1
|
Hernandez CM, McCuiston MA, Davis K, Halls Y, Carcamo Dal Zotto JP, Jackson NL, Dobrunz LE, King PH, McMahon LL. In a circuit necessary for cognition and emotional affect, Alzheimer's-like pathology associates with neuroinflammation, cognitive and motivational deficits in the young adult TgF344-AD rat. Brain Behav Immun Health 2024; 39:100798. [PMID: 39022628 PMCID: PMC11253229 DOI: 10.1016/j.bbih.2024.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
In addition to extracellular amyloid plaques, intracellular neurofibrillary tau tangles, and inflammation, cognitive and emotional affect perturbations are characteristic of Alzheimer's disease (AD). The cognitive and emotional domains impaired by AD include several forms of decision making (such as intertemporal choice), blunted motivation (increased apathy), and impaired executive function (such as working memory and cognitive flexibility). However, the interaction between these domains of the mind and their supporting neurobiological substrates at prodromal stages of AD, or whether these interactions can be predictive of AD severity (individual variability), remain unclear. In this study, we employed a battery of cognitive and emotional tests in the young adult (5-7 mo) transgenic Fisher-344 AD (TgF344-AD; TgAD) rat model of AD. We also assessed whether markers of inflammation or AD-like pathology in the prelimbic cortex (PrL) of the medial prefrontal cortex (mPFC), basolateral amygdala (BLA), or nucleus accumbens (NAc), all structures that directly support the aforementioned behaviors, were predictive of behavioral deficits. We found TgAD rats displayed maladaptive decision making, greater apathy, and impaired working memory that was indeed predicted by AD-like pathology in the relevant brain structures, even at an early age. Moreover, we report that the BLA is an early epicenter of inflammation, and notably, AD-like pathology in the PrL, BLA, and NAc was predictive of BLA inflammation. These results suggest that operant-based battery testing may be sensitive enough to determine pathology trajectories, including neuroinflammation, from early stages of AD.
Collapse
Affiliation(s)
- Caesar M. Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
| | - Macy A. McCuiston
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristian Davis
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yolanda Halls
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Juan Pablo Carcamo Dal Zotto
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nateka L. Jackson
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
- Department of Neuroscience, Medical University of South Carolina, USA
| | - Lynn E. Dobrunz
- Department of Neurobiology, The University of Alabama at Birmingham, USA
| | - Peter H. King
- Department of Neurology, The University of Alabama at Birmingham, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Lori L. McMahon
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
- Department of Neuroscience, Medical University of South Carolina, USA
| |
Collapse
|
2
|
Tripp G, Wickens J. Using rodent data to elucidate dopaminergic mechanisms of ADHD: Implications for human personality. PERSONALITY NEUROSCIENCE 2024; 7:e2. [PMID: 38384667 PMCID: PMC10877278 DOI: 10.1017/pen.2023.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 02/23/2024]
Abstract
An altered behavioral response to positive reinforcement has been proposed to be a core deficit in attention deficit hyperactivity disorder (ADHD). The spontaneously hypertensive rat (SHR), a congenic animal strain, displays a similarly altered response to reinforcement. The presence of this genetically determined phenotype in a rodent model allows experimental investigation of underlying neural mechanisms. Behaviorally, the SHR displays increased preference for immediate reinforcement, increased sensitivity to individual instances of reinforcement relative to integrated reinforcement history, and a steeper delay of reinforcement gradient compared to other rat strains. The SHR also shows less development of incentive to approach sensory stimuli, or cues, that predict reward after repeated cue-reward pairing. We consider the underlying neural mechanisms for these characteristics. It is well known that midbrain dopamine neurons are initially activated by unexpected reward and gradually transfer their responses to reward-predicting cues. This finding has inspired the dopamine transfer deficit (DTD) hypothesis, which predicts certain behavioral effects that would arise from a deficient transfer of dopamine responses from actual rewards to reward-predicting cues. We argue that the DTD predicts the altered responses to reinforcement seen in the SHR and individuals with ADHD. These altered responses to reinforcement in turn predict core symptoms of ADHD. We also suggest that variations in the degree of dopamine transfer may underlie variations in personality dimensions related to altered reinforcement sensitivity. In doing so, we highlight the value of rodent models to the study of human personality.
