1
|
Mitrani-Rosenbaum S, Yakovlev L, Becker Cohen M, Argov Z, Fellig Y, Harazi A. Pre Clinical Assessment of AAVrh74.MCK.GNE Viral Vector Therapeutic Potential: Robust Activity Despite Lack of Consistent Animal Model for GNE Myopathy. J Neuromuscul Dis 2021; 9:179-192. [PMID: 34806613 PMCID: PMC8842764 DOI: 10.3233/jnd-210755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: GNE myopathy is a unique adult onset rare neuromuscular disease caused by recessive mutations in the GNE gene. The pathophysiological mechanism of this disorder is not well understood and to date, there is no available therapy for this debilitating disease. We have previously established proof of concept that AAV based gene therapy can effectively deliver the wild type human GNE into cultured muscle cells from human patients and in mice, using a CMV promoter driven human wild type GNE plasmid delivered through an adeno associated virus (AAV8) based platform. Objective: In the present study we have generated a muscle specific GNE construct, driven by the MCK promoter and packaged with the AAVrh74 serotype for efficacy evaluation in an animal model of GNE Myopathy. Methods: The viral vector was systemically delivered at 2 doses to two age groups of a Gne–/– hGNED207V Tg mouse described as a preclinical model of GNE Myopathy, and treatment was monitored for long term efficacy. Results: In spite of the fact that the full described characteristics of the preclinical model could not be reproduced, the systemic injection of the rAAVrh74.MCK.GNE viral vector resulted in a long term presence and expression of human wt GNE in the murine muscles and in some improvements of their mild phenotype. The Gne–/– hGNED207V Tg mice are smaller from birth, but cannot be differentiated from littermates by muscle function (grip strength and Rotarod) and their muscle histology is normal, even at advanced age. Conclusions: The rAAVrh74.MCK.GNE vector is a robust tool for the development of GNE Myopathy therapies that supply the intact GNE. However, there is still no reliable animal model to fully assess its efficacy since the previously developed Gne–/– hGNED207V Tg mice do not present disease characteristics.
Collapse
Affiliation(s)
- Stella Mitrani-Rosenbaum
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lena Yakovlev
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Becker Cohen
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zohar Argov
- Department of Neurology, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Harazi
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
The glycomic sialylation profile of GNE Myopathy muscle cells does not point to consistent hyposialylation of individual glycoconjugates. Neuromuscul Disord 2020; 30:621-630. [PMID: 32736841 DOI: 10.1016/j.nmd.2020.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 11/21/2022]
Abstract
GNE Myopathy is a recessive neuromuscular disorder characterized by adult-onset, slowly progressive distal and proximal muscle weakness, and a typical muscle pathology. Although GNE, which is the mutated gene in the disease, is well known as the key enzyme in the biosynthesis pathway of sialic acid, the pathophysiological pathway leading from GNE mutations to the muscle phenotype in GNE Myopathy is still unclear. The obvious hypothesis of impaired sialylation in patients' skeletal muscle as the cause of the disease is still controversial. In the present study we have investigated whether a distinctive altered pattern of sialylation in GNE Myopathy cultured muscle cells could be attributed to a specific glycoconjugate. Mass spectrometry based glycomic methodologies have been utilized to assess the sialylation level of protein N- and O-linked glycans and glycolipid derived glycans from patient and matched control samples. No consistent change in sialylation was detected in glycoconjugates. These results suggest potential additional roles for GNE that could account for the disease pathology.
Collapse
|
3
|
Pogoryelova O, González Coraspe JA, Nikolenko N, Lochmüller H, Roos A. GNE myopathy: from clinics and genetics to pathology and research strategies. Orphanet J Rare Dis 2018; 13:70. [PMID: 29720219 PMCID: PMC5930817 DOI: 10.1186/s13023-018-0802-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/09/2018] [Indexed: 01/07/2023] Open
Abstract
GNE myopathy is an ultra-rare autosomal recessive disease, which starts as a distal muscle weakness and ultimately leads to a wheelchair bound state. Molecular research and animal modelling significantly moved forward understanding of GNE myopathy mechanisms and suggested therapeutic interventions to alleviate the symptoms. Multiple therapeutic attempts are being made to supplement sialic acid depleted in GNE myopathy muscle cells. Translational research field provided valuable knowledge through natural history studies, patient registries and clinical trial, which significantly contributed to bringing forward an era of GNE myopathy treatment. In this review, we are summarising current GNE myopathy, scientific trends and open questions, which would be of significant interest for a wide neuromuscular diseases community.
