1
|
Narattil NR, Maroun M. Differential role of NMDA receptors in hippocampal-dependent spatial memory and plasticity in juvenile male and female rats. Hippocampus 2024; 34:564-574. [PMID: 39143939 DOI: 10.1002/hipo.23631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Early life, or juvenility, stands out as the most pivotal phase in neurodevelopment due to its profound impact over the long-term cognition. During this period, significant changes are made in the brain's connections both within and between different areas, particularly in tandem with the development of more intricate behaviors. The hippocampus is among the brain regions that undergo significant postnatal remodeling, including dendritic arborization, synaptogenesis, the formation of complex spines and neuron proliferation. Given the crucial role of the hippocampus in spatial memory processing, it has been observed that spatial memory abilities continue to develop as the hippocampus matures, particularly before puberty. The N-methyl-d-aspartate (NMDA) type of glutamate receptor channel is crucial for the induction of activity-dependent synaptic plasticity and spatial memory formation in both rodents and humans. Although extensive evidence shows the role of NMDA receptors (NMDAr) in spatial memory and synaptic plasticity, the studies addressing the role of NMDAr in spatial memory of juveniles are sparse and mostly limited to adult males. In the present study, we, therefore, aimed to investigate the effects of systemic NMDAr blockade by the MK-801 on spatial memory (novel object location memory, OLM) and hippocampal plasticity in the form of long-term potentiation (LTP) of both male and female juvenile rats. Our results show the sex-dimorphic role of NMDAr in spatial memory and plasticity during juvenility, as systemic NMDAr blockade impairs the OLM and LTP in juvenile males without an effect on juvenile females. Taken together, our results demonstrate that spatial memory and hippocampal plasticity are NMDAr-dependent in juvenile males and NMDAr-independent in juvenile females. These sex-specific differences in the mechanisms of spatial memory and plasticity may imply gender-specific treatment for spatial memory disorders even in children.
Collapse
Affiliation(s)
- Nisha Rajan Narattil
- Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel
| |
Collapse
|
2
|
Differential age-dependent mechanisms of high-frequency stimulation-induced potentiation in the prefrontal cortex –basolateral amygdala pathway following fear extinction. Neuroscience 2022; 491:215-224. [DOI: 10.1016/j.neuroscience.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022]
|
3
|
Zettin M, Bondesan C, Nada G, Varini M, Dimitri D. Transcranial Direct-Current Stimulation and Behavioral Training, a Promising Tool for a Tailor-Made Post-stroke Aphasia Rehabilitation: A Review. Front Hum Neurosci 2021; 15:742136. [PMID: 34987366 PMCID: PMC8722401 DOI: 10.3389/fnhum.2021.742136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Aphasia is an acquired language disorder resulting from damage to portions of the brain which are responsible for language comprehension and formulation. This disorder can involve different levels of language processing with impairments in both oral and written comprehension and production. Over the last years, different rehabilitation and therapeutic interventions have been developed, especially non-invasive brain stimulation (NIBS) techniques. One of the most used NIBS techniques in aphasia rehabilitation is the Transcranial Direct-Current Stimulation (tDCS). It has been proven to be effective in promoting a successful recovery both in the short and the long term after a brain injury. The main strength of tDCS is its feasibility associated with relatively minor side effects, if safely and properly administered. TDCS requires two electrodes, an anode and a cathode, which are generally placed on the scalp. The electrode montage can be either unipolar or bipolar. The main aim of this review is to give an overview of the state of the art of tDCS for the treatment of aphasia. The studies described included patients with different types of language impairments, especially with non-fluent aphasia and in several cases anomia. The effects of tDCS are variable and depend on several factors, such as electrode size and montage, duration of the stimulation, current density and characteristics of the brain tissue underneath the electrodes. Generally, tDCS has led to promising results in rehabilitating patients with acquired aphasia, especially if combined with different language and communication therapies. The selection of the appropriate approach depends on the patients treated and their impaired language function. When used in combination with treatments such as Speech and Language Therapy, Constraint Induced Aphasia Therapy or Intensive Action Treatment, tDCS has generally promoted a better recovery of the impaired functions. In addition to these rehabilitation protocols, Action Observation Therapy, such as IMITAF, appeared to contribute to the reduction of post-stroke anomia. The potential of combining such techniques with tDCS would would therefore be a possibility for further improvement, also providing the clinician with a new action and intervention tool. The association of a tDCS protocol with a dedicated rehabilitation training would favor a generalized long-term improvement of the different components of language.