Collapse
Affiliation(s)
- Gail Tripp
- Human Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jeff Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
3
|
Truckenbrod LM, Betzhold SM, Wheeler AR, Shallcross J, Singhal S, Harden S, Schwendt M, Frazier CJ, Bizon JL, Setlow B, Orsini CA. Circuit and Cell-Specific Contributions to Decision Making Involving Risk of Explicit Punishment in Male and Female Rats. J Neurosci 2023; 43:4837-4855. [PMID: 37286352 PMCID: PMC10312052 DOI: 10.1523/jneurosci.0276-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023] Open
Abstract
Decision making is a complex cognitive process that recruits a distributed network of brain regions, including the basolateral amygdala (BLA) and nucleus accumbens shell (NAcSh). Recent work suggests that communication between these structures, as well as activity of cells expressing dopamine (DA) D2 receptors (D2R) in the NAcSh, are necessary for some forms of decision making; however, the contributions of this circuit and cell population during decision making under risk of punishment are unknown. The current experiments addressed this question using circuit-specific and cell type-specific optogenetic approaches in rats during a decision making task involving risk of punishment. In experiment 1, Long-Evans rats received intra-BLA injections of halorhodopsin or mCherry (control) and in experiment 2, D2-Cre transgenic rats received intra-NAcSh injections of Cre-dependent halorhodopsin or mCherry. Optic fibers were implanted in the NAcSh in both experiments. Following training in the decision making task, BLA→NAcSh or D2R-expressing neurons were optogenetically inhibited during different phases of the decision process. Inhibition of the BLA→NAcSh during deliberation (the time between trial initiation and choice) increased preference for the large, risky reward (increased risk taking). Similarly, inhibition during delivery of the large, punished reward increased risk taking, but only in males. Inhibition of D2R-expressing neurons in the NAcSh during deliberation increased risk taking. In contrast, inhibition of these neurons during delivery of the small, safe reward decreased risk taking. These findings extend our knowledge of the neural dynamics of risk taking, revealing sex-dependent circuit recruitment and dissociable activity of selective cell populations during decision making.SIGNIFICANCE STATEMENT Until recently, the ability to dissect the neural substrates of decision making involving risk of punishment (risk taking) in a circuit-specific and cell-specific manner has been limited by the tools available for use in rats. Here, we leveraged the temporal precision of optogenetics, together with transgenic rats, to probe contributions of a specific circuit and cell population to different phases of risk-based decision making. Our findings reveal basolateral amygdala (BLA)→nucleus accumbens shell (NAcSh) is involved in evaluation of punished rewards in a sex-dependent manner. Further, NAcSh D2 receptor (D2R)-expressing neurons make unique contributions to risk taking that vary across the decision making process. These findings advance our understanding of the neural principles of decision making and provide insight into how risk taking may become compromised in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Leah M Truckenbrod
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, 78712
| | | | - Alexa-Rae Wheeler
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, 78712
| | | | | | | | | | | | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, Florida, 32610
| | | | - Caitlin A Orsini
- Department of Psychology
- Department of Neurology
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, 78712
| |
Collapse
|
4
|
Truckenbrod LM, Betzhold SM, Wheeler AR, Shallcross J, Singhal S, Harden S, Schwendt M, Frazier CJ, Bizon JL, Setlow B, Orsini CA. Circuit and cell-specific contributions to decision making involving risk of explicit punishment in male and female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524142. [PMID: 36711946 PMCID: PMC9882127 DOI: 10.1101/2023.01.15.524142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Decision making is a complex cognitive process that recruits a distributed network of brain regions, including the basolateral amygdala (BLA) and nucleus accumbens shell (NAcSh). Recent work suggests that communication between these structures, as well as activity of cells expressing dopamine D2 receptors (D2R) in the NAcSh, are necessary for some forms of decision making; however, the contributions of this circuit and cell population during decision making under risk of punishment are unknown. The current experiments addressed this question using circuit- and cell type-specific optogenetic approaches in rats during a decision-making task involving risk of punishment. In Experiment 1, Long-Evans rats received intra-BLA injections of halorhodopsin or mCherry (control) and in Experiment 2, D2-Cre transgenic rats received intra-NAcSh injections of Cre-dependent halorhodopsin or mCherry. Optic fibers were implanted in the NAcSh in both experiments. Following training in the decision-making task, BLA→NAcSh or D2R-expressing neurons were optogenetically inhibited during different phases of the decision process. Inhibition of the BLA→NAcSh during deliberation (the time between trial initiation and choice) increased choice of the large, risky reward (increased risk taking). Similarly, inhibition during delivery of the large, punished reward increased risk taking, but only in males. Inhibition of D2R-expressing neurons in the NAcSh during deliberation increased risk taking. In contrast, inhibition of these neurons during delivery of the small, safe reward decreased risk taking. These findings extend our knowledge of the neural dynamics of risk taking, revealing sex-dependent circuit recruitment and dissociable activity of selective cell populations during decision making.