Collapse
Affiliation(s)
- Oksana Pogoryelova
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | | | - Nikoletta Nikolenko
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK.,Present Address: Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Centro Nacional de Análisis Genómico, Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Biomedical Research Department, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.
| |
Collapse
|
4
|
Substantial deficiency of free sialic acid in muscles of patients with GNE myopathy and in a mouse model. PLoS One 2017; 12:e0173261. [PMID: 28267778 PMCID: PMC5340369 DOI: 10.1371/journal.pone.0173261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 02/17/2017] [Indexed: 12/22/2022] Open
Abstract
GNE myopathy (GNEM), also known as hereditary inclusion body myopathy (HIBM), is a late- onset, progressive myopathy caused by mutations in the GNE gene encoding the enzyme responsible for the first regulated step in the biosynthesis of sialic acid (SA). The disease is characterized by distal muscle weakness in both the lower and upper extremities, with the quadriceps muscle relatively spared until the late stages of disease. To explore the role of SA synthesis in the disease, we conducted a comprehensive and systematic analysis of both free and total SA levels in a large cohort of GNEM patients and a mouse model. A sensitive LC/MS/MS assay was developed to quantify SA in serum and muscle homogenates. Mean serum free SA level was 0.166 μg/mL in patients and 18% lower (p<0.001) than that of age-matched control samples (0.203 μg/mL). In biopsies obtained from patients, mean free SA levels of different muscles ranged from 0.046–0.075 μg/μmol Cr and were markedly lower by 72–85% (p<0.001) than free SA from normal controls. Free SA was shown to constitute a small fraction (3–7%) of the total SA pool in muscle tissue. Differences in mean total SA levels in muscle from patients compared with normal controls were less distinct and more variable between different muscles, suggesting a small subset of sialylation targets could be responsible for the pathogenesis of GNEM. Normal quadriceps had significantly lower levels of free SA (reduced by 39%) and total SA (reduced by 53%) compared to normal gastrocnemius. A lower SA requirement for quadriceps may be linked to the reported quadriceps sparing in GNEM. Analysis of SA levels in GneM743T/M743T mutant mice corroborated the human study results. These results show that serum and muscle free SA is severely reduced in GNEM, which is consistent with the biochemical defect in SA synthesis associated with GNE mutations. These results therefore support the approach of reversing SA depletion as a potential treatment for GNEM patients.
Collapse
|
5
|
Willems AP, van Engelen BGM, Lefeber DJ. Genetic defects in the hexosamine and sialic acid biosynthesis pathway. Biochim Biophys Acta Gen Subj 2015; 1860:1640-54. [PMID: 26721333 DOI: 10.1016/j.bbagen.2015.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Congenital disorders of glycosylation are caused by defects in the glycosylation of proteins and lipids. Classically, gene defects with multisystem disease have been identified in the ubiquitously expressed glycosyltransferases required for protein N-glycosylation. An increasing number of defects are being described in sugar supply pathways for protein glycosylation with tissue-restricted clinical symptoms. SCOPE OF REVIEW In this review, we address the hexosamine and sialic acid biosynthesis pathways in sugar metabolism. GFPT1, PGM3 and GNE are essential for synthesis of nucleotide sugars uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and cytidine-5'-monophospho-N-acetylneuraminic acid (CMP-sialic acid) as precursors for various glycosylation pathways. Defects in these enzymes result in contrasting clinical phenotypes of congenital myasthenia, immunodeficiency or adult-onset myopathy, respectively. We therefore discuss the biochemical mechanisms of known genetic defects in the hexosamine and CMP-sialic acid synthesis pathway in relation to the clinical phenotypes. MAJOR CONCLUSIONS Both UDP-GlcNAc and CMP-sialic acid are important precursors for diverse protein glycosylation reactions and for conversion into other