1
|
Sasibhushana RB, Shankaranarayana Rao BS, Srikumar BN. Anxiety-, and depression-like behavior following short-term finasteride administration is associated with impaired synaptic plasticity and cognitive behavior in male rats. J Psychiatr Res 2024; 174:304-318. [PMID: 38685188 DOI: 10.1016/j.jpsychires.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Finasteride, a 5α-Reductase inhibitor, is used to treat male pattern baldness and benign prostatic hyperplasia. Several clinical studies show that chronic finasteride treatment induces persistent depression, suicidal thoughts and cognitive impairment and these symptoms are persistent even after its withdrawal. Previous results from our lab showed that repeated administration of finasteride for six days induces depression-like behavior. However, whether short-term finasteride administration induces anxiety-like behavior and memory impairment and alters synaptic plasticity are not known, which formed the basis of this study. Finasteride was administered to 2-2.5 months old male Wistar rats for six days and subjected to behavioral evaluation, biochemical estimation and synaptic plasticity assessment. Anxiety-like behavior was evaluated in the elevated plus maze (EPM), open field test (OFT), light/dark test (LDT), and novelty suppressed feeding test (NSFT), and learning and memory using novel object recognition test (NORT) and novel object location test (NOLT) and depression-like behavior in the sucrose preference test (SPT). Synaptic plasticity in the hippocampal Schaffer collateral-CA1 was evaluated using slice field potential recordings. Plasma corticosterone levels were estimated using ELISA. Finasteride administration induced anxiety-like behavior in the EPM, OFT, LDT and NSFT, and depression-like behavior in the SPT. Further, finasteride induced hippocampal dependent spatial learning and memory impairment in the NOLT. In addition, finasteride decreased basal synaptic plasticity and long-term potentiation (LTP) in the hippocampus. A trend of increased plasma corticosterone levels was observed following repeated finasteride administration. These results indicate the potential role of corticosterone and synaptic plasticity in finasteride-induced effects and further studies will pave way for the development of novel neurosteroid-based therapeutics in neuropsychiatric diseases.
Collapse
Affiliation(s)
- R B Sasibhushana
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
2
|
Nayana J, Shankaranarayana Rao BS, Srikumar BN. Repeated finasteride administration promotes synaptic plasticity and produces antidepressant- and anxiolytic-like effects in female rats. J Neurosci Res 2024; 102:e25306. [PMID: 38468573 DOI: 10.1002/jnr.25306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 01/27/2024] [Indexed: 03/13/2024]
Abstract
Finasteride is used in female-pattern hair loss, hirsutism, and polycystic ovarian syndrome. It inhibits 5α-reductase, which is an important enzyme in the biosynthesis of neurosteroids. The effects of finasteride treatment on mental health in female patients as well as the effects of repeated/chronic finasteride administration in female rodents are still unknown. Accordingly, in our study, we administered finasteride (10, 30, or 100 mg/Kg, s.c.) for 6 days in female rats and evaluated behavior, plasma steroid levels, and synaptic plasticity. Depression-like behavior was evaluated using forced swim test (FST) and splash test. Anxiety-like behavior was evaluated using novelty-suppressed feeding task (NSFT), elevated plus maze (EPM), open field test (OFT), and light-dark test (LDT). Plasma steroid levels were assessed using ELISA and synaptic plasticity by field potential recordings. We observed that finasteride decreased total immobility duration in FST, indicating antidepressant-like effect and decreased the latency to first bite in NSFT, showing anxiolytic-like effect. We also found a significant increase in plasma estradiol and a significant decrease in plasma corticosterone level. Furthermore, field potential recordings showed that finasteride increased hippocampal long-term potentiation. These results indicate that repeated finasteride administration in female rats may have antidepressant- and anxiolytic-like effect, which might be mediated by enhanced estradiol levels or decreased corticosterone levels. Further studies are required to validate the molecular mechanisms underlying the effects of finasteride in female rats. Understanding the mechanisms will help us in developing novel neurosteroid-based therapeutics in the treatment of neuropsychiatric disorders in women.
Collapse
Affiliation(s)
- Jose Nayana
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | | | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| |
Collapse
|
3
|
Silveira‐Rosa T, Mateus‐Pinheiro A, Correia JS, Silva JM, Martins‐Macedo J, Araújo B, Machado‐Santos AR, Alves ND, Silva M, Loureiro‐Campos E, Sotiropoulos I, Bessa JM, Rodrigues AJ, Sousa N, Patrício P, Pinto L. Suppression of adult cytogenesis in the rat brain leads to sex-differentiated disruption of the HPA axis activity. Cell Prolif 2022; 55:e13165. [PMID: 34970787 PMCID: PMC8828259 DOI: 10.1111/cpr.13165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The action of stress hormones, mainly glucocorticoids, starts and coordinates the systemic response to stressful events. The HPA axis activity is predicated on information processing and modulation by upstream centres, such as the hippocampus where adult-born neurons (hABN) have been reported to be an important component in the processing and integration of new information. Still, it remains unclear whether and how hABN regulates HPA axis activity and CORT production, particularly when considering sex differences. MATERIALS AND METHODS Using both sexes of a transgenic rat model of cytogenesis ablation (GFAP-Tk rat model), we examined the endocrinological and behavioural effects of disrupting the generation of new astrocytes and neurons within the hippocampal dentate gyrus (DG). RESULTS Our results show that GFAP-Tk male rats present a heightened acute stress response. In contrast, GFAP-Tk female rats have increased corticosterone secretion at nadir, a heightened, yet delayed, response to an acute stress stimulus, accompanied by neuronal hypertrophy in the basal lateral amygdala and increased expression of the glucocorticoid receptors in the ventral DG. CONCLUSIONS Our results reveal that hABN regulation of the HPA axis response is sex-differentiated.
