1
|
Rahmadanthi FR, Maksum IP. Transfer RNA Mutation Associated with Type 2 Diabetes Mellitus. BIOLOGY 2023; 12:871. [PMID: 37372155 DOI: 10.3390/biology12060871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Transfer RNA (tRNA) genes in the mitochondrial DNA genome play an important role in protein synthesis. The 22 tRNA genes carry the amino acid that corresponds to that codon but changes in the genetic code often occur such as gene mutations that impact the formation of adenosine triphosphate (ATP). Insulin secretion does not occur because the mitochondria cannot work optimally. tRNA mutation may also be caused by insulin resistance. In addition, the loss of tRNA modification can cause pancreatic β cell dysfunction. Therefore, both can be indirectly associated with diabetes mellitus because diabetes mellitus, especially type 2, is caused by insulin resistance and the body cannot produce insulin. In this review, we will discuss tRNA in detail, several diseases related to tRNA mutations, how tRNA mutations can lead to type 2 diabetes mellitus, and one example of a point mutation that occurs in tRNA.
Collapse
Affiliation(s)
- Fanny Rizki Rahmadanthi
- Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Iman Permana Maksum
- Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
2
|
Qi X, Tan L, Zhang X, Jin J, Kong W, Chen W, Wang J, Dong W, Gao L, Luo L, Lu D, Gong J, Guan F, Shu W, Huang X, Zhang L, Wang S, Shen B, Ma Y. Expanding DdCBE-mediated targeting scope to aC motif preference in rat. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:1-12. [PMID: 36942261 PMCID: PMC10023868 DOI: 10.1016/j.omtn.2023.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
An animal model harboring pathogenic mitochondrial DNA (mtDNA) mutations is important to understand the biological links between mtDNA variation and mitochondrial diseases. DdCBE, a DddA-derived cytosine base editor, has been utilized in zebrafish, mice, and rats for tC sequence-context targeting and human mitochondrial disease modeling. However, human pathogenic mtDNA mutations other than the tC context cannot be manipulated. Here, we screened the combination of different DdCBE pairs at pathogenic mtDNA mutation sites with nC (n for a, g, or c) context and identified that the left-G1333C (L1333C) + right G1333N (R1333N) pair could mediate C⋅G-to-T⋅A conversion effectively at aC sites in rat C6 cells. The editing efficiency at disease-associated mtDNA mutation sites within aC context was further confirmed to be up to 67.89% in vivo. Also, the installed disease-associated mtDNA mutations were germline transmittable. Moreover, the edited rats showed impaired cardiac function and mitochondrial function, resembling human mitochondrial disease symptoms. In summary, for the first time, we expanded the DdCBE targeting scope to an aC motif and installed the pathogenic mutation in rats to model human mitochondrial diseases.
Collapse
Affiliation(s)
- Xiaolong Qi
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Lei Tan
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Xu Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Jiachuan Jin
- Center for Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Weining Kong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Jianying Wang
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Lijuan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Lijun Luo
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Dan Lu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Jianan Gong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Feifei Guan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Wenjie Shu
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Xingxu Huang
- Zhejiang Laboratory, Hangzhou, Zhejiang 311121, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing 100850, China
- Corresponding author: Shengqi Wang, Bioinformatics Center of AMMS, Beijing 100850, China.
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China
- Zhejiang Laboratory, Hangzhou, Zhejiang 311121, China
- Gusu School, Nanjing Medical University, Nanjing, Jiangsu 215031, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, China
- Corresponding author: Bin Shen, State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China.
