1
|
Theret M, Rossi FMV, Contreras O. Evolving Roles of Muscle-Resident Fibro-Adipogenic Progenitors in Health, Regeneration, Neuromuscular Disorders, and Aging. Front Physiol 2021; 12:673404. [PMID: 33959042 PMCID: PMC8093402 DOI: 10.3389/fphys.2021.673404] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Normal skeletal muscle functions are affected following trauma, chronic diseases, inherited neuromuscular disorders, aging, and cachexia, hampering the daily activities and quality of life of the affected patients. The maladaptive accumulation of fibrous intramuscular connective tissue and fat are hallmarks of multiple pathologies where chronic damage and inflammation are not resolved, leading to progressive muscle replacement and tissue degeneration. Muscle-resident fibro-adipogenic progenitors are adaptable stromal cells with multilineage potential. They are required for muscle homeostasis, neuromuscular integrity, and tissue regeneration. Fibro-adipogenic progenitors actively regulate and shape the extracellular matrix and exert immunomodulatory functions via cross-talk with multiple other residents and non-resident muscle cells. Remarkably, cumulative evidence shows that a significant proportion of activated fibroblasts, adipocytes, and bone-cartilage cells, found after muscle trauma and disease, descend from these enigmatic interstitial progenitors. Despite the profound impact of muscle disease on human health, the fibrous, fatty, and ectopic bone tissues' origins are poorly understood. Here, we review the current knowledge of fibro-adipogenic progenitor function on muscle homeostatic integrity, regeneration, repair, and aging. We also discuss how scar-forming pathologies and disorders lead to dysregulations in their behavior and plasticity and how these stromal cells can control the onset and severity of muscle loss in disease. We finally explore the rationale of improving muscle regeneration by understanding and modulating fibro-adipogenic progenitors' fate and behavior.
Collapse
Affiliation(s)
- Marine Theret
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Osvaldo Contreras
- Departamento de Biología Celular y Molecular, Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| |
Collapse
|
2
|
Boulanger Piette A, Hamoudi D, Marcadet L, Morin F, Argaw A, Ward L, Frenette J. Targeting the Muscle-Bone Unit: Filling Two Needs with One Deed in the Treatment of Duchenne Muscular Dystrophy. Curr Osteoporos Rep 2018; 16:541-553. [PMID: 30225627 DOI: 10.1007/s11914-018-0468-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW In Duchenne muscular dystrophy (DMD), the progressive skeletal and cardiac muscle dysfunction and degeneration is accompanied by low bone mineral density and bone fragility. Glucocorticoids, which remain the standard of care for patients with DMD, increase the risk of developing osteoporosis. The scope of this review emphasizes the mutual cohesion and common signaling pathways between bone and skeletal muscle in DMD. RECENT FINDINGS The muscle-bone interactions involve bone-derived osteokines, muscle-derived myokines, and dual-origin cytokines that trigger common signaling pathways leading to fibrosis, inflammation, or protein synthesis/degradation. In particular, the triad RANK/RANKL/OPG including receptor activator of NF-kB (RANK), its ligand (RANKL), along with osteoprotegerin (OPG), regulates bone matrix modeling and remodeling pathways and contributes to muscle pathophysiology in DMD. This review discusses the importance of the muscle-bone unit in DMD and covers recent research aimed at determining the muscle-bone interactions that may eventually lead to the development of multifunctional and effective drugs for treating muscle and bone disorders regardless of the underlying genetic mutations in DMD.
Collapse
Affiliation(s)
- Antoine Boulanger Piette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Dounia Hamoudi
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Laetitia Marcadet
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Françoise Morin
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Anteneh Argaw
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Leanne Ward
- Division of Endocrinology and Metabolism, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada.
- Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
3
|
Yoon SH, Chen J, Grynpas MD, Mitchell J. Prophylactic pamidronate partially protects from glucocorticoid-induced bone loss in the mdx mouse model of Duchenne muscular dystrophy. Bone 2016; 90:168-80. [PMID: 27373502 DOI: 10.1016/j.bone.2016.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 01/19/2023]
Abstract
Glucocorticoids are extensively used to treat patients with Duchenne muscular dystrophy because of their ability to delay muscle damage, prolong ambulation and extend life. However, use of glucocorticoids significantly increases bone loss, fragility and fractures. To determine if antiresorptive bisphosphonates could prevent the effects of glucocorticoids on bone quality, we used dystrophic mdx mice treated with the glucocorticoid prednisone during 8weeks of rapid bone growth from 5 to 13weeks of age and treated some mice with the bisphosphonate pamidronate during the first two weeks of prednisone administration. Prednisone reduced long bone growth, decreased cortical bone thickness and area and decreased the strength of the femurs. Pamidronate treatment protected mice from cortical bone loss but did not increase bone strength. The combination of prednisone and pamidronate inhibited remodeling of metaphyseal trabecular bone with large numbers of trabeculae containing remnants of calcified cartilage. Prednisone improved muscle strength in the mdx mice and decreased serum creatine kinase with evidence of improved muscle histology and these effects were maintained in mice treated with pamidronate.
Collapse
Affiliation(s)
- Sung-Hee Yoon
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Jinghan Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Marc D Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
4
|
Wasala NB, Lai Y, Shin JH, Zhao J, Yue Y, Duan D. Genomic removal of a therapeutic mini-dystrophin gene from adult mice elicits a Duchenne muscular dystrophy-like phenotype. Hum Mol Genet 2016; 25:2633-2644. [PMID: 27106099 DOI: 10.1093/hmg/ddw123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 12/27/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by dystrophin deficiency. A fundamental question in DMD pathogenesis and dystrophin gene therapy is whether muscle health depends on continuous dystrophin expression throughout the life. Published data suggest that transient dystrophin expression in early life might offer permanent protection. To study the consequences of adulthood dystrophin loss, we generated two strains of floxed mini-dystrophin transgenic mice on the dystrophin-null background. Muscle diseases were prevented in skeletal muscle of the YL238 strain and the heart of the SJ13 strain by selective expression of a therapeutic mini-dystrophin gene in skeletal muscle and heart, respectively. The mini-dystrophin gene was removed from the tibialis anterior (TA) muscle of 8-month-old YL238 mice and the heart of 7-month-old SJ13 mice using an adeno-associated virus serotype-9 Cre recombinase vector (AAV.CBA.Cre). At 12 and 15 months after AAV.CBA.Cre injection, mini-dystrophin expression was reduced by ∼87% in the TA muscle of YL238 mice and ∼64% in the heart of SJ13 mice. Mini-dystrophin reduction caused muscle atrophy, degeneration and force loss in the TA muscle of YL238 mice and significantly compromised left ventricular hemodynamics in SJ13 mice. Our results suggest that persistent dystrophin expression is essential for continuous muscle and heart protection.
Collapse
Affiliation(s)
- Nalinda B Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Yi Lai
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Jin-Hong Shin
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Junling Zhao
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine .,Department of Neurology, School of Medicine.,Department of Bioengineering, The University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
5
|
Contreras O, Rebolledo DL, Oyarzún JE, Olguín HC, Brandan E. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis. Cell Tissue Res 2016; 364:647-660. [DOI: 10.1007/s00441-015-2343-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 12/03/2015] [Indexed: 02/06/2023]
|
6
|
Yoon SH, Sugamori KS, Grynpas MD, Mitchell J. Positive effects of bisphosphonates on bone and muscle in a mouse model of Duchenne muscular dystrophy. Neuromuscul Disord 2015; 26:73-84. [PMID: 26494410 DOI: 10.1016/j.nmd.2015.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 11/17/2022]
Abstract
Patients with Duchenne muscular dystrophy are at increased risk of decreased bone mineral density and bone fracture as a result of inactivity. To determine if antiresorptive bisphosphonates could improve bone quality and their effects on muscle we studied the Mdx mouse, treated with pamidronate during peak bone growth at 5 and 6 weeks of age, and examined the outcome at 13 weeks of age. Pamidronate increased cortical bone architecture and strength in femurs with increased resistance to fracture. While overall long bone growth was not affected by pamidronate, there was significant inhibition of remodeling in metaphyseal trabecular bone with evidence of residual calcified cartilage. Pamidronate treatment had positive effects on skeletal muscle in the Mdx mice with decreased serum and muscle creatine kinase and evidence of improved muscle histology and grip strength.