Collapse
Affiliation(s)
- Tiago Silveira‐Rosa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - António Mateus‐Pinheiro
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Department of Internal MedicineCoimbra Hospital and University CenterCoimbraPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Joana Margarida Silva
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Joana Martins‐Macedo
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ana Rita Machado‐Santos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Present address:
Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA
- Present address:
New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Mariana Silva
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Eduardo Loureiro‐Campos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - João Miguel Bessa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| |
Collapse
|
4
|
Ali FF, Mohammed HH, Elroby Ali DM. Protective effect of hydrogen sulfide against stress-induced lung injury: involvement of Nrf2, NFκB/iNOS, and HIF-1α signaling pathways. Cell Stress Chaperones 2022; 27:55-70. [PMID: 34881408 PMCID: PMC8821758 DOI: 10.1007/s12192-021-01248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022] Open
Abstract
Stress is a common phenomenon that is attracting increasing attention. Hydrogen sulfide (H2S) is a gasotransmitter that plays an important role in many physiological and pathological events. Our study aimed to estimate the effect and the underlying mechanisms of the H2S donor, sodium hydrosulfide (NaHS), against immobilization stress (IS)-induced lung injury. Forty adult male rats were classified into control group, NaHS group, and IS groups with and without NaHS treatment. Serum was obtained to determine corticosterone (CORT), total antioxidant capacity (TAC), tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) levels. Lung H2S, nitric oxide (NO), inducible nitric oxide synthase (iNOS), and malondialdehyde (MDA) levels were measured. Lung expressions of H2S synthesizing enzymes and Western blot analysis of nuclear factor erythroid 2-related factor 2 (Nrf2) and hypoxia-inducible factor 1 alpha (HIF 1α) were estimated. Histopathological changes and immunohistochemical assessment of nuclear factor kappa B (NF-κB) and caspase-3 were also done. Pretreatment with NaHS led to marked histological protection from lung damage seen in IS rats. Furthermore, pretreatment with NaHS before IS protected lung H2S levels and expressions of H2S-synthesizing enzymes. Similarly, the levels of CORT, TNF-α, IL-10, MDA, TAC, NO, iNOS, HIF-1 α, and nuclear Nrf2 and expressions of NF-kB and caspase 3 were all maintained at near control levels in contrast to that in the IS rats. In conclusion, NaHS is protective against stress-induced lung injury due to its antioxidant, anti-inflammatory, anti-fibrotic, and antiapoptotic effects. Thus, NaHS can be used to minimize stress complications on lung.
Collapse
Affiliation(s)
- Fatma F Ali
- Medical Physiology Department, Faculty of Medicine, Minia University, Minia, Egypt.
| | | | - Doaa M Elroby Ali
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| |
Collapse
|
5
|
Chakraborty P, Chattarji S, Jeanneteau F. A salience hypothesis of stress in PTSD. Eur J Neurosci 2021; 54:8029-8051. [PMID: 34766390 DOI: 10.1111/ejn.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/13/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Attention to key features of contexts and things is a necessary tool for all organisms. Detecting these salient features of cues, or simply, salience, can also be affected by exposure to traumatic stress, as has been widely reported in individuals suffering from post-traumatic stress disorder (PTSD). Interestingly, similar observations have been robustly replicated across many animal models of stress as well. By using evidence from such rodent stress paradigms, in the present review, we explore PTSD through the lens of salience processing. In this context, we propose that interaction between the neurotrophin brain-derived neurotrophic factor (BDNF) and glucocorticoids determines the long lasting cellular and behavioural consequences of stress salience. We also describe the dual effect of glucocorticoid therapy in the amelioration of PTSD symptoms. Finally, by integrating in vivo observations at multiple scales of plasticity, we propose a unifying hypothesis that pivots on a crucial role of glucocorticoid signalling in dynamically orchestrating stress salience.