nucleotide-sugars. Defects in the synthesis of these nucleotide sugars might affect a wide range of protein glycosylation reactions. Involvement of multiple glycosylation pathways might contribute to disease phenotype, but the currently available biochemical information on sugar metabolism is insufficient to understand why defects in these pathways present with tissue-specific phenotypes. GENERAL SIGNIFICANCE Future research on the interplay between sugar metabolism and different glycosylation pathways in a tissue- and cell-specific manner will contribute to elucidation of disease mechanisms and will create new opportunities for therapeutic intervention. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Anke P Willems
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboudumc Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboudumc Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Townsend D. Finding the sweet spot: assembly and glycosylation of the dystrophin-associated glycoprotein complex. Anat Rec (Hoboken) 2014; 297:1694-705. [PMID: 25125182 PMCID: PMC4135523 DOI: 10.1002/ar.22974] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/27/2014] [Indexed: 01/12/2023]
Abstract
The dystrophin-associated glycoprotein complex (DGC) is a collection of glycoproteins that are essential for the normal function of striated muscle and many other tissues. Recent genetic studies have implicated the components of this complex in over a dozen forms of muscular dystrophy. Furthermore, disruption of the DGC has been implicated in many forms of acquired disease. This review aims to summarize the current state of knowledge regarding the processing and assembly of dystrophin-associated proteins with a focus primarily on the dystroglycan heterodimer and the sarcoglycan complex. These proteins form the transmembrane portion of the DGC and undergo a complex multi-step processing with proteolytic cleavage, differential assembly, and both N- and O-glycosylation. The enzymes responsible for this processing and a model describing the sequence and subcellular localization of these events are discussed.
Collapse
Affiliation(s)
- Dewayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
7
|
Broccolini A, Mirabella M. Hereditary inclusion-body myopathies. Biochim Biophys Acta Mol Basis Dis 2014; 1852:644-50. [PMID: 25149037 DOI: 10.1016/j.bbadis.2014.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/29/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
The term hereditary inclusion-body myopathies (HIBMs) defines a group of rare muscle disorders with autosomal recessive or dominant inheritance and presence of muscle fibers with rimmed vacuoles and collection of cytoplasmic or nuclear 15-21 nm diameter tubulofilaments as revealed by muscle biopsy. The most common form of HIBM is due to mutations of the GNE gene that codes for a rate-limiting enzyme in the sialic acid biosynthetic pathway. This results in abnormal sialylation of glycoproteins that possibly leads to muscle fiber degeneration. Mutations of the valosin containing protein are instead responsible for hereditary inclusion-body myopathy with Paget's disease of the bone and frontotemporal dementia (IBMPFD), with these three phenotypic features having a variable penetrance. IBMPFD probably represents a disorder of abnormal cellular trafficking of proteins and maturation of the autophagosome. HIBM with congenital joint contractures and external ophthalmoplegia is due to mutations of the Myosin Heavy Chain IIa gene that exerts a pathogenic effect through interference with filament assembly or functional defects in ATPase activity. This review illustrates the clinical and pathologic characteristics of HIBMs and the main clues available to date concerning the possible pathogenic mechanisms and therapeutic perspectives of these disorders. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Aldobrando Broccolini
- Institute of Neurology, Department of Geriatrics, Neurosciences and Orthopedics, Catholic University School of Medicine, L.go A. Gemelli 8, 00168 Rome, Italy.
| | - Massimiliano Mirabella
- Institute of Neurology, Department of Geriatrics, Neurosciences and Orthopedics, Catholic University School of Medicine, L.go A. Gemelli 8, 00168 Rome, Italy.