Collapse
Affiliation(s)
- Sung-Hee Yoon
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Canada and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Kim S Sugamori
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Marc D Grynpas
- Canada and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Dystropathology increases energy expenditure and protein turnover in the mdx mouse model of duchenne muscular dystrophy. PLoS One 2014; 9:e89277. [PMID: 24586653 PMCID: PMC3929705 DOI: 10.1371/journal.pone.0089277] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022] Open
Abstract
The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the dietary requirements for these macronutrients at different stages of the disease, are not well-understood. This study used juvenile (4- to 5- wk-old) and adult (12- to 14-wk-old) male dystrophic C57BL/10ScSn-mdx/J and age-matched C57BL/10ScSn/J control male mice to measure total and resting energy expenditure, food intake, spontaneous activity, body composition, whole body protein turnover, and muscle protein synthesis rates. In juvenile mdx mice that have extensive muscle damage, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were higher than in age-matched controls. Adaptations in food intake and decreased activity were insufficient to meet the increased energy and protein needs of juvenile mdx mice and resulted in stunted growth. In (non-growing) adult mdx mice with less severe dystropathology, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were also higher than in age-matched controls. Food intake was sufficient to meet their protein and energy needs, but insufficient to result in fat deposition. These data show that dystropathology impacts the protein and energy needs of mdx mice and that tailored dietary interventions are necessary to redress this imbalance. If not met, the resultant imbalance blunts growth, and may limit the benefits of therapies designed to protect and repair dystrophic muscles.
Collapse
|
8
|
Morales MG, Gutierrez J, Cabello-Verrugio C, Cabrera D, Lipson KE, Goldschmeding R, Brandan E. Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy. Hum Mol Genet 2013; 22:4938-51. [PMID: 23904456 DOI: 10.1093/hmg/ddt352] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD) and the mdx mouse model, the absence of the cytoskeletal protein dystrophin causes defective anchoring of myofibres to the basal lamina. The resultant myofibre degeneration and necrosis lead to a progressive loss of muscle mass, increased fibrosis and ultimately fatal weakness. Connective tissue growth factor (CTGF/CCN-2) is critically involved in several chronic fibro-degenerative diseases. In DMD, the role of CTGF might extend well beyond replacement fibrosis secondary to loss of muscle fibres, since its overexpression in skeletal muscle could by itself induce a dystrophic phenotype. Using two independent approaches, we here show that mdx mice with reduced CTGF availability do indeed have less severe muscular dystrophy. Mdx mice with hemizygous CTGF deletion (mdx-Ctgf+/-), and mdx mice treated with a neutralizing anti-CTGF monoclonal antibody (FG-3019), performed better in an exercise endurance test, had better muscle strength in isolated muscles and reduced skeletal muscle impairment, apoptotic damage and fibrosis. Transforming growth factor type-β (TGF-β), pERK1/2 and p38 signalling remained unaffected during CTGF suppression. Moreover, both mdx-Ctgf+/- and FG-3019 treated mdx mice had improved grafting upon intramuscular injection of dystrophin-positive satellite cells. These findings reveal the potential of targeting CTGF to reduce disease progression and to improve cell therapy in DMD.