Collapse
Affiliation(s)
- Prabahan Chakraborty
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France.,Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India
| | - Sumantra Chattarji
- Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Freddy Jeanneteau
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France
| |
Collapse
|
6
|
Yan Z, Li Y, Zhang X, Li L, Gao Y, Chen Q, Tian M, Cong B. PET neuroimaging reveals upregulation of dopamine D2 receptor contributes to amygdaloid dysfunction in rat acute restraint stress model. Biochem Biophys Res Commun 2021; 561:45-51. [PMID: 34015758 DOI: 10.1016/j.bbrc.2021.03.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/24/2021] [Indexed: 01/01/2023]
Abstract
Acute stress relates to high prevalence of anxiety, depression or even sudden death. Although dopaminergic system in amygdala-medial prefrontal cortex (mPFC) circuit is hyper-responsive to stress-induced anxiety, the mechanisms that control anxiety still remains unanswered. Here, the acute restraint stress model(ARS) was established to develop anxiety-like behavior. The D2-dopamine receptor (D2R) availability in amygdala and mPFC was assessed using [18F]-fallypride positron emission tomography(PET) and immunohistochemical assay. We revealed that ARS paradigm was successfully established, as evidenced by elevated plus-maze test(EPM) and increased corticosterone release. Moreover, PET imaging displayed elevated D2R availability in the amygdala and mPFC in ARS as compared to that in the naives. PET imaging combined with immunohistochemical assay confirmed that amygdaloid D2R was significantly implicated in stress-induced anxiety. Our findings delivered valuable insights into neuromechanism of amygdaloid D2R underlying stress-induced anxiety and might have important implications for developing therapeutics for anxiety by targeting amygdaloid D2R.
Collapse
Affiliation(s)
- Zhi Yan
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yue Li
- Department of Cardiology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Xiaojing Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Linfeng Li
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yuping Gao
- Department of Cardiology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Qiaozhen Chen
- Department of Psychiatry, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Mei Tian
- Department of Psychiatry, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Bin Cong
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610064, China; Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
7
|
Chronic unpredictable stress negatively regulates hippocampal neurogenesis and promote anxious depression-like behavior via upregulating apoptosis and inflammatory signals in adult rats. Brain Res Bull 2021; 172:164-179. [PMID: 33895271 DOI: 10.1016/j.brainresbull.2021.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
Psychological and physical stress play a pivotal role in etiology of anxiety and depression. Chronic psychological and physical stress modify various physiological phenomena, as a consequence of which oxidative stress, decreased neurotransmitter level, elevated corticosterone level and altered NSC homeostasis is observed. However, the precise mechanism by which chronic stress induce anxious depression and modify internal milieu is still unknown. Herein, we show that exposure to CUS increase oxidative stress, microgliosis, astrogliosis while it reduces hippocampal NSC proliferation, neuronal differentiation and maturation in adult rats. CUS exposure in rats reduce dopamine and serotonin level in cortex and hippocampus, which result in increased anxiety and depression-like phenotypes. We also found elevated level of NF-κB and TNF-α while decreased anti-inflammatory cytokine IL-10 level, that led to increased expression of Bax and cleaved Caspase-3 whereas down regulation of antiapoptotic protein Bcl2. Additionally, CUS altered adult hippocampal neurogenesis, increased gliosis and neuronal apoptosis in cerebral cortex and hippocampus which might be associated with reduced AKT and increased ERK signaling, as seen in the rat brain tissue. Taken together, these results indicate that CUS induce oxidative stress and neuroinflammation which directly affects NSC dynamics, monoamines levels and behavioral functions in adult rats.
Collapse
|
8
|
Meejuru GF, Somavarapu A, Danduga RCSR, Nissankara Roa LS, Kola PK. Protective effects of duloxetine against chronic immobilisation stress-induced anxiety, depression, cognitive impairment and neurodegeneration in mice. J Pharm Pharmacol 2021; 73:522-534. [PMID: 33793839 DOI: 10.1093/jpp/rgaa003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/05/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVES This study aimed to evaluate the effect of duloxetine (10 and 20 mg/kg) against chronic immobilisation stress (CIS)-induced anxiety, depression, cognitive impairment and neurodegeneration in mice. METHODS CIS, 2 h/10 days (11:00 AM-1:00 PM) was applied after 30 min of pretreatment with saline, duloxetine 10 mg/kg and 20 mg/kg to the respective groups of animals, except the control group. Animals were examined for physiological (body weight, locomotion and grip strength), psychological (memory impairment, anxiety and depression), neurochemical (GABA and glutamate), biochemical (MDA, catalase, glutathione, superoxide dismutase) and histopathological changes. KEY FINDINGS CIS exposure revealed anxiety-like behaviour, depression-like behaviour, motor in-coordination and learning and memory impairment in mice. Besides, CIS induction decreased the antioxidant enzymes (GSH, SOD and catalase), GABA and the viable neuronal cell count, whereas CIS exposure significantly elevated the MDA, AChE activity and glutamate content in the cortex and hippocampus. Pretreatment with duloxetine10 and 20 mg/kg showed dose-dependent ameliorated effect against the CIS-induced alterations in mice. CONCLUSION In conclusion, the results of this study demonstrated the protective effect of duloxetine against neuropsychiatric symptoms, memory impairment caused by CIS-induction through inhibition of oxidative stress, AChE activity and glutamate release.