Collapse
|
5
|
Cao A, Hong D, Che C, Yu X, Cai Z, Yang X, Zhang D, Yu P. The distinct role of orbitofrontal and medial prefrontal cortex in encoding impulsive choices in an animal model of attention deficit hyperactivity disorder. Front Behav Neurosci 2023; 16:1039288. [PMID: 36688128 PMCID: PMC9859629 DOI: 10.3389/fnbeh.2022.1039288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 01/07/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental disorder affecting up to 5% of children worldwide. The lack of understanding of ADHD etiology prevented the development of effective treatment for the disease. Here, using in vivo electrophysiology recordings, we have recorded and analyzed the neuronal encoding of delay discounting behavior in prefrontal and orbitofrontal cortex of spontaneously hypertensive rat (SHR). We found that in the presence of rewards, neurons in the orbitofrontal cortex (OFC) were activated regardless to the value of the rewards and OFC neurons in SHR exhibited significantly higher rates of neuronal discharging towards the presence of rewards. While in the medial prefrontal cortex (mPFC), neurons of SHR responded similarly in the presence of large rewards compared with control rats whereas they displayed higher firing rates towards smaller rewards. In addition, the reward-predicting neurons in the OFC encodes for value of rewards in control animals and they were strongly activated upon receiving a small immediate reinforcer in the SHR whereas the reward-predicting neurons in the mPFC neurons generally did not respond to the value of the rewards. Our study characterized the neuronal discharging patterns of OFC and mPFC neurons in the SHR and the control animals and provided novel insights for further understanding the neuronal basis of ADHD pathology.
Collapse
Affiliation(s)
- Aihua Cao
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Dandan Hong
- Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, China
| | - Chao Che
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaoxiao Yu
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Zhifeng Cai
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaofan Yang
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, China,*Correspondence: Di Zhang Ping Yu
| | - Ping Yu
- Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, China,*Correspondence: Di Zhang Ping Yu
| |
Collapse
|
6
|
Orsini CA, Truckenbrod LM, Wheeler AR. Regulation of sex differences in risk-based decision making by gonadal hormones: Insights from rodent models. Behav Processes 2022; 200:104663. [PMID: 35661794 PMCID: PMC9893517 DOI: 10.1016/j.beproc.2022.104663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/22/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Men and women differ in their ability to evaluate options that vary in their rewards and the risks that are associated with these outcomes. Most studies have shown that women are more risk averse than men and that gonadal hormones significantly contribute to this sex difference. Gonadal hormones can influence risk-based decision making (i.e., risk taking) by modulating the neurobiological substrates underlying this cognitive process. Indeed, estradiol, progesterone and testosterone modulate activity in the prefrontal cortex, amygdala and nucleus accumbens associated with reward and risk-related information. The use of animal models of decision making has advanced our understanding of the intersection between the behavioral, neural and hormonal mechanisms underlying sex differences in risk taking. This review will outline the current state of this literature, identify the current gaps in knowledge and suggest the neurobiological mechanisms by which hormones regulate risky decision making. Collectively, this knowledge can be used to understand the potential consequences of significant hormonal changes, whether endogenously or exogenously induced, on risk-based decision making as well as the neuroendocrinological basis of neuropsychiatric diseases that are characterized by impaired risk taking, such as substance use disorder and schizophrenia.