Collapse
Affiliation(s)
- Maria Gabriela Morales
- Laboratorio de Diferenciación Celular y Patología, Centro de Regulación Celular y Patología (CRCP), Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
9
|
Brandan E, Gutierrez J. Role of proteoglycans in the regulation of the skeletal muscle fibrotic response. FEBS J 2013; 280:4109-17. [PMID: 23560928 DOI: 10.1111/febs.12278] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/30/2013] [Accepted: 04/03/2013] [Indexed: 02/06/2023]
Abstract
Myogenesis consists of a highly organized and regulated sequence of cellular processes aimed at forming or repairing muscle tissue. Several processes occur during myogenesis, including cell proliferation, migration, and differentiation. Cytokines, proteinases, cell adhesion molecules and growth factors are involved, either activating or inhibiting these events, and are modulated by a group of molecules called proteoglycans (PGs), which play critical roles in skeletal muscle physiology. Particularly interesting are some of the factors responsible for the fibrotic response associated with skeletal muscular dystrophies. Transforming growth factor-β and connective tissue growth factor have gained great attention as factors participating in the fibrotic response in skeletal muscle. This review is focused on the advances achieved in understanding the roles of proteoglycans as modulators of profibrotic growth factors in fibrosis associated with diseases such as skeletal muscle dystrophies.
Collapse
Affiliation(s)
- Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile.
| | | |
Collapse
|
10
|
Viola HM, Davies SMK, Filipovska A, Hool LC. L-type Ca(2+) channel contributes to alterations in mitochondrial calcium handling in the mdx ventricular myocyte. Am J Physiol Heart Circ Physiol 2013; 304:H767-75. [PMID: 23335798 DOI: 10.1152/ajpheart.00700.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The L-type Ca(2+) channel is the main route for calcium entry into cardiac myocytes, and it is essential for contraction. Alterations in whole cell L-type Ca(2+) channel current and Ca(2+) homeostasis have been implicated in the development of cardiomyopathies. Cytoskeletal proteins can influence whole cell L-type Ca(2+) current and mitochondrial function. Duchenne muscular dystrophy is a fatal X-linked disease that leads to progressive muscle weakness due to the absence of cytoskeletal protein dystrophin. This includes dilated cardiomyopathy, but the mechanisms are not well understood. We sought to identify the effect of alterations in whole cell L-type Ca(2+) channel current on mitochondrial function in the murine model of Duchenne muscular dystrophy (mdx). Activation of the L-type Ca(2+) channel with the dihydropyridine agonist BayK(-) caused a significantly larger increase in cytosolic Ca(2+) in mdx vs. wild-type (wt) ventricular myocytes. Consistent with elevated cytosolic Ca(2+), resting mitochondrial Ca(2+), NADH, and mitochondrial superoxide were significantly greater in mdx vs. wt myocytes. Activation of the channel with BayK(-) caused a further increase in mitochondrial Ca(2+), NADH, and superoxide in mdx myocytes. The ratios of the increases were similar to the ratios recorded in wt myocytes. In mitochondria isolated from 8-wk-old mdx hearts, respiration and mitochondrial electron transport chain complex activity were similar to mitochondria isolated from wt hearts. We conclude that mitochondria function at a higher level of resting calcium in the intact mdx myocyte and activation of the L-type Ca(2+) channel contributes to alterations in calcium handling by the mitochondria. This perturbation may contribute to the development of cardiomyopathy.
Collapse
Affiliation(s)
- Helena M Viola
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
| | | | | | | |
Collapse
|
11
|
Nakagaki WR, Camilli JA. Spontaneous Healing Capacity of Calvarial Bone Defects in mdx Mice. Anat Rec (Hoboken) 2012; 295:590-6. [DOI: 10.1002/ar.22412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/20/2011] [Indexed: 11/09/2022]
|
12
|
Nakagaki WR, Camilli JA. Bone tissue and muscle dystrophin deficiency in mdx mice. Joint Bone Spine 2011; 79:129-33. [PMID: 22079415 DOI: 10.1016/j.jbspin.2011.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 08/08/2011] [Indexed: 01/06/2023]
Abstract
Duchenne muscular dystrophy is a neuromuscular disease caused by the lack of dystrophin that affects skeletal muscles, causing degeneration of muscle fibers and replacing them with fibrous and adipose tissue, events that gradually lead to functional loss. Patients with Duchenne muscular dystrophy have shown that bones become more fragile with age and with advancement of the disease. Muscle weakness and reduced mobility have been suggested to be the factors that promote bone deterioration. However, it seems that this does not occur in mdx mice. It has been identified in mdx mice the existence of a factor related or not to the lack of dystrophin that also participates in the impairment of bone quality. Mdx mice also exhibit muscle degeneration, but unlike human, it is compensated by muscle regeneration. In consequence, there is an increase in the muscle mass, but not necessarily of muscle contractile strength. The accommodation of this increased muscle mass promotes bone formation at specific sites, such as at tendo-osseous junctions. In addition, the inflammatory response to muscle injury may be responsible for the increase in angiogenesis and regeneration observed in mdx mice, inducing the release of cytokines and chemokines that play an important role in the recruitment of leukocytes and macrophages. Then, mdx mice may possess compensatory mechanisms in bone in response to a genetic defect.