Collapse
Affiliation(s)
- Glory Florence Meejuru
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, India
| | - Anushri Somavarapu
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, India
| | - Ravi Chandra Sekhara Reddy Danduga
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, India
| | | | - Phani Kumar Kola
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, India
| |
Collapse
|
9
|
Chakraborty S, Tripathi SJ, Raju TR, Shankaranarayana Rao BS. Brain stimulation rewarding experience attenuates neonatal clomipramine-induced adulthood anxiety by reversal of pathological changes in the amygdala. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:110000. [PMID: 32512130 DOI: 10.1016/j.pnpbp.2020.110000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD) is associated with enhanced anxiety and reduced reward processing leading to impaired cognitive flexibility. These pathological changes during depression are accompanied by dysfunctional hypothalamic-pituitary-adrenal (HPA) axis and its impaired regulation by the amygdala. Notably, the electrical stimulation of brain reward areas produces an antidepressant effect in both MDD patients and animal models of depression. However, the effects of chronic electrical self-stimulation of lateral hypothalamus - medial forebrain bundle (LH-MFB) on depression-associated anxiety and accompanying changes in plasma corticosterone levels, structural, and neurochemical alterations in the amygdala are unknown. Here, we used the neonatal clomipramine (CLI) model of depression. During adulthood, neonatal CLI and vehicle administered rats were subjected to bilateral electrode implantation at LH-MFB and trained to receive intracranial self-stimulation (ICSS) for 14 days. Rats were then tested for anhedonic and anxiety-like behaviors, followed by estimation of plasma corticosterone levels, assessment of amygdalar volumes and neuronal/glial numbers, levels of monoamines and their metabolites in the amygdala. We found that chronic ICSS of LH-MFB reverses CLI-induced anhedonia and anxiety. Interestingly, amelioration of CLI-induced enhanced anhedonia and anxiety in ICSS rats was associated with partial reversal of enhanced plasma corticosterone levels, hypertrophy of basolateral amygdala (BLA), and altered noradrenaline (NA) metabolism in the amygdalar complex. We suggest that beneficial effects of ICSS on CLI-induced anxiety at least in part mediated by the restoration of amygdalar and HPA axis functioning. Our results support the hypothesis that brain stimulation rewarding experience might be evolved as a therapeutic strategy for reversal of amygdalar dysfunction in depression.
Collapse
Affiliation(s)
- Suwarna Chakraborty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - Sunil Jamuna Tripathi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India.
| |
Collapse
|
10
|
Tripathi SJ, Chakraborty S, Rao BSS. Remediation of chronic immobilization stress-induced negative affective behaviors and altered metabolism of monoamines in the prefrontal cortex by inactivation of basolateral amygdala. Neurochem Int 2020; 141:104858. [PMID: 33010391 DOI: 10.1016/j.neuint.2020.104858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/06/2020] [Accepted: 09/26/2020] [Indexed: 01/28/2023]
Abstract
Exposure to chronic stress precipitates depression and anxiety. Stress-induced responses are differentially regulated by the prefrontal cortex (PFC) and basolateral amygdala (BLA). For instance, repeated stress leads to hypertrophy of BLA, resulting in the emergence of affective symptoms. Chronic stress-induced changes in the metabolism of monoamines are central in the manifestation of affective symptoms. Interestingly, BLA via its reciprocal connections modulates prefrontal cortical monoaminergic responses to acute stress. However, the effects of BLA inactivation on chronic stress-induced affective behaviors and monoaminergic changes in the PFC are relatively unknown. Thus, we hypothesized that inactivation of BLA might prevent chronic immobilization stress (CIS)-induced depressive-, anxiety-like behaviors, and associated monoaminergic alterations in the prelimbic (PrL) and anterior cingulate cortex (ACC) subregions of PFC. We used two different BLA silencing strategies, namely ibotenic acid lesion and reversible temporary inactivation using lidocaine. We found that CIS precipitates depressive- and anxiety-like behaviors. Further, CIS-induced negative affective behaviors were associated with decreased levels of 5-HT, DA, and NE, and increased 5-HIAA/5-HT, DOPAC + HVA/DA, and MHPG/NE ratio in the PrL and ACC, suggesting enhanced metabolism. Interestingly, BLA lesion prior to CIS blocked the emergence of depressive- and anxiety-like behaviors. Moreover, the lesion of BLA prior to CIS was sufficient to prevent alterations in levels of monoamines and their metabolites in the PrL and ACC. Thereafter, we evaluated whether the effects of BLA lesion could be mirrored by temporary inactivation of BLA, specifically during stress. Remarkably, temporary inactivation of BLA during stress recapitulated the effects of lesion. Our results have implications for understanding the role of BLA in chronic stress-induced metabolic alterations in prefrontal cortical monoaminergic systems, and associated mood and anxiety disorders. The current study supports the hypothesis that combating amygdalar hyperactivity might be a viable strategy for the management of stress and associated affective disorders.