Collapse
Affiliation(s)
- Marina Zettin
- Centro Puzzle, Turin, Italy
- Department of Psychology, University of Turin, Turin, Italy
| | | | - Giulia Nada
- Department of Psychology, University of Turin, Turin, Italy
| | - Matteo Varini
- Department of Psychology, University of Turin, Turin, Italy
| | - Danilo Dimitri
- Centro Puzzle, Turin, Italy
- Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Shrivastava K, Rosenberg T, Meiri N, Maroun M. Age-Specific Modulation of Prefrontal Cortex LTP by Glucocorticoid Receptors Following Brief Exposure to HFD. Front Synaptic Neurosci 2021; 13:722827. [PMID: 34675793 PMCID: PMC8524128 DOI: 10.3389/fnsyn.2021.722827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/17/2021] [Indexed: 11/27/2022] Open
Abstract
The corticolimbic circuits in general and the medial prefrontal cortex in particular, undergo maturation during juvenility. It is thus expected that environmental challenges in forms of obesogenic diet can exert different effects in juvenile animals compared to adults. Further, the relationship between glucocorticoids and obesity has also been demonstrated in several studies. As a result, glucocorticoid receptor (GR) antagonists are currently being tested as potential anti-obesity agents. In the present study, we examined the effects of short-term exposure to high-fat diet (HFD) on prefrontal long-term potentiation (LTP) in both juvenile and adult rats, and the role of glucocorticoid receptors (GRs) in modulating these effects. We found HFD impaired prefrontal LTP in both juveniles and adults, but the effects of GR modulation were age- and diet-dependent. Specifically, GR antagonist RU-486 reversed the impairment of LTP in juvenile animals following HFD, and had no effect on control-diet animals. In adult animals, RU-486 has no effect on HFD-impaired LTP, but abolished LTP in control-diet animals. Furthermore, impairments in the prefrontal LTP following HFD are involved with an increase in the mPFC GR levels only in the juveniles. Further, we found that in vivo application of GR agonists into adult mPFC rescued HFD-induced impairment in LTP, suggesting that these receptors might represent strategic therapeutic targets to potentially combat obesity and metabolic related disorder.
Collapse
Affiliation(s)
- Kuldeep Shrivastava
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Tali Rosenberg
- Agricultural Research Organization, The Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Noam Meiri
- Agricultural Research Organization, The Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
5
|
Infortuna C, Mineo L, Buffer S, Thomas FP, Muscatello MRA, Aguglia E, Bruno A, Zoccali RA, Sheikh A, Chusid E, Han Z, Battaglia F. Acute social and somatic stress alters cortical metaplasticity probed with non-invasive brain stimulation in humans. Int J Psychophysiol 2021; 170:1-5. [PMID: 34547303 DOI: 10.1016/j.ijpsycho.2021.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Studying the neuronal mechanisms that govern the cortical adaptations to acute stress is critical for understanding the development of neuropsychiatric diseases. Homeostatic plasticity stabilizes the neural activity in which a previous synaptic event drives subsequent synaptic plasticity. In this study, we evaluated the effect of acute stress induced with the socially evaluated cold pressor test (SECPT) on cortical metaplasticity in humans using a non-invasive brain stimulation protocol. After being exposed to the SECPT and control stress conditions, 30 healthy participants were tested for cortical metaplasticity assessed with changes in the amplitude of the motor evoked potential (MEP) induced by a single-pulse transcranial magnetic stimulation (TMS). Cortical metaplasticity was induced by combining priming with cathodal tDCS (cTDCS) followed by a sub-threshold 1-Hz repetitive stimulation (rTMS) test session. Our results showed that SECPT induced cardiovascular adaptations (increase in systolic, diastolic blood pressure, and heart rate), indicating that SECPT effectively induced acute stress. Also, in our experiments stimulation of subjects with 1-Hz rTMS after they had undergone the SECPT condition induced inhibition of MEP whereas 1-Hz rTMS administered after the control condition induced a facilitatory (physiologic) response pattern. Here we observed that acute stress impairs homeostatic metaplasticity. The dysfunctional regulation of cortical plastic changes after stress could play a pivotal role in the pathogenesis of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Carmenrita Infortuna