Collapse
Affiliation(s)
- Wilson Romero Nakagaki
- Department of Anatomy, Cell Biology and Physiology and Biophysics, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | |
Collapse
|
13
|
Radley-Crabb H, Terrill J, Shavlakadze T, Tonkin J, Arthur P, Grounds M. A single 30 min treadmill exercise session is suitable for 'proof-of concept studies' in adult mdx mice: a comparison of the early consequences of two different treadmill protocols. Neuromuscul Disord 2011; 22:170-82. [PMID: 21835619 DOI: 10.1016/j.nmd.2011.07.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/24/2011] [Accepted: 07/11/2011] [Indexed: 11/15/2022]
Abstract
The extent of muscle pathology in sedentary adult mdx mice is very low and treadmill exercise is often used to increase myofibre necrosis; however, the early events in dystrophic muscle and blood in response to treadmill exercise (leading to myofibre necrosis) are unknown. This study describes in detail two standardised protocols for the treadmill exercise of mdx mice and profiles changes in molecular and cellular events after a single 30 min treadmill session (Protocol A) or after 4 weeks of (twice weekly) treadmill exercise (Protocol B). Both treadmill protocols increased multiple markers of muscle damage. We conclude that a single 30 min treadmill exercise session is a sufficient and conveniently fast screening test and could be used in 'proof-of-concept' studies to evaluate the benefits of pre-clinical drugs in vivo. Myofibre necrosis, blood serum CK and oxidative stress (specifically the ratio of oxidised to reduced protein thiols) are reliable markers of muscle damage after exercise; many parameters demonstrated high biological variation including changes in mRNA levels for key inflammatory cytokines in muscle. The sampling (sacrifice and tissue collection) time after exercise for these parameters is critical. A more precise understanding of the changes in dystrophic muscle after exercise aims to identify biomarkers and new potential therapeutic drug targets for Duchenne Muscular Dystrophy.
Collapse
Affiliation(s)
- Hannah Radley-Crabb
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, Australia.
| | | | | | | | | | | |
Collapse
|
14
|
Biomechanics of the sarcolemma and costameres in single skeletal muscle fibers from normal and dystrophin-null mice. J Muscle Res Cell Motil 2011; 31:323-36. [PMID: 21312057 DOI: 10.1007/s10974-011-9238-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 01/11/2011] [Indexed: 01/01/2023]
Abstract
We studied the biomechanical properties of the sarcolemma and its links through costameres to the contractile apparatus in single mammalian myofibers of Extensor digitorum longus muscles isolated from wild (WT) and dystrophin-null (mdx) mice. Suction pressures (P) applied through a pipette to the sarcolemma generated a bleb, the height of which increased with increasing P. Larger increases in P broke the connections between the sarcolemma and myofibrils and eventually caused the sarcolemma to burst. We used the values of P at which these changes occurred to estimate the tensions and stiffness of the system and its individual elements. Tensions of the whole system and the sarcolemma, as well as the maximal tension sustained by the costameres, were all significantly lower (1.8-3.3 fold) in muscles of mdx mice compared to WT. Values of P at which separation and bursting occurred, as well as the stiffness of the whole system and of the isolated sarcolemma, were ~2-fold lower in mdx than in WT. Our results indicate that the absence of dystrophin reduces muscle stiffness, increases sarcolemmal deformability, and compromises the mechanical stability of costameres and their connections to nearby myofibrils.