Collapse
Affiliation(s)
- Sunil Jamuna Tripathi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - Suwarna Chakraborty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India.
| |
Collapse
|
11
|
Chakraborty S, Tripathi SJ, Raju TR, Shankaranarayana Rao BS. Mechanisms underlying remediation of depression-associated anxiety by chronic N-acetyl cysteine treatment. Psychopharmacology (Berl) 2020; 237:2967-2981. [PMID: 32572589 DOI: 10.1007/s00213-020-05585-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
RATIONALE Anxiety is one of the most comorbid conditions with major depressive disorder (MDD). Depression-associated anxiety often stems from the dysfunctional hypothalamic-pituitary-adrenal (HPA) axis and its altered regulation by the amygdala. Furthermore, MDD is associated with altered glutamatergic processing leading to anxiety and impaired regulation of the HPA axis. Recent studies have demonstrated that N-acetyl cysteine (NAC), a pleiotropic drug, exerts antidepressant-like effect by modulation of hippocampal functions, periterminal release of glutamate, and/or redox systems. However, the effects of NAC on depression-associated anxiety, HPA axis hyperactivity, and amygdalar dysfunctions are relatively unknown. OBJECTIVES Accordingly, we evaluated the effect of NAC on neonatal clomipramine (CLI)-induced adulthood anxiety and accompanying changes in plasma corticosterone levels, amygdalar volumes, neuronal/glial densities, levels of monoamines, and their metabolites in the amygdalar complex. RESULTS We found that chronic treatment with NAC reverses CLI-induced anhedonia and enhanced anxiety. Interestingly, attenuation of CLI-associated anxiety in NAC-treated rats were accompanied by a reversal of adrenal and spleen hypertrophy, and normalization of enhanced plasma corticosterone levels, indicating improved HPA axis functioning. Furthermore, NAC treatment was sufficient to reverse volumetric hypertrophy of basolateral amygdala (BLA), and altered noradrenaline (NA) metabolism in the amygdalar complex. The effects of NAC in the reversal of CLI-induced impairments were similar to that of fluoxetine (FLX). CONCLUSIONS We suggest that beneficial effects of NAC on antidepressive- and antianxiety-like behaviors are at least in part mediated via restoration of amygdalar and HPA axis functioning. Our results support the hypothesis that NAC might be evolved as a therapeutic strategy for reversal of amygdalar dysfunction in depression.
Collapse
Affiliation(s)
- Suwarna Chakraborty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Sunil Jamuna Tripathi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India.
| |
Collapse
|
12
|
Subhadeep D, Srikumar BN, Shankaranarayana Rao BS, Kutty BM. Short photoperiod restores ventral subicular lesion‐induced deficits in affective and socio‐cognitive behavior in male Wistar rats. J Neurosci Res 2020; 98:1114-1136. [DOI: 10.1002/jnr.24601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Duttagupta Subhadeep
- Department of Neurophysiology National Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru India
| | - Bettadapura N. Srikumar
- Department of Neurophysiology National Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru India
| | | | - Bindu M. Kutty
- Department of Neurophysiology National Institute of Mental Health and Neuro Sciences (NIMHANS) Bengaluru India
| |
Collapse
|
13
|
Chakraborty S, Tripathi SJ, Srikumar B, Raju T, Shankaranarayana Rao B. N-acetyl cysteine ameliorates depression-induced cognitive deficits by restoring the volumes of hippocampal subfields and associated neurochemical changes. Neurochem Int 2020; 132:104605. [DOI: 10.1016/j.neuint.2019.104605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022]
|
14
|
Chronic brain stimulation rewarding experience ameliorates depression-induced cognitive deficits and restores aberrant plasticity in the prefrontal cortex. Brain Stimul 2019; 12:752-766. [PMID: 30765272 DOI: 10.1016/j.brs.2019.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/12/2018] [Accepted: 01/27/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a multifactorial disease which often coexists with cognitive deficits. Depression-induced cognitive deficits are known to be associated with aberrant reward processing, neurochemical and structural alterations. Recent studies have shown that chronic electrical stimulation of brain reward areas induces a robust antidepressant effect. However, the effects of repeated electrical self-stimulation of lateral hypothalamus - medial forebrain bundle (LH-MFB) on depression-induced cognitive deficits and associated neurochemical and structural alterations in the prefrontal cortex (PFC) are unknown. OBJECTIVES We investigated the effect of chronic rewarding self-stimulation of LH-MFB in neonatal clomipramine (CLI) model of depression. During adulthood, neonatal CLI and saline administered rats were implanted with bilateral electrodes stereotaxically in the LH-MFB and trained to receive intracranial self-stimulation (ICSS) for 14 days. The rats were tested for depressive-like behaviors, learning and memory followed by estimation of PFC volumes, levels of monoamines and its metabolites in the PFC. RESULTS We found that chronic ICSS of LH-MFB reverses CLI-induced behavioral despair and anhedonia. Interestingly, self-stimulation normalizes the impaired novel object and location recognition memory in CLI rats. The amelioration of learning impairments in CLI rats was associated with the reversal of volume loss and restoration of monoamine metabolism in the PFC. CONCLUSION We demonstrated that repeated intracranial self-stimulation of LH-MFB ameliorates CLI-induced learning deficits, reverses altered monoamine metabolism and the atrophy of PFC. Our results support the hypothesis that chronic brain stimulation rewarding experience might be evolved as a potential treatment strategy for reversal of learning deficits in depression and associated disorders.