| |
Collapse
|
8
|
Li H, Chen Q, Liu F, Zhang X, Li W, Liu S, Zhao Y, Gong Y, Yan C. Unfolded protein response and activated degradative pathways regulation in GNE myopathy. PLoS One 2013; 8:e58116. [PMID: 23472144 PMCID: PMC3589370 DOI: 10.1371/journal.pone.0058116] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 02/03/2013] [Indexed: 12/14/2022] Open
Abstract
Although intracellular beta amyloid (Aβ) accumulation is known as an early upstream event in the degenerative course of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) myopathy, the process by which Aβdeposits initiate various degradative pathways, and their relationship have not been fully clarified. We studied the possible secondary responses after amyloid beta precursor protein (AβPP) deposition including unfolded protein response (UPR), ubiquitin proteasome system (UPS) activation and its correlation with autophagy system. Eight GNE myopathy patients and five individuals with normal muscle morphology were included in this study. We performed immunofluorescence and immunoblotting to investigate the expression of AβPP, phosphorylated tau (p-tau) and endoplasmic reticulum molecular chaperones. Proteasome activities were measured by cleavage of fluorogenic substrates. The expression of proteasome subunits and linkers between proteasomal and autophagy systems were also evaluated by immunoblotting and relative quantitative real-time RT-PCR. Four molecular chaperones, glucose-regulated protein 94 (GRP94), glucose-regulated protein 78 (GRP78), calreticulin and calnexin and valosin containing protein (VCP) were highly expressed in GNE myopathy. 20S proteasome subunits, three main proteasome proteolytic activities, and the factors linking UPS and autophagy system were also increased. Our study suggests that AβPP deposition results in endoplasmic reticulum stress (ERS) and highly expressed VCP deliver unfolded proteins from endoplasmic reticulum to proteosomal system which is activated in endoplasmic reticulum associated degradation (ERAD) in GNE myopathy. Excessive ubiquitinated unfolded proteins are exported by proteins that connect UPS and autophagy to autophagy system, which is activated as an alternative pathway for degradation.
Collapse
Affiliation(s)
- Honghao Li
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qi Chen
- Department of Neurology, Yantai Yuhuangding Hospital, Yantai, China
| | - Fuchen Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Xuemei Zhang
- Department of General Internal Medicine, Shandong University Hospital, Jinan, China
| | - Wei Li
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuping Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Yuying Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Yaoqin Gong
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Medical Genetics, School of Medicine, Shandong University, Jinan, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Medical Genetics, School of Medicine, Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
9
|
Variable Phenotypes of Knockin Mice Carrying the M712T Gne Mutation. Neuromolecular Med 2012; 15:180-91. [DOI: 10.1007/s12017-012-8209-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/29/2012] [Indexed: 01/23/2023]
|
10
|
|
11
|
Ganglioside GM3 levels are altered in a mouse model of HIBM: GM3 as a cellular marker of the disease. PLoS One 2010; 5:e10055. [PMID: 20383336 PMCID: PMC2850932 DOI: 10.1371/journal.pone.0010055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/04/2010] [Indexed: 12/18/2022] Open
Abstract
Objective HIBM (Hereditary Inclusion Body Myopathy) is a recessive hereditary disease characterized by adult-onset, slowly progressive muscle weakness sparing the quadriceps. It is caused by a single missense mutation of each allele of the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, a bifunctional enzyme catalyzing the first two steps of sialic acid synthesis in mammals. However, the mechanisms and cellular pathways affected by the GNE mutation and causing the muscle weakness could not be identified so far. Based on recent evidence in literature, we investigated a new hypothesis, i.e. the involvement in the disease of the GM3 ganglioside, a specific glycolipid implicated in muscle cell proliferation and differentiation. Methods qRT-PCR analysis of St3gal5 (GM3 synthase) gene expression and HPLC quantification of GM3 ganglioside were conducted on muscle tissue from a mouse model of HIBM harboring the M712T mutation of GNE (GneM712T/M712T mouse) vs control mice (Gne+/+ mouse). Results St3gal5 mRNA levels were significantly lower in GneM712T/M712T mouse muscles vs Gne+/+ mouse muscles (64.41%±10% of Gne+/+ levels). GM3 ganglioside levels showed also a significant decrease in GneM712T/M712T mouse muscle compared to Gne+/+ mouse muscle (18.09%±5.33% of Gne+/+ levels). Although these GneM712T/M712T mice were described to suffer severe glomerular proteinuria, no GM3 alterations were noted in kidneys, highlighting a tissue specific alteration of gangliosides. Conclusion The M712T mutation of GNE hampers the muscle ability to synthesize normal levels of GM3. This is the first time that a mutation of GNE can be related to the molecular pathological mechanism of HIBM.