Collapse
|
15
|
Nakagaki WR, Bertran CA, Matsumura CY, Santo-Neto H, Camilli JA. Mechanical, biochemical and morphometric alterations in the femur of mdx mice. Bone 2011; 48:372-9. [PMID: 20850579 DOI: 10.1016/j.bone.2010.09.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 08/20/2010] [Accepted: 09/07/2010] [Indexed: 11/18/2022]
Abstract
The bone tissue abnormalities observed in patients with Duchenne muscular dystrophy are frequently attributed to muscle weakness. In this condition, bones receive fewer mechanical stimuli, compromising the process of bone modeling. In the present study we hypothesize that other factors inherent to the disease might be associated with bone tissue impairment, irrespective of the presence of muscle impairment. Mdx mice lack dystrophin and present cycles of muscle degeneration/regeneration that become more intense in the third week of life. As observed in humans with muscular dystrophy, bone tissue abnormalities were found in mdx mice during more intense muscle degeneration due to age. Under these circumstances, muscle deficit is probably one of the factors promoting these changes. To test our hypothesis, we investigated the changes that occur in the femur of mdx mice at 21 days of age when muscle damage is still not significant. The mechanical (structural and material) and biochemical properties and morphometric characteristics of the femur of mdx and control animals were evaluated. The results demonstrated a lower strength, stiffness and energy absorption capacity in mdx femurs. Higher values for structural (load and stiffness) and material (stress, elastic modulus and toughness) properties were observed in the control group. Mdx femurs were shorter and were characterized by a smaller cortical area and thickness and a smaller area of epiphyseal trabecular bone. The hydroxyproline content was similar in the two groups, but there was a significant difference in the Ca/P ratios. Thermogravimetry showed a higher mineral matrix content in cortical bone of control animals. In conclusion, femurs of mdx mice presented impaired mechanical and biochemical properties as well as changes in collagen organization in the extracellular matrix. Thus, mdx mice developed femoral osteopenia even in the absence of significant muscle fiber degeneration. This weakness of the mdx femur is probably due to genetic factors that are directly or indirectly related to dystrophin deficiency.
Collapse
Affiliation(s)
- Wilson Romero Nakagaki
- Department of Anatomy, Cell Biology and Physiology and Biophysics, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
16
|
Lovering RM, O'Neill A, Muriel JM, Prosser BL, Strong J, Bloch RJ. Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desmin-based intermediate filaments. Am J Physiol Cell Physiol 2011; 300:C803-13. [PMID: 21209367 DOI: 10.1152/ajpcell.00394.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intermediate filaments, composed of desmin and of keratins, play important roles in linking contractile elements to each other and to the sarcolemma in striated muscle. Our previous results show that the tibialis anterior (TA) muscles of mice lacking keratin 19 (K19) lose costameres, accumulate mitochondria under the sarcolemma, and generate lower specific tension than controls. Here we compare the physiology and morphology of TA muscles of mice lacking K19 with muscles lacking desmin or both proteins [double knockout (DKO)]. K19-/- mice and DKO mice showed a threefold increase in the levels of creatine kinase (CK) in the serum. The absence of desmin caused a larger change in specific tension (-40%) than the absence of K19 (-19%) and played the predominant role in contractile function (-40%) and decreased tolerance to exercise in the DKO muscle. By contrast, the absence of both proteins was required to obtain a significantly greater loss of contractile torque after injury (-48%) compared with wild type (-39%), as well as near-complete disruption of costameres. The DKO muscle also showed a significantly greater misalignment of myofibrils than either mutant alone. In contrast, large subsarcolemmal gaps and extensive accumulation of mitochondria were only seen in K19-null TA muscles, and the absence of both K19 and desmin yielded milder phenotypes. Our results suggest that keratin filaments containing K19- and desmin-based intermediate filaments can play independent, complementary, or antagonistic roles in the physiology and morphology of fast-twitch skeletal muscle.