Collapse
Affiliation(s)
- Caitlin A. Orsini
- Department of Psychology, University of Texas at Austin, Austin, TX, USA,Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA,Correspondence to: Department of Psychology & Neurology, Waggoner Center for Alcohol and Addiction Research, 108 E. Dean Keaton St., Stop A8000, Austin, TX 78712, USA. (C.A. Orsini)
| | - Leah M. Truckenbrod
- Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Alexa-Rae Wheeler
- Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
7
|
Hernandez CM, Orsini C, Wheeler AR, Ten Eyck TW, Betzhold SM, Labiste CC, Wright NG, Setlow B, Bizon JL. Testicular hormones mediate robust sex differences in impulsive choice in rats. eLife 2020; 9:58604. [PMID: 32985975 PMCID: PMC7521924 DOI: 10.7554/elife.58604] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
Impairments in choosing optimally between immediate and delayed rewards are associated with numerous psychiatric disorders. Such ‘intertemporal’ choice is influenced by genetic and experiential factors; however, the contributions of biological sex are understudied and data to date are largely inconclusive. Rats were used to determine how sex and gonadal hormones influence choices between small, immediate and large, delayed rewards. Females showed markedly greater preference than males for small, immediate over large, delayed rewards (greater impulsive choice). This difference was neither due to differences in food motivation or reward magnitude perception, nor was it affected by estrous cycle. Ovariectomies did not affect choice in females, whereas orchiectomies increased impulsive choice in males. These data show that male rats exhibit less impulsive choice than females and that this difference is at least partly maintained by testicular hormones. These differences in impulsive choice could be linked to gender differences across multiple neuropsychiatric conditions.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, United States.,Department of Psychiatry, University of Florida, Gainesville, United States
| | - Caitlin Orsini
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Alexa-Rae Wheeler
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Tyler W Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Sara M Betzhold
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Chase C Labiste
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Noelle G Wright
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, United States
| |
Collapse
|
8
|
Haynos AF, Lavender JM, Nelson J, Crow SJ, Peterson CB. Moving towards specificity: A systematic review of cue features associated with reward and punishment in anorexia nervosa. Clin Psychol Rev 2020; 79:101872. [PMID: 32521390 DOI: 10.1016/j.cpr.2020.101872] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/16/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
Abstract
Models of anorexia nervosa (AN) posit that symptoms are maintained through deficient reward and enhanced punishment processing. However, theoretical and empirical inconsistencies highlight the need for a more nuanced conceptualization of this literature. Our goal was to comprehensively review the research on reward and punishment responding in AN from a cue-specific lens to determine which stimuli evoke or discourage reward and punishment responses in this population, and, ultimately, what properties these rewarding and punishing cues might share. A systematic review interrogating reward and punishment responses to specific cues yielded articles (n = 92) that examined responses to disorder relevant (e.g., food) and irrelevant (e.g., money) stimuli across self-report, behavioral, and biological indices. Overall, in most studies individuals with AN exhibited aversive responses to cues signaling higher body weights, social contexts, and monetary losses, and appetitive responses to cues for weight loss behaviors and thinness. Findings were more mixed on responses to palatable food and monetary gains. Results highlight that reward and punishment responding in AN are context specific and may be affected by varied stimulus qualities (e.g., predictability, controllability, delay, effort). Increasing specificity in future research on reward and punishment mechanisms in AN will better inform development of precisely-targeted interventions.
Collapse
Affiliation(s)
- Ann F Haynos
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America.
| | - Jason M Lavender
- Military Cardiovascular Outcomes Research (MiCOR) Program, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America; The Metis Foundation, San Antonio, TX, United States of America
| | - Jillian Nelson
- Department of Psychology, George Mason University, Fairfax, VA, United States of America
| | - Scott J Crow
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America; The Emily Program, St. Paul, MN, United States of America
| | - Carol B Peterson
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America; The Emily Program, St. Paul, MN, United States of America
| |
Collapse
|
9
|
Abstract
The ability to decide advantageously among options that vary in both their risks and rewards is critical for survival and well-being. Previous work shows that some forms of risky decision-making are robustly modulated by monoamine signaling, but it is less clear how monoamine signaling modulates decision-making under risk of explicit punishment. The goal of these experiments was to determine how this form of decision-making is modulated by dopamine, serotonin, and norepinephrine signaling, using a task in which rats choose between a small, 'safe' food reward and a large food reward associated with variable risks of punishment. Preference for the large, risky reward (risk-taking) was reduced by administration of a D2/3 dopamine receptor agonist (bromocriptine) and a selective D2 agonist (sumanirole). The selective D3 agonist PD128907 appeared to attenuate reward discrimination abilities but did not affect risk-taking per se. In contrast, drugs targeting serotonergic and noradrenergic signaling had few if any effects on choice behavior. These data suggest that in contrast to other forms of risky decision-making, decision-making under risk of punishment is selectively modulated by dopamine signaling, predominantly through D2 receptors.
