice. These findings uncover an entirely new biological link among PERK, neuronal intrinsic properties, aging, and cognitive function. Moreover, our findings propose a new way to fight mild cognitive impairment and aging-related cognitive deterioration.
Collapse
|
23
|
Connor DA, Gould TJ. Chronic fluoxetine ameliorates adolescent chronic nicotine exposure-induced long-term adult deficits in trace conditioning. Neuropharmacology 2017; 125:272-283. [PMID: 28778833 DOI: 10.1016/j.neuropharm.2017.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 01/25/2023]
Abstract
Development of the brain, including the prefrontal cortex and hippocampus, continues through adolescence. Chronic nicotine exposure during adolescence may contribute to long-term deficits in forebrain-dependent learning. It is unclear if these deficits emerge immediately after exposure and if they can be ameliorated. In this study, C57BL/6J mice were treated with chronic nicotine (6.3 or 12.6 mg/kg/day) over 12 days beginning at adolescence, postnatal day (PND) 38, or adulthood, PND 56-63 ± 3. We investigated the effects of short-term (24 h) abstinence on trace fear conditioning and found that adult treatment resulted in deficits (6.3 and 12.6 mg/kg/day), but adolescent chronic nicotine treatment had no effect. In contrast, adolescent treatment with chronic nicotine (12.6 mg/kg/day) elicited a long-term (30 days) learning deficit, but adult chronic nicotine treatment did not. Using the elevated plus maze (EPM) we found no long-term changes in anxiety-related behavior after chronic nicotine exposure at either time-point. We investigated if chronic fluoxetine (FLX) could ameliorate adolescent chronic nicotine-associated long-term deficits in trace conditioning. We found that chronic FLX (160 mg/L) in drinking water ameliorated the long-term deficit in trace fear conditioning associated with nicotine exposure during adolescence. Additionally, in the same animals, we examined changes in total BDNF protein in the dorsal hippocampus (DH), ventral hippocampus (VH), and prefrontal cortex (PFC). Chronic FLX increased DH BDNF. Our data indicate nicotine administration during adolescence leads to late onset, long-lasting deficits in hippocampus-dependent learning that chronic FLX treatment ameliorate.
Collapse
Affiliation(s)
- David A Connor
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Thomas J Gould
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
24
|
Larra MF, Behrje A, Finke JB, Blumenthal TD, Schächinger H. Filling the gap: Evidence for a spatial differentiation in trace eyeblink conditioning. Neurosci Lett 2017; 654:33-37. [PMID: 28610951 DOI: 10.1016/j.neulet.2017.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 11/19/2022]
Abstract
Trace eyeblink conditioning is used as a translational model of declarative memory but restricted to the temporal domain. Potential spatial aspects have never been experimentally addressed. We employed a spatiotemporal trace eyeblink conditioning paradigm in which a spatial dimension (application side of the unconditioned stimulus) was differentially coded by tone frequency of the conditioned stimulus and recorded conditioned reactions from both eyes. We found more and stronger conditioned reactions at the side predicted by the conditioned stimulus but only in aware participants. Thus, spatial effects are present in trace eyeblink conditioning and may be differentially conditioned depending on the awareness about the spatial relation between conditioned and unconditioned stimulus.
Collapse
Affiliation(s)
- Mauro F Larra
- Department of Clinical Psychophysiology, Institute of Psychobiology, University of Trier, 54290 Trier, Germany.
| | - Andreas Behrje
- Department of Clinical Psychophysiology, Institute of Psychobiology, University of Trier, 54290 Trier, Germany
| | - Johannes B Finke
- Department of Clinical Psychophysiology, Institute of Psychobiology, University of Trier, 54290 Trier, Germany
| | - Terry D Blumenthal
- Department of Psychology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Hartmut Schächinger
- Department of Clinical Psychophysiology, Institute of Psychobiology, University of Trier, 54290 Trier, Germany
| |
Collapse
|
25
|
Connor DA, Kutlu MG, Gould TJ. Nicotine disrupts safety learning by enhancing fear associated with a safety cue via the dorsal hippocampus. J Psychopharmacol 2017; 31:934-944. [PMID: 28675115 PMCID: PMC5755391 DOI: 10.1177/0269881117695861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Learned safety, a learning process in which a cue becomes associated with the absence of threat, is disrupted in individuals with post-traumatic stress disorder (PTSD). A bi-directional relationship exists between smoking and PTSD and one potential explanation is that nicotine-associated changes in cognition facilitate PTSD emotional dysregulation by disrupting safety associations. Therefore, we investigated whether nicotine would disrupt learned safety by enhancing fear associated with a safety cue. In the present study, C57BL/6 mice were administered acute or chronic nicotine and trained over three days in a differential backward trace conditioning paradigm consisting of five trials of a forward conditioned stimulus (CS)+ (Light) co-terminating with a footshock unconditioned stimulus followed by a backward CS- (Tone) presented 20 s after cessation of the unconditioned stimulus. Summation testing found that acute nicotine disrupted learned safety, but chronic nicotine had no effect. Another group of animals administered acute nicotine showed fear when presented with the backward CS (Light) alone, indicating the formation of a maladaptive fear association with the backward CS. Finally, we investigated the brain regions involved by administering nicotine directly into the dorsal hippocampus, ventral hippocampus, and prelimbic cortex. Infusion of nicotine into the dorsal hippocampus disrupted safety learning.
Collapse
Affiliation(s)
- David A Connor
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Munir G Kutlu
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|