Collapse
Affiliation(s)
- Richard M Lovering
- Department of Physiology, University of Maryland, Baltimore, 21201, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Call JA, McKeehen JN, Novotny SA, Lowe DA. Progressive resistance voluntary wheel running in the mdx mouse. Muscle Nerve 2011; 42:871-80. [PMID: 21104862 DOI: 10.1002/mus.21764] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Exercise training has been minimally explored as a therapy to mitigate the loss of muscle strength for individuals with Duchenne muscular dystrophy (DMD). Voluntary wheel running is known to elicit beneficial adaptations in the mdx mouse model for DMD. The aim of this study was to examine progressive resistance wheel running in mdx mice by comprehensively testing muscle function before, during, and after a 12-week training period. Male mdx mice at ~4 weeks age were randomized into three groups: Sedentary, Free Wheel, and Resist Wheel. Muscle strength was assessed via in vivo dorsiflexion torque, grip strength, and whole body tension intermittently throughout the training period. Contractility of isolated soleus muscles was analyzed at the study's conclusion. Both Free and Resist Wheel mice had greater grip strength (~22%) and soleus muscle specific tetanic force (26%) compared with Sedentary mice. This study demonstrates that two modalities of voluntary exercise are beneficial to dystrophic muscle and may help establish parameters for an exercise prescription for DMD.
Collapse
Affiliation(s)
- Jarrod A Call
- Program in Physical Therapy and Rehabilitation Sciences, University of Minnesota School of Medicine, 420 Delaware Street SE, MMC 388, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
18
|
Durko M, Allen C, Nalbantoglu J, Karpati G. CT-GalNAc transferase overexpression in adult mice is associated with extrasynaptic utrophin in skeletal muscle fibres. J Muscle Res Cell Motil 2010; 31:181-93. [DOI: 10.1007/s10974-010-9222-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
|
19
|
Matsuba Y, Goto K, Morioka S, Naito T, Akema T, Hashimoto N, Sugiura T, Ohira Y, Beppu M, Yoshioka T. Gravitational unloading inhibits the regenerative potential of atrophied soleus muscle in mice. Acta Physiol (Oxf) 2009; 196:329-39. [PMID: 19040712 DOI: 10.1111/j.1748-1716.2008.01943.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM The present study was performed to investigate the influence of unloading on the regeneration of atrophied and injured skeletal muscle. METHODS Male mice (C57BL/6J), aged 8 weeks, were used. Cardiotoxin (CTX) was injected into soleus muscles bilaterally. Gravitational unloading on soleus muscle was performed by hind limb suspension for 2 weeks before and additionally 6 weeks after CTX injection in one group. Soleus muscles in the remaining groups were loaded keeping the mice in the cages and were dissected 14, 28 and 42 days after the injection. RESULTS Recovery of the wet weight and protein content of soleus in the CTX-injected group was inhibited by unloading. Increase in satellite cell number, induced by CTX injection and loading, was also inhibited by unloading. Disappearance of infiltration of mononucleated cells into the necrotic area was also delayed. This phenomenon suggests that regeneration, which is indicated by the appearance of fibres with central nuclei, was inhibited by unloading. CONCLUSION Results suggested that loading plays an important role in the activation of the regenerating potential of injured skeletal muscle.