Collapse
|
15
|
Xu G, Li Y, Ma C, Wang C, Sun Z, Shen Y, Liu L, Li S, Zhang X, Cong B. Restraint Stress Induced Hyperpermeability and Damage of the Blood-Brain Barrier in the Amygdala of Adult Rats. Front Mol Neurosci 2019; 12:32. [PMID: 30814927 PMCID: PMC6381322 DOI: 10.3389/fnmol.2019.00032] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/24/2019] [Indexed: 01/05/2023] Open
Abstract
Intense or prolonged exposure to stress can damage various brain structures, including the amygdala and hippocampus, which are associated with emotional-cognitive functions. Furthermore, this deterioration has been linked to a myriad of neurodegenerative and psychiatric disorders, in particular through disruption of the blood-brain barrier (BBB). However, insights remain scarce concerning the effects and mechanisms associated with stress on the BBB in the amygdala. This study explored the effects of restraint stress on the permeability and integrity of the BBB in the amygdala of male adult SD rats. Serum levels of corticosterone (CORT) and S100B were determined through ELISA. The permeability of the BBB was assessed by measuring Evans Blue (EB) leakage in tissue samples from the rats’ amygdala. These samples were immunostained for markers of tight junctions (Claudin-5, Occludin, ZO-1) and adherens junctions (VE-cadherin), as well as GLUT-1 and AQP-4. Staining was evaluated through confocal microscopy, and the level of expression of these proteins was quantified using the Western Blot (WB) technique. The ultrastructure of brain microvascular endothelial cells was assessed with transmission electron microscopy. Moreover, interleukin-1 beta (IL-1β) content in serum and amygdalar tissues were determined by employing ELISA. Exposure to restraint stress was associated with higher serum levels of S100B and EB leakage in amygdala tissues, especially in days 14 and 21 of the experiment, indicating increased permeability of the BBB. After restraint stress, significant decreases in protein expression were detected for tight junctions, adherens junctions and GLUT-1, while a significant increase was observed for AQP-4. The variation trends of fluorescence intensity generally paralleled these results. Following restraint stress, transmission electron microscopy ascertained enlarged gaps in tight junctions and thickened basal membranes in amygdalar capillaries. In addition, increased IL-1β contents in serum and amygdalar tissues were observed in the restraint-stressed groups. These findings suggest that restraint stress mediates time-dependent alterations in the permeability of the BBB, with modifications in the expression of proteins from tight junctions and adherens junctions, as well as ultrastructural changes in brain microvascular endothelial cells. And it was associated with the inflammation. These alterations may be associated with behavioral and cognitive dysfunctions and neurodegenerative disorders.
Collapse
Affiliation(s)
- Guangming Xu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yingmin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chuan Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhaoling Sun
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yiwen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Liu
- Forensic Science, Beijing Public Security Bureau, Beijing, China
| | - Shujin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaojing Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Tripathi SJ, Chakraborty S, Srikumar BN, Raju TR, Shankaranarayana Rao BS. Basolateral amygdalar inactivation blocks chronic stress-induced lamina-specific reduction in prefrontal cortex volume and associated anxiety-like behavior. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:194-207. [PMID: 30036565 DOI: 10.1016/j.pnpbp.2018.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 12/20/2022]
Abstract
Chronic exposure to stress causes cognitive deficits, anxiety and depression. Earlier studies have suggested that the prefrontal cortex (PFC) and basolateral amygdala (BLA) can differentially modulate the stress-induced alterations either by their action on HPA axis or via direct reciprocal connections between them. The PFC dysfunction and BLA hypertrophy following stress are known to cause anxiety and affective symptoms. Recent studies indicate that inactivation of BLA projections to PFC remarkably decreases anxiety. However, the effect of BLA inactivation on stress-induced anxiety and associated volume loss in prelimbic (PrL) and anterior cingulate (ACC) subregions of PFC is not known. Accordingly, we evaluated the effect of BLA lesion or inactivation during chronic immobilization stress (CIS) on an approach-avoidance task and associated volume loss in the PFC. The stressed rats showed a significant volumetric reduction in layer I and II of the PrL and ACC. Interestingly, BLA lesion prior to stress prevented the volume loss in PrL and ACC. Further, BLA lesion blocked the anxiety-like behavior in stressed rats. However, in the absence of stress, BLA lesion increased the number of shocks as compared to controls. As BLA lesion produced an anticonflict effect, we performed temporary inactivation of BLA specifically during stress. Similar to BLA lesion, lidocaine-induced inactivation prevented the stress-induced volume loss and anxiety-like behavior. We demonstrate that inactivation of BLA during stress prevents CIS-induced anxiety and associated structural correlates in the PFC. The present study extends the hypothesis of amygdalar silencing as a possible management strategy for stress and associated disorders.