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, University of Messina, Messina, Italy
| | - Ludovico Mineo
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Italy
| | - Steven Buffer
- Department of Medical Sciences and Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Florian P Thomas
- Department of Neurology, Hackensack University Medical Center, Hackensack Meridian School of Medicine, Hackensack, NJ, USA
| | - Maria Rosaria Anna Muscatello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, University of Messina, Messina, Italy
| | - Eugenio Aguglia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Italy
| | - Antonio Bruno
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Italy
| | - Rocco Antonio Zoccali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, University of Messina, Messina, Italy
| | - Asad Sheikh
- Department of Pre-clinical Sciences, New York College of Podiatric Medicine, New York, USA
| | - Eileen Chusid
- Department of Pre-clinical Sciences, New York College of Podiatric Medicine, New York, USA
| | - Zhyiong Han
- Department of Neurology, Hackensack University Medical Center, Hackensack Meridian School of Medicine, Hackensack, NJ, USA
| | - Fortunato Battaglia
- Department of Neurology, Hackensack University Medical Center, Hackensack Meridian School of Medicine, Hackensack, NJ, USA.
| |
Collapse
|
6
|
Molina SJ, Buján GE, Guelman LR. Noise-induced hippocampal oxidative imbalance and aminoacidergic neurotransmitters alterations in developing male rats: Influence of enriched environment during adolescence. Dev Neurobiol 2021; 81:164-188. [PMID: 33386696 DOI: 10.1002/dneu.22806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 12/21/2022]
Abstract
Living in big cities might involuntarily expose people to high levels of noise causing auditory and/or extra-auditory impairments, including adverse effects on central nervous system (CNS) areas such as the hippocampus. In particular, CNS development is a very complex process that can be altered by environmental stimuli. We have previously shown that noise exposure of developing rats can induce hippocampal-related behavioral alterations. However, noise-induced biochemical alterations had not been studied yet. Thus, the aim of this work was to assess whether early noise exposure can affect rat hippocampal oxidative state and aminoacidergic neurotransmission tone. Additionally, the effectiveness of an enriched environment (EE) as a neuroprotective strategy was evaluated. Male Wistar rats were exposed to different noise schemes at 7 or 15 days after birth. Upon weaning, some animals were transferred to an EE whereas others were kept in standard cages. Short- and long-term measurements were performed to evaluate reactive oxygen species, thioredoxins levels and catalase activity as indicators of hippocampal oxidative status as well as glutamic acid decarboxylase and a subtype of glutamate transporter to evaluate aminoacidergic neurotransmission tone. Results showed noise-induced changes in hippocampal oxidative state and aminoacidergic neurotransmission markers that lasted until adolescence and differed according to the scheme and the age of exposure. Finally, EE housing was effective in preventing some of these changes. These findings suggest that CNS development seems to be sensitive to the effects of stressors such as noise, as well as those of an environmental stimulation, favoring prompt and lasting molecular changes.