Collapse
Affiliation(s)
- Y Matsuba
- Department of Orthopaedic Surgery, St Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bunnell TM, Jaeger MA, Fitzsimons DP, Prins KW, Ervasti JM. Destabilization of the dystrophin-glycoprotein complex without functional deficits in alpha-dystrobrevin null muscle. PLoS One 2008; 3:e2604. [PMID: 18596960 PMCID: PMC2432020 DOI: 10.1371/journal.pone.0002604] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 06/03/2008] [Indexed: 11/20/2022] Open
Abstract
α-Dystrobrevin is a component of the dystrophin-glycoprotein complex (DGC) and is thought to have both structural and signaling roles in skeletal muscle. Mice deficient for α-dystrobrevin (adbn−/−) exhibit extensive myofiber degeneration and neuromuscular junction abnormalities. However, the biochemical stability of the DGC and the functional performance of adbn−/− muscle have not been characterized. Here we show that the biochemical association between dystrophin and β-dystroglycan is compromised in adbn−/− skeletal muscle, suggesting that α-dystrobrevin plays a structural role in stabilizing the DGC. However, despite muscle cell death and DGC destabilization, costamere organization and physiological performance is normal in adbn−/− skeletal muscle. Our results demonstrate that myofiber degeneration alone does not cause functional deficits and suggests that more complex pathological factors contribute to the development of muscle weakness in muscular dystrophy.
Collapse
Affiliation(s)
- Tina M. Bunnell
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michele A. Jaeger
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Daniel P. Fitzsimons
- Department of Physiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kurt W. Prins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - James M. Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
21
|
Radley HG, Davies MJ, Grounds MD. Reduced muscle necrosis and long-term benefits in dystrophic mdx mice after cV1q (blockade of TNF) treatment. Neuromuscul Disord 2008; 18:227-38. [PMID: 18207402 DOI: 10.1016/j.nmd.2007.11.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 10/10/2007] [Accepted: 11/01/2007] [Indexed: 11/26/2022]
Abstract
Tumour necrosis factor (TNF) is a potent inflammatory cytokine that appears to exacerbate damage of dystrophic muscle in vivo. The monoclonal murine specific antibody cV1q that specifically neutralises murine TNF demonstrated significant anti-inflammatory effects in dystrophic mdx mice. cV1q administration protected dystrophic skeletal myofibres against necrosis in both young and adult mdx mice and in adult mdx mice subjected to 48 h voluntary wheel exercise. Long-term studies (up to 90 days) in voluntarily exercised mdx mice showed beneficial effects of cV1q treatment with reduced histological evidence of myofibre damage and a striking decrease in serum creatine kinase levels. However, in the absence of exercise long-term cV1q treatment did not reduce necrosis or background pathology in mdx mice. An additional measure of well-being in the cV1q treated mice was that they ran significantly more than control mdx mice.
Collapse
Affiliation(s)
- Hannah G Radley
- School of Anatomy and Human Biology, The University of Western Australia, Anatomy and Human Biology, Perth, WA 6009, Australia
| | | | | |
Collapse
|
22
|
Radley HG, Grounds MD. Cromolyn administration (to block mast cell degranulation) reduces necrosis of dystrophic muscle in mdx mice. Neurobiol Dis 2006; 23:387-97. [PMID: 16798005 DOI: 10.1016/j.nbd.2006.03.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 03/22/2006] [Accepted: 03/31/2006] [Indexed: 11/19/2022] Open
Abstract
Duchenne muscular dystrophy is a lethal muscle wasting disorder, resulting from mutations in the gene encoding for the skeletal muscle protein dystrophin. The absence of functional dystrophin leaves the muscle membrane vulnerable to damage during contraction. Damage initially occurs as 'tears' in the membrane, this damage can be exacerbated by the inflammatory response leading to myofibre necrosis rather than repair. Mast cells resident within skeletal muscle represent an immediate source of pro-inflammatory cytokines. We hypothesise that blockade of mast cell degranulation would reduce the extent of myofibre necrosis in the mdx mouse. Daily cromolyn injections were performed on young and exercised adult mdx mice and histological analysis confirmed that mast cell degranulation contributes to myofibre necrosis. This research identified high biological variation between individual mdx mice in the severity of the dystrophic pathology, and supported a relationship between extent of muscle damage in adult mdx mice and their individual enthusiasm for voluntary wheel running.
Collapse
Affiliation(s)
- Hannah G Radley
- School of Anatomy and Human Biology, M309,University of Western Australia, Crawley, Australia
| | | |
Collapse
|