Collapse
|
12
|
Hereditary inclusion body myopathy: a decade of progress. Biochim Biophys Acta Mol Basis Dis 2009; 1792:881-7. [PMID: 19596068 DOI: 10.1016/j.bbadis.2009.07.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/29/2009] [Accepted: 07/01/2009] [Indexed: 12/25/2022]
Abstract
Hereditary Inclusion Body Myopathy (HIBM) is an autosomal recessive, quadriceps sparing type commonly referred to as HIBM but also termed h-IBM or Inclusion Body Myopathy 2 (IBM2). The clinical manifestations begin with muscle weakness progressing over the next 10-20 years uniquely sparing the quadriceps until the most advanced stage of the disease. Histopathology of an HIBM muscle biopsy shows rimmed vacuoles on Gomori's trichrome stain, small fibers in groups and tubulofilaments without evidence of inflammation. In affected individuals distinct mutations have been identified in the GNE gene, which encodes the bifunctional enzyme uridine diphospho-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase/N-acetyl-mannosamine (ManNAc) kinase (GNE/MNK). GNE/MNK catalyzes the first two committed steps in the biosynthesis of acetylneuraminic acid (Neu5Ac), an abundant and functionally important sugar. The generation of HIBM animal models has led to novel insights into both the disease and the role of GNE/MNK in pathophysiology. Recent advances in therapeutic approaches for HIBM, including administration of N-acetyl-mannosamine (ManNAc), a precursor of Neu5Ac will be discussed.
Collapse
|
13
|
Broccolini A, Gidaro T, Morosetti R, Mirabella M. Hereditary inclusion-body myopathy: Clues on pathogenesis and possible therapy. Muscle Nerve 2009; 40:340-9. [DOI: 10.1002/mus.21385] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Argov Z, Mitrani-Rosenbaum S. The hereditary inclusion body myopathy enigma and its future therapy. Neurotherapeutics 2008; 5:633-7. [PMID: 19019317 PMCID: PMC4514692 DOI: 10.1016/j.nurt.2008.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hereditary inclusion body myopathy (HIBM) is a genetic muscle disease due to mutations in the gene encoding the enzyme complex UDP-N-acetylglucosamine 2 epimerase-N-acetylmannosamine kinase (GNE), which catalyzes the rate-limiting step in sialic acid production. The review describes some of the disease features that may be relevant for further understanding of the metabolic impairment of HIBM and its future therapy. It also addresses the biochemical basis behind the substrate supplementation therapy designed for this condition.
Collapse
Affiliation(s)
- Zohar Argov
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | | |
Collapse
|
15
|
Recent advances in distal myopathy with rimmed vacuoles (DMRV) or hIBM: treatment perspectives. Curr Opin Neurol 2008; 21:596-600. [DOI: 10.1097/wco.0b013e32830dd595] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Eisenberg I, Novershtern N, Itzhaki Z, Becker-Cohen M, Sadeh M, Willems PH, Friedman N, Koopman WJ, Mitrani-Rosenbaum S. Mitochondrial processes are impaired in hereditary inclusion body myopathy. Hum Mol Genet 2008; 17:3663-74. [DOI: 10.1093/hmg/ddn261] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
17
|
Broccolini A, Gidaro T, De Cristofaro R, Morosetti R, Gliubizzi C, Ricci E, Tonali PA, Mirabella M. Hyposialylation of neprilysin possibly affects its expression and enzymatic activity in hereditary inclusion-body myopathy muscle. J Neurochem 2008; 105:971-81. [DOI: 10.1111/j.1471-4159.2007.05208.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
[Distal myopathy due to mutations of GNE gene: clinical spectrum and diagnosis]. Rev Neurol (Paris) 2008; 164:434-43. [PMID: 18555875 DOI: 10.1016/j.neurol.2008.02.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/08/2008] [Accepted: 02/20/2008] [Indexed: 11/23/2022]
Abstract
Distal myopathies are rare muscular disorders clinically characterized by a predominantly distal muscular involvement. Among recessive forms, the myopathy resulting from mutations in the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) gene, often designated as Nonaka myopathy, primarily affect young adults and are characterized by muscle wasting and weakness predominating on the anterior compartment of the leg, a remarkable quadriceps sparing and a frequent evolution towards ambulation loss after a few years. Finding rimmed vacuoles on muscle biopsy is a further argument for the diagnosis. However, the presentation and course may vary and we describe four patients who illustrate the clinical spectrum of the disease: the first patient had a classical form with progressive weakness over several years, the second one a rapidly progressive myopathy leading to ambulation loss within three years from onset, the third one a very slow course with no ambulation loss after several decades, and the last one a progressive form with misleading neurogenic features on the EMG. One of our four patients harbored a homozygous mutation, and three others were compound heterozygous, two of them displaying an original mutation: one had a c.2036 T>G (p.Val679Gly) substitution, the c.829 C>T (p.Arg277Cys) substitution.