Collapse
Affiliation(s)
- Sunil Jamuna Tripathi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India
| | - Suwarna Chakraborty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560 029, India.
| |
Collapse
|
17
|
Ma Q, Li X, Yan Z, Jiao H, Wang T, Hou Y, Jiang Y, Liu Y, Chen J. Xiaoyaosan Ameliorates Chronic Immobilization Stress-Induced Depression-Like Behaviors and Anorexia in Rats: The Role of the Nesfatin-1-Oxytocin-Proopiomelanocortin Neural Pathway in the Hypothalamus. Front Psychiatry 2019; 10:910. [PMID: 31920757 PMCID: PMC6914835 DOI: 10.3389/fpsyt.2019.00910] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Chronic stress is an important risk factor for depression. The nesfatin-1 (NES1)-oxytocin (OT)-proopiomelanocortin (POMC) neural pathway, which is involved in the stress response, was recently shown to have an anorectic effect in the hypothalamus. Our previous study showed that Xiaoyaosan, a well-known antidepressant used in traditional Chinese medicine, effectively relieved appetite loss induced by chronic immobilization stress (CIS). However, whether Xiaoyaosan ameliorates depression-like behaviors and anorexia by regulating the NES1-OT-POMC neural pathway remains unclear. Objective: To investigate whether the antidepressant-like and anti-anorexia effects of Xiaoyaosan are related to the NES1-OT-POMC neural pathway in the hypothalamus. Methods: Rats were randomly divided into control, CIS, Xiaoyaosan treatment, and fluoxetine treatment groups. The rats in the CIS, Xiaoyaosan treatment, and fluoxetine treatment groups were subjected to CIS for 21 consecutive days, during which they were administered distilled water, a Xiaoyaosan decoction [3.854 g/(kg·d)] or fluoxetine [1.76 mg/(kg·d)], respectively, by gavage, and their body weights and food intake were monitored daily. The rats were subsequently subjected to the open field test and sucrose preference test. Then, the expression levels of corticosterone and NES1 in the serum and the expression levels of NES1, OT, POMC, and melanocortin-4 receptor (MC4R) in the hypothalamus were determined by real-time fluorescence quantitative polymerase chain reaction, Western blot analysis, and immunochemistry. Furthermore, immunofluorescence double staining was used to determine whether related proteins in the hypothalamic NES1-OT-POMC neural pathway were co-expressed. Results: Compared to control rats, rats exposed to CIS exhibited gradually less food intake and lower body weights and significantly increased concentrations of NES1 in the serum and paraventricular nucleus. Moreover, the expression levels of POMC, OT, and MC4R in the hypothalamus were significantly higher in the CIS group than those in the control group. However, these changes were reversed by pretreatment with Xiaoyaosan and fluoxetine. Specifically, the expression levels of members of the NES1-OT-POMC neural pathway were lower in the Xiaoyaosan-treated group than in the CIS group. Conclusion: Xiaoyaosan ameliorates CIS-induced depression-like behaviors and anorexia by regulating the NES1-OT-POMC neural pathway in the hypothalamus.
Collapse
Affiliation(s)
- Qingyu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhiyi Yan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haiyan Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tingye Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yajing Hou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Youming Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueyun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Srikumar BN, Naidu PS, Kalidindi N, Paschapur M, Adepu B, Subramani S, Nagar J, Srivastava R, Sreedhara MV, Prasad DS, Das ML, Louis JV, Kuchibhotla VK, Dudhgaonkar S, Pieschl RL, Li YW, Bristow LJ, Ramarao M, Vikramadithyan RK. Diminished responses to monoaminergic antidepressants but not ketamine in a mouse model for neuropsychiatric lupus. J Psychopharmacol 2019; 33:25-36. [PMID: 30484737 DOI: 10.1177/0269881118812102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND A significant proportion of patients suffering from major depression fail to remit following treatment and develop treatment-resistant depression. Developing novel treatments requires animal models with good predictive validity. MRL/lpr mice, an established model of systemic lupus erythematosus, show depression-like behavior. AIMS We evaluated responses to classical antidepressants, and associated immunological and biochemical changes in MRL/lpr mice. METHODS AND RESULTS MRL/lpr mice showed increased immobility in the forced swim test, decreased wheel running and sucrose preference when compared with the controls, MRL/MpJ mice. In MRL/lpr mice, acute fluoxetine (30 mg/kg, intraperitoneally (i.p.)), imipramine (10 mg/kg, i.p.) or duloxetine (10 mg/kg, i.p.) did not decrease the immobility time in the Forced Swim Test. Interestingly, acute administration of combinations of olanzapine (0.03 mg/kg, subcutaneously)+fluoxetine (30 mg/kg, i.p.) or bupropion (10 mg/kg, i.p.)+fluoxetine (30 mg/kg, i.p.) retained efficacy. A single dose of ketamine but not three weeks of imipramine (10 mg/kg, i.p.) or escitalopram (5 mg/kg, i.p.) treatment in MRL/lpr mice restored sucrose preference. Further, we evaluated inflammatory, immune-mediated and neuronal mechanisms. In MRL/lpr mice, there was an increase in autoantibodies' titers, [3H]PK11195 binding and immune complex deposition. There was a significant infiltration of the brain by macrophages, neutrophils and T-lymphocytes. p11 mRNA expression was decreased in the prefrontal cortex. Further, there was an increase in the 5-HT2aR expression, plasma corticosterone and indoleamine 2,3-dioxygenase activity. CONCLUSION In summary, the MRL/lpr mice could be a useful model for Treatment Resistant Depression associated with immune dysfunction with potential to expedite antidepressant drug discovery.