Collapse
Affiliation(s)
- Sonia Jazmín Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Gustavo Ezequiel Buján
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| |
Collapse
|
7
|
Bidirectional Optogenetically-Induced Plasticity of Evoked Responses in the Rat Medial Prefrontal Cortex Can Impair or Enhance Cognitive Set-Shifting. eNeuro 2020; 7:ENEURO.0363-19.2019. [PMID: 31852759 PMCID: PMC6946542 DOI: 10.1523/eneuro.0363-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic stress compromises cognition, including executive function mediated in the medial prefrontal cortex (mPFC). To investigate mechanisms underlying these processes, we use chronic unpredictable stress (CUS), which reduces activity in the mPFC and impairs cognitive set-shifting, a measure of cognitive flexibility in laboratory rats. It has been shown that CUS attenuates the local electrical field potential response evoked in the mPFC by stimulation of the ascending excitatory afferent from the mediodorsal thalamus (MDT). Thus, in this study, to investigate the role that such changes in afferent-evoked responsivity of the mPFC might play in the cognitive deficits induced by CUS, we used optogenetics to directly induce plastic changes in the thalamic-mPFC afferent pathway. Glutamatergic neurons in the MDT were virally-induced to express the ChETA variant of channelrhodopsin. Then, to first validate the optogenetic induction of plasticity, long-term depression (LTD) or long-term potentiation (LTP) were induced by laser stimulation of ChETA-expressing terminals in the mPFC of anesthetized rats. In subsequent experiments, induction of opto-LTD in awake animals produced set-shifting deficits similar to those induced by CUS. By contrast, inducing opto-LTP in rats that had received prior CUS treatment corrected the stress-induced deficit in set-shifting. These results suggest that stress-induced plasticity in the thalamic-mPFC pathway is sufficient to produce stress-induced cognitive deficits, and may represent a novel target for effective therapeutic intervention to correct cognitive impairment in stress-related psychiatric disorders.
Collapse
|
8
|
Khazen T, Hatoum OA, Ferreira G, Maroun M. Acute exposure to a high-fat diet in juvenile male rats disrupts hippocampal-dependent memory and plasticity through glucocorticoids. Sci Rep 2019; 9:12270. [PMID: 31439894 PMCID: PMC6706405 DOI: 10.1038/s41598-019-48800-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
The limbic circuit is still undergoing maturation during juvenility and adolescence, explaining why environmental and metabolic challenges during these developmental periods can have specific adverse effects on cognitive functions. We have previously shown that long-term exposure (8-12 weeks) to high-fat diet (HFD) during adolescence (from weaning to adulthood), but not at adulthood, was associated with altered amygdala and hippocampal functions. Moreover, these HFD effects were normalized by treatment with glucocorticoid receptor (GR) antagonists. Here, we examined in male rats whether acute exposure (7-9 days) to HFD during juvenility [from postnatal day (PND) 21 to PND 28-30] or adulthood (from PND 60 to PND 67-69) is sufficient to affect hippocampal functions and whether it is also dependent on GRs activation. Juvenile HFD abolished both hippocampal synaptic plasticity, assessed through in vivo long-term potentiation (LTP) in CA1, and long-term hippocampal-dependent memory, using object location memory (OLM). No effect of HFD was observed in short-term OLM suggesting a specific effect on consolidation process. In contrast, adult HFD enhanced in vivo LTP and OLM. Systemic application of GR antagonist alleviated HFD-induced LTP and OLM impairments in juveniles. These results suggest that acute exposure to HFD during juvenility is sufficient to impair hippocampal functions in a GR-dependent manner. Interestingly, this effect depends on the developmental period studied as acute exposure to HFD at adulthood did not impair, but rather enhanced, hippocampal functions.
Collapse
Affiliation(s)
- Tala Khazen
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Ossama A Hatoum
- Department of Surgery B- HaEmek Medical Center, Faculty of Medicine, Technion: Israel Institute of Technology, Haifa, Israel
| | - Guillaume Ferreira
- INRA, Nutrition and Integrative Neurobiology, UMR1286, Bordeaux, France.,University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|