Collapse
|
19
|
Nicchia GP, Cogotzi L, Rossi A, Basco D, Brancaccio A, Svelto M, Frigeri A. Expression of multiple AQP4 pools in the plasma membrane and their association with the dystrophin complex. J Neurochem 2008; 105:2156-65. [DOI: 10.1111/j.1471-4159.2008.05302.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Abstract
Sporadic inclusion-body myositis (sIBM) is the most common acquired muscle disease in Caucasians over the age of 50 years. Pathologically it is marked by inflammatory, degenerative, and mitochondrial changes that interact in a yet-unknown way to cause progressive muscle degeneration and weakness. The cause of the disease is unknown, but it is thought to involve a complex interplay between environmental factors, genetic susceptibility, and aging. The strongest evidence for genetic susceptibility comes from studies of the major histocompatibility complex (MHC), where different combinations of alleles have been associated with sIBM in different ethnic groups. The rare occurrence of familial cases of inclusion-body myositis (fIBM) adds additional evidence for genetic susceptibility. Other candidate genes such as those encoding some of the proteins accumulating in muscle fibers have been investigated, with negative results. The increased understanding of related disorders, the hereditary inclusion-body myopathies (hIBM), may also provide clues to the underlying pathogenesis of sIBM, but to date there is no indication that the genes responsible for these conditions are involved in sIBM. This review summarizes current understanding of the contribution of genetic susceptibility factors to the development of sIBM.
Collapse
Affiliation(s)
- M Needham
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Level 4, A Block, Queen Elizabeth II Medical Centre, Nedlands, Western Australia 6009, Australia.
| | | | | |
Collapse
|
21
|
Intravenous immune globulin in hereditary inclusion body myopathy: a pilot study. BMC Neurol 2007; 7:3. [PMID: 17261181 PMCID: PMC1790898 DOI: 10.1186/1471-2377-7-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 01/29/2007] [Indexed: 11/27/2022] Open
Abstract
Background Hereditary Inclusion Body Myopathy (HIBM) is an autosomal recessive, adult onset, non-inflammatory neuromuscular disorder with no effective treatment. The causative gene, GNE, codes for UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, which catalyzes the first two reactions in the synthesis of sialic acid. Reduced sialylation of muscle glycoproteins, such as α-dystroglycan and neural cell adhesion molecule (NCAM), has been reported in HIBM. Methods We treated 4 HIBM patients with intravenous immune globulin (IVIG), in order to provide sialic acid, because IgG contains 8 μmol of sialic acid/g. IVIG was infused as a loading dose of 1 g/kg on two consecutive days followed by 3 doses of 400 mg/kg at weekly intervals. Results For all four patients, mean quadriceps strength improved from 19.0 kg at baseline to 23.2 kg (+22%) directly after IVIG loading to 25.6 kg (+35%) at the end of the study. Mean shoulder strength improved from 4.1 kg at baseline to 5.9 kg (+44%) directly after IVIG loading to 6.0 kg (+46%) at the end of the study. The composite improvement for 8 other muscle groups was 5% after the initial loading and 19% by the end of the study. Esophageal motility and lingual strength improved in the patients with abnormal barium swallows. Objective measures of functional improvement gave variable results, but the patients experienced improvements in daily activities that they considered clinically significant. Immunohistochemical staining and immunoblotting of muscle biopsies for α-dystroglycan and NCAM did not provide consistent evidence for increased sialylation after IVIG treatment. Side effects were limited to transient headaches and vomiting. Conclusion The mild benefits in muscle strength experienced by HIBM patients after IVIG treatment may be related to the provision of sialic acid supplied by IVIG. Other sources of sialic acid are being explored as treatment options for HIBM.