Collapse
Affiliation(s)
- Bettadapura N Srikumar
- 1 Disease Sciences and Technology, Biocon-Bristol-Myers Squibb R&D Center, Bangalore, India
| | - Pattipati S Naidu
- 1 Disease Sciences and Technology, Biocon-Bristol-Myers Squibb R&D Center, Bangalore, India
| | | | - Mahesh Paschapur
- 1 Disease Sciences and Technology, Biocon-Bristol-Myers Squibb R&D Center, Bangalore, India
| | - Bharath Adepu
- 1 Disease Sciences and Technology, Biocon-Bristol-Myers Squibb R&D Center, Bangalore, India
| | - Siva Subramani
- 1 Disease Sciences and Technology, Biocon-Bristol-Myers Squibb R&D Center, Bangalore, India
| | - Jignesh Nagar
- 1 Disease Sciences and Technology, Biocon-Bristol-Myers Squibb R&D Center, Bangalore, India
| | - Ratika Srivastava
- 1 Disease Sciences and Technology, Biocon-Bristol-Myers Squibb R&D Center, Bangalore, India
| | - Muppana V Sreedhara
- 1 Disease Sciences and Technology, Biocon-Bristol-Myers Squibb R&D Center, Bangalore, India
| | - Durga Shiva Prasad
- 1 Disease Sciences and Technology, Biocon-Bristol-Myers Squibb R&D Center, Bangalore, India
| | - Manish Lal Das
- 1 Disease Sciences and Technology, Biocon-Bristol-Myers Squibb R&D Center, Bangalore, India
| | - Justin V Louis
- 1 Disease Sciences and Technology, Biocon-Bristol-Myers Squibb R&D Center, Bangalore, India
| | - Vijaya K Kuchibhotla
- 1 Disease Sciences and Technology, Biocon-Bristol-Myers Squibb R&D Center, Bangalore, India
| | - Shailesh Dudhgaonkar
- 1 Disease Sciences and Technology, Biocon-Bristol-Myers Squibb R&D Center, Bangalore, India
| | - Rick L Pieschl
- 2 Neuroscience Biology, Bristol-Myers Squibb Company, Wallingford, CT, USA
| | - Yu-Wen Li
- 2 Neuroscience Biology, Bristol-Myers Squibb Company, Wallingford, CT, USA
| | - Linda J Bristow
- 2 Neuroscience Biology, Bristol-Myers Squibb Company, Wallingford, CT, USA
| | | | | |
Collapse
|
19
|
Tripathi SJ, Chakraborty S, Srikumar B, Raju T, Shankaranarayana Rao B. Prevention of chronic immobilization stress-induced enhanced expression of glucocorticoid receptors in the prefrontal cortex by inactivation of basolateral amygdala. J Chem Neuroanat 2019; 95:134-145. [DOI: 10.1016/j.jchemneu.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
|
20
|
Inactivation of Basolateral Amygdala Prevents Stress-Induced Astroglial Loss in the Prefrontal Cortex. Mol Neurobiol 2018; 56:350-366. [DOI: 10.1007/s12035-018-1057-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
|
21
|
Priya V, Srikumar BN, Shankaranarayana Rao BS. Contrasting effects of pre-training on acquisition of operant and radial arm maze tasks in rats. J Integr Neurosci 2018:JIN077. [PMID: 29562551 DOI: 10.3233/jin-180077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Performing multiple tasks either simultaneously, in rapid alternation or in succession, is routine in daily life. Further, testing rodents in a battery of tests is common both in drug discovery and behavioral phenotyping research. However, learning of new tasks can be influenced by prior experience(s). There has been some research on 'switching cost' involved in the transition from one behavior to another. However, there has been no specific assessment of the effect of learning an operant paradigm on performance in a spatial memory task and vice versa. Accordingly, we evaluated task switching between two forms of learning paradigms, operant conditioning and radial arm maze (RAM) tasks. In experiment 1, rats were trained for operant conditioning with food reward followed by a partially baited RAM task. In experiment 2, rats were trained first on a RAM task followed by operant learning. Pre-training on the operant task, impaired the acquisition of the RAM. On the contrary, pre-training on the RAM enhanced operant performance. Our study reveals significant effects of the test order on task-switching in rats. This knowledge can be useful when framing test sequences in test batteries for drug discovery research and screening genetically modified mice.
Collapse
Affiliation(s)
- V Priya
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru - 560 029, India
| | - B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru - 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru - 560 029, India
| |
Collapse
|