Collapse
|
10
|
Orsini CA, Hernandez CM, Bizon JL, Setlow B. Deconstructing value-based decision making via temporally selective manipulation of neural activity: Insights from rodent models. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:459-476. [PMID: 30341621 PMCID: PMC6472996 DOI: 10.3758/s13415-018-00649-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability to choose among options that differ in their rewards and costs (value-based decision making) has long been a topic of interest for neuroscientists, psychologists, and economists alike. This is likely because this is a cognitive process in which all animals (including humans) engage on a daily basis, be it routine (which road to take to work) or consequential (which graduate school to attend). Studies of value-based decision making (particularly at the preclinical level) often treat it as a uniform process. The results of such studies have been invaluable for our understanding of the brain substrates and neurochemical systems that contribute to decision making involving a range of different rewards and costs. Value-based decision making is not a unitary process, however, but is instead composed of distinct cognitive operations that function in concert to guide choice behavior. Within this conceptual framework, it is therefore important to consider that the known neural substrates supporting decision making may contribute to temporally distinct and dissociable components of the decision process. This review will describe this approach for investigating decision making, drawing from published studies that have used techniques that allow temporal dissection of the decision process, with an emphasis on the literature in animal models. The review will conclude with a discussion of the implications of this work for understanding pathological conditions that are characterized by impaired decision making.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, USA.
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA.
| | - Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Jennifer L Bizon
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- Department of Psychology, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
11
|
Kreher MA, Johnson SA, Mizell JM, Chetram DK, Guenther DT, Lovett SD, Setlow B, Bizon JL, Burke SN, Maurer AP. The perirhinal cortex supports spatial intertemporal choice stability. Neurobiol Learn Mem 2019; 162:36-46. [PMID: 31125611 DOI: 10.1016/j.nlm.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/23/2019] [Accepted: 05/18/2019] [Indexed: 10/26/2022]
Abstract
In order to optimize outcomes in the face of uncertainty, one must recall past experiences and extrapolate to the future by assigning values to different choice outcomes. This behavior requires an interplay between memory and reward valuation, necessitating communication across many brain regions. At the anatomical nexus of this interplay is the perirhinal cortex (PRC). The PRC is densely connected to the amygdala and orbital frontal cortex, regions that have been implicated in reward-based decision making, as well as the hippocampus. Thus, the PRC could serve as a hub for integrating memory, reward, and prediction. The PRC's role in value-based decision making, however, has not been empirically examined. Therefore, we tested the role of the PRC in a spatial delay discounting task, which allows rats to choose between a 1-s delay for a small food reward and a variable delay for a large food reward, with the delay to the large reward increasing after choice of each large reward and decreasing after each small reward. The rat can therefore adjust the delay by consecutively choosing the same reward or stabilize the delay by alternating between sides. The latter has been shown to occur once the 'temporal cost' of the large reward is established and is a decision-making process termed 'exploitation'. When the PRC was bilaterally inactivated with the GABA(A) agonist muscimol, rats spent fewer trials successfully exploiting to maintain a fixed delay compared to the vehicle control condition. Moreover, PRC inactivation resulted in an increased number of vicarious trial and error (VTE) events at the choice point, where rats had to decide between the two rewards. These behavioral patterns suggest that the PRC is critical for maintaining stability in linking a choice to a reward outcome in the face of a variable cost.