Collapse
|
22
|
Wang Z, Sun Z, Li AV, Yarema KJ. Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase outside of sialic acid biosynthesis: modulation of sialyltransferase and BiP expression, GM3 and GD3 biosynthesis, proliferation, and apoptosis, and ERK1/2 phosphorylation. J Biol Chem 2006; 281:27016-28. [PMID: 16847058 DOI: 10.1074/jbc.m604903200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE) beyond controlling flux into the sialic acid biosynthetic pathway by converting UDP-GlcNAc to N-acetylmannosamine are described in this report. Overexpression of recombinant GNE in human embryonic kidney (HEK AD293) cells led to an increase in mRNA levels for ST3Gal5 (GM3 synthase) and ST8Sia1 (GD3 synthase) as well as the biosynthetic products of these sialyltransferases, the GM3 and GD3 gangliosides. Conversely, down-regulation of GNE by RNA interference methods had the opposite, but consistent, effect of lowering ST3Gal5 and ST8Sia1 mRNAs and reducing GM3 and GD3 levels. Control experiments ensured that GNE-mediated changes in sialyltransferase expression and ganglioside biosynthesis were not the result of altered flux through the sialic acid pathway. Interestingly, exogenous GM3 and GD3 also changed the expression of GNE and led to reduced ST3Gal5 and ST8Sia1 mRNA levels, demonstrating a reciprocating feedback mechanism where gangliosides regulate upstream biosynthetic enzymes. Cellular responses to the GNE-mediated changes in ST3Gal5 and ST8Sia1 expression and GM3 and GD3 levels were investigated next. Conditions that led to reduced ganglioside production (e.g. short hairpin RNA exposure) stimulated proliferation, whereas conditions that resulted in increased ganglioside levels (e.g. recombinant GNE and exogenous gangliosides) led to reduced proliferation with a concomitant increase in apoptosis. Finally, changes to BiP expression and ERK1/2 phosphorylation consistent with apoptosis and proliferation, respectively, were observed. These results provide examples of specific biochemical pathways, other than sialic acid metabolism, that are influenced by GNE.
Collapse
Affiliation(s)
- Zhiyun Wang
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
23
|
Wopereis S, Lefeber DJ, Morava E, Wevers RA. Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review. Clin Chem 2006; 52:574-600. [PMID: 16497938 DOI: 10.1373/clinchem.2005.063040] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Genetic diseases that affect the biosynthesis of protein O-glycans are a rapidly growing group of disorders. Because this group of disorders does not have a collective name, it is difficult to get an overview of O-glycosylation in relation to human health and disease. Many patients with an unsolved defect in N-glycosylation are found to have an abnormal O-glycosylation as well. It is becoming increasingly evident that the primary defect of these disorders is not necessarily localized in one of the glycan-specific transferases, but can likewise be found in the biosynthesis of nucleotide sugars, their transport to the endoplasmic reticulum (ER)/Golgi, and in Golgi trafficking. Already, disorders in O-glycan biosynthesis form a substantial group of genetic diseases. In view of the number of genes involved in O-glycosylation processes and the increasing scientific interest in congenital disorders of glycosylation, it is expected that the number of identified diseases in this group will grow rapidly over the coming years. CONTENT We first discuss the biosynthesis of protein O-glycans from their building blocks to their secretion from the Golgi. Subsequently, we review 24 different genetic disorders in O-glycosylation and 10 different genetic disorders that affect both N- and O-glycosylation. The key clinical, metabolic, chemical, diagnostic, and genetic features are described. Additionally, we describe methods that can be used in clinical laboratory screening for protein O-glycosylation biosynthesis defects and their pitfalls. Finally, we introduce existing methods that might be useful for unraveling O-glycosylation defects in the future.
Collapse
Affiliation(s)
- Suzan Wopereis
- Laboratory of Pediatrics and Neurology and Department of Pediatrics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
24
|
Barresi R, Campbell KP. Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 2006; 119:199-207. [PMID: 16410545 DOI: 10.1242/jcs.02814] [Citation(s) in RCA: 420] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
α- and β-dystroglycan constitute a membrane-spanning complex that connects the extracellular matrix to the cytoskeleton. Although a structural role for dystroglycan had been identified, biochemical and genetic discoveries have recently highlighted the significance of posttranslational processing for dystroglycan function. Glycosylation is the crucial modification that modulates the function of dystroglycan as a receptor for extracellular binding partners. It has become clear that perturbation of dystroglycan glycosylation is the central event in the pathogenesis of several complex disorders, and recent advances suggest that glycosylation could be modulated to ameliorate the pathological features. Our increased understanding of the mechanisms of interaction of dystroglycan with its ligands has become an essential tool in deciphering the biological processes related to the human diseases in which the proteins are implicated.