Collapse
Affiliation(s)
- M A Kreher
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - S A Johnson
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - J-M Mizell
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - D K Chetram
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - D T Guenther
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - S D Lovett
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - B Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
| | - J L Bizon
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - S N Burke
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, United States; Intittute on Aging, University of Florida, Gainesville, FL, United States
| | - A P Maurer
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, United States; Department of Biomedical Engineering, United States; Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
12
|
Hernandez CM, Orsini CA, Labiste CC, Wheeler AR, Ten Eyck TW, Bruner MM, Sahagian TJ, Harden SW, Frazier CJ, Setlow B, Bizon JL. Optogenetic dissection of basolateral amygdala contributions to intertemporal choice in young and aged rats. eLife 2019; 8:46174. [PMID: 31017572 PMCID: PMC6530979 DOI: 10.7554/elife.46174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
Across species, aging is associated with an increased ability to choose delayed over immediate gratification. These experiments used young and aged rats to test the role of the basolateral amygdala (BLA) in intertemporal decision making. An optogenetic approach was used to inactivate the BLA in young and aged rats at discrete time points during choices between levers that yielded a small, immediate vs. a large, delayed food reward. BLA inactivation just prior to decisions attenuated impulsive choice in both young and aged rats. In contrast, inactivation during receipt of the small, immediate reward increased impulsive choice in young rats but had no effect in aged rats. BLA inactivation during the delay or intertrial interval had no effect at either age. These data demonstrate that the BLA plays multiple, temporally distinct roles during intertemporal choice, and show that the contribution of BLA to choice behavior changes across the lifespan.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Caitlin A Orsini
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Chase C Labiste
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Alexa-Rae Wheeler
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Tyler W Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Matthew M Bruner
- Department of Neuroscience, University of Florida, Gainesville, United States
| | - Todd J Sahagian
- Department of Pharmacodynamics, University of Florida, Gainesville, United States
| | - Scott W Harden
- Department of Pharmacodynamics, University of Florida, Gainesville, United States
| | - Charles J Frazier
- Department of Pharmacodynamics, University of Florida, Gainesville, United States
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, United States
| |
Collapse
|
13
|
Mann K, Möcker M, Grosser J. Adherence to long-term prophylactic treatment: microeconomic analysis of patients' behavior and the impact of financial incentives. HEALTH ECONOMICS REVIEW 2019; 9:5. [PMID: 30758683 PMCID: PMC6734257 DOI: 10.1186/s13561-019-0222-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
The effectiveness of medical therapies depends crucially on patients' adherence. To gain deeper insight into the behavioral mechanisms underlying adherence, we present a microeconomic model of the decision-making process of an individual who is initially in an asymptomatic clinical state and to whom a prophylactic therapy is offered with the aim of preventing damage to health in the future. The focus of modeling is the optimization of an intertemporal utility function, where time-inconsistent preferences are incorporated by a quasi-hyperbolic discount function. The predictions of the model concur with experience in clinical practice. Moreover, the introduction of time-inconsistency reveals a self-control problem of the individuals where resolutions made before may be given up at a later time. A more pronounced present bias leads to a decrease in adherence and, consequently, the gain in societal welfare resulting from the prophylactic therapy declines. Developing effective strategies to improve adherence is a major challenge in health care. As an example, the impact of financial incentives offered to the patients on adherence and welfare are investigated on the basis of the model. The results are consistent with empirical findings. The approach presented contributes to a better understanding of the complex interaction of the relevant determinants for adherence, particularly regarding the individuals' self-control problem.
Collapse
Affiliation(s)
- Klaus Mann
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, D-55131 Mainz, Germany
| | - Michael Möcker
- Chair of Economic Policy, University of Hagen, D-58084 Hagen, Germany
| | - Joachim Grosser
- Chair of Economic Policy, University of Hagen, D-58084 Hagen, Germany
| |
Collapse
|
14
|
Steele CC, Pirkle JRA, Davis IR, Kirkpatrick K. Dietary effects on the determinants of food choice: Impulsive choice, discrimination, incentive motivation, preference, and liking in male rats. Appetite 2019; 136:160-172. [PMID: 30721744 DOI: 10.1016/j.appet.2019.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 01/27/2019] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
The current study sought to understand how long-term exposure to diets high in saturated fat and refined sugar affected impulsive choice behavior, discrimination abilities, incentive motivation, food preferences, and liking of fat and sugar in male rats. The results showed that 8 weeks of dietary exposure impaired impulsive choice behavior; rats exposed to diets high in processed fat or sugar were more sensitive to changes in delay, a marker of impulsivity. For the high-fat group, these deficits in impulsive choice may stem from poor time discrimination, as their performance was impaired on a temporal discrimination task. The high-fat group also showed reduced magnitude sensitivity in the impulsive choice task, and they earned fewer rewards during lever press training indicating potentially reduced incentive motivation. The high-fat group also developed a preference for high-fat foods compared to the chow and high-sugar group who both preferred sugar. In contrast, dietary exposure did not alter the liking of fat or sugar as measured by a taste reactivity task. Together, the results suggest that the alterations in impulsive choice, time discrimination, incentive motivation, and food preferences induced by consumption of a high-fat diet could make individuals vulnerable to overeating, and thus obesity.