Collapse
Affiliation(s)
- Rita Barresi
- Howard Hughes Medical Institute, Department of Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
25
|
Brancaccio A. Alpha-dystroglycan, the usual suspect? Neuromuscul Disord 2005; 15:825-8. [PMID: 16289897 DOI: 10.1016/j.nmd.2005.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 08/09/2005] [Accepted: 08/15/2005] [Indexed: 11/25/2022]
Abstract
An increasing number of congenital muscular dystrophies might originate from genetic abnormalities of glycosyltransferases genes which are believed to target the alpha subunit of the dystroglycan (DG) adhesion complex as their major enzymatic substrate. alpha-DG is highly glycosylated and peripherally associated with the sarcolemma of skeletal muscle and the plasma membrane in a wide variety of cells. Several lines of evidence indicate that alpha-DG hypoglycosylation might represent the primary molecular event characterizing congenital dystrophies, since it is likely to alter alpha-DG high-affinity binding to laminin and other extracellular molecules, thus negatively influencing the basement-membrane/cytoskeleton axis and eventually leading to sarcolemmal instability, infiltration of myofibers and congenital weakness. For this reason, congenital diseases such as Walker-Warburg Syndrome or Muscle-Eye-Brain disease, have been recently denominated 'secondary dystroglycanopathies'. However, some crucial points need to be fully addressed in order to finally assess the degree of involvement of alpha-DG in congenital muscular diseases, for example: the possibility that mutations hitting the DG gene might lead to primary dystroglycanopathies; the putative functional or pathological role of hypoglycosylated - or even hyperglycosylated - alpha-DG molecules; or also the compensatory role played by the recently identified paralogue glycosyltransferases in alpha-DG sugar decoration.
Collapse
Affiliation(s)
- Andrea Brancaccio
- Istituto di Chimica del Riconoscimento Molecolare, CNR c/o, Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo Francesco Vito n.1, 00168 Roma, Italy.
| |
Collapse
|
26
|
Patnaik SK, Stanley P. Mouse large can modify complex N- and mucin O-glycans on alpha-dystroglycan to induce laminin binding. J Biol Chem 2005; 280:20851-9. [PMID: 15788414 DOI: 10.1074/jbc.m500069200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The human LARGE gene encodes a protein with two putative glycosyltransferase domains and is required for the generation of functional alpha-dystroglycan (alpha-DG). Monoclonal antibodies IIH6 and VIA4-1 recognize the functional glycan epitopes of alpha-DG that are necessary for binding to laminin and other ligands. Overexpression of full-length mouse Large generated functionally glycosylated alpha-DG in Pro(-5) Chinese hamster ovary (CHO) cells, and the amount was increased by co-expression of protein:O-mannosyl N-acetylglucosaminyltransferase 1. However, functional alpha-DG represented only a small fraction of the alpha-DG synthesized by CHO cells or expressed from an alpha-DG construct. To identify features of the glycan epitopes induced by Large, the production of functionally glycosylated alpha-DG was investigated in several CHO glycosylation mutants. Mutants with defective transfer of sialic acid (Lec2), galactose (Lec8), or fucose (Lec13) to glycoconjugates, and the Lec15 mutant that cannot synthesize O-mannose glycans, all produced functionally glycosylated alpha-DG upon overexpression of Large. Laminin binding and the alpha-DG glycan epitopes were enhanced in Lec2 and Lec8 cells. In Lec15 cells, functional alpha-DG was increased by co-expression of core 2 N-acetylglucosaminyltransferase 1 with Large. Treatment with N-glycanase markedly reduced functionally glycosylated alpha-DG in Lec2 and Lec8 cells. The combined data provide evidence that Large does not transfer to Gal, Fuc, or sialic acid on alpha-DG nor induce the transfer of these sugars to alpha-DG. In addition, the data suggest that human LARGE may restore functional alpha-DG to muscle cells from patients with defective synthesis of O-mannose glycans via the modification of N-glycans and/or mucin O-glycans on alpha-DG.
Collapse
Affiliation(s)
- Santosh K Patnaik
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | |
Collapse
|