Collapse
Affiliation(s)
- Catherine C Steele
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| | - Jesseca R A Pirkle
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Ian R Davis
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kimberly Kirkpatrick
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
15
|
Nucleus accumbens core lesions induce sub-optimal choice and reduce sensitivity to magnitude and delay in impulsive choice tasks. Behav Brain Res 2017; 339:28-38. [PMID: 29146281 DOI: 10.1016/j.bbr.2017.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/13/2017] [Accepted: 11/12/2017] [Indexed: 12/27/2022]
Abstract
The nucleus accumbens core (NAc) has long been recognized as an important contributor to the computation of reward value that is critical for impulsive choice behavior. Impulsive choice refers to choosing a smaller-sooner (SS) over a larger-later (LL) reward when the LL is more optimal in terms of the rate of reward delivery. Two experiments examined the role of the NAc in impulsive choice and its component processes of delay and magnitude processing. Experiment 1 delivered an impulsive choice task with manipulations of LL reward magnitude, followed by a reward magnitude discrimination task. Experiment 2 tested impulsive choice under manipulations of LL delay, followed by temporal bisection and progressive interval tasks. NAc lesions, in comparison to sham control lesions, produced suboptimal preferences that resulted in lower reward earning rates, and led to reduced sensitivity to magnitude and delay within the impulsive choice task. The secondary tasks revealed intact reward magnitude and delay discrimination abilities, but the lesion rats persisted in responding more as the progressive interval increased during the session. The results suggest that the NAc is most critical for demonstrating good sensitivity to magnitude and delay, and adjusting behavior accordingly. Ultimately, the NAc lesions induced suboptimal choice behavior rather than simply promoting impulsive choice, suggesting that an intact NAc is necessary for optimal decision making.
Collapse
|
16
|
Hernandez CM, Vetere LM, Orsini CA, McQuail JA, Maurer AP, Burke SN, Setlow B, Bizon JL. Decline of prefrontal cortical-mediated executive functions but attenuated delay discounting in aged Fischer 344 × brown Norway hybrid rats. Neurobiol Aging 2017; 60:141-152. [PMID: 28946018 DOI: 10.1016/j.neurobiolaging.2017.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 11/18/2022]
Abstract
Despite the fact that prefrontal cortex (PFC) function declines with age, aged individuals generally show an enhanced ability to delay gratification, as evident by less discounting of delayed rewards in intertemporal choice tasks. The present study was designed to evaluate relationships between 2 aspects of PFC-dependent cognition (working memory and cognitive flexibility) and intertemporal choice in young (6 months) and aged (24 months) Fischer 344 × brown Norway F1 hybrid rats. Rats were also evaluated for motivation to earn rewards using a progressive ratio task. As previously reported, aged rats showed attenuated discounting of delayed rewards, impaired working memory, and impaired cognitive flexibility compared with young. Among aged rats, greater choice of delayed reward was associated with preserved working memory, impaired cognitive flexibility, and less motivation to work for food. These relationships suggest that age-related changes in PFC and incentive motivation contribute to variance in intertemporal choice within the aged population. Cognitive impairments mediated by PFC are unlikely, however, to fully account for the enhanced ability to delay gratification that accompanies aging.
Collapse
Affiliation(s)
| | - Lauren M Vetere
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Caitlin A Orsini
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Joseph A McQuail
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Andrew P Maurer
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|