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100730, China
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
- Corresponding author: Yuanwu Ma, Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.
| |
Collapse
|
3
|
Barcia G, Assouline Z, Pennisi A, Steffann J, Boddaert N, Gitiaux C, Rötig A, Bonnefont JP, Munnich A. Expanding the clinical spectrum of MTTF mutations. Mol Genet Metab Rep 2019; 21:100501. [PMID: 31463198 PMCID: PMC6706677 DOI: 10.1016/j.ymgmr.2019.100501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 11/30/2022] Open
Abstract
We report on a de novo m.586G > A MTTF mutation in a 14 yrs old boy with non-progressive muscle weakness, myalgia, normal brain MRI, normal schooling and absent central nervous system involvement. The same m.586G > A MTTF mutation has been previously reported in a 57 yrs-old woman with a progressive neurodegenerative disorder, akinesia-rigidity, abnormal movements, dementia, and psychiatric disorder. Those two strikingly different clinical presentations emphasize the impact of either mitochondrial factors (heteroplasmy, mitotic segregation) or hitherto unknown nuclear factors on the clinical expression of genetically homogeneous mtDNA mutations.
Collapse
|
4
|
Pacheu-Grau D, Rucktäschel R, Deckers M. Mitochondrial dysfunction and its role in tissue-specific cellular stress. Cell Stress 2018; 2:184-199. [PMID: 31225486 PMCID: PMC6551628 DOI: 10.15698/cst2018.07.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial bioenergetics require the coordination of two different and independent genomes. Mutations in either genome will affect mitochondrial functionality and produce different sources of cellular stress. Depending on the kind of defect and stress, different tissues and organs will be affected, leading to diverse pathological conditions. There is no curative therapy for mitochondrial diseases, nevertheless, there are strategies described that fight the various stress forms caused by the malfunctioning organelles. Here, we will revise the main kinds of stress generated by mutations in mitochondrial genes and outline several ways of fighting this stress.
Collapse
Affiliation(s)
- David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Robert Rucktäschel
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| |
Collapse
|
5
|
Sallevelt SCEH, de Die-Smulders CEM, Hendrickx ATM, Hellebrekers DMEI, de Coo IFM, Alston CL, Knowles C, Taylor RW, McFarland R, Smeets HJM. De novo mtDNA point mutations are common and have a low recurrence risk. J Med Genet 2016; 54:73-83. [PMID: 27450679 PMCID: PMC5502310 DOI: 10.1136/jmedgenet-2016-103876] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/02/2016] [Accepted: 06/09/2016] [Indexed: 12/25/2022]
Abstract
Background Severe, disease-causing germline mitochondrial (mt)DNA mutations are maternally inherited or arise de novo. Strategies to prevent transmission are generally available, but depend on recurrence risks, ranging from high/unpredictable for many familial mtDNA point mutations to very low for sporadic, large-scale single mtDNA deletions. Comprehensive data are lacking for de novo mtDNA point mutations, often leading to misconceptions and incorrect counselling regarding recurrence risk and reproductive options. We aim to study the relevance and recurrence risk of apparently de novo mtDNA point mutations. Methods Systematic study of prenatal diagnosis (PND) and recurrence of mtDNA point mutations in families with de novo cases, including new and published data. ‘De novo’ based on the absence of the mutation in multiple (postmitotic) maternal tissues is preferred, but mutations absent in maternal blood only were also included. Results In our series of 105 index patients (33 children and 72 adults) with (likely) pathogenic mtDNA point mutations, the de novo frequency was 24.6%, the majority being paediatric. PND was performed in subsequent pregnancies of mothers of four de novo cases. A fifth mother opted for preimplantation genetic diagnosis because of a coexisting Mendelian genetic disorder. The mtDNA mutation was absent in all four prenatal samples and all 11 oocytes/embryos tested. A literature survey revealed 137 de novo cases, but PND was only performed for 9 (including 1 unpublished) mothers. In one, recurrence occurred in two subsequent pregnancies, presumably due to germline mosaicism. Conclusions De novo mtDNA point mutations are a common cause of mtDNA disease. Recurrence risk is low. This is relevant for genetic counselling, particularly for reproductive options. PND can be offered for reassurance.
Collapse
Affiliation(s)
- Suzanne C E H Sallevelt
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Christine E M de Die-Smulders
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands.,Research School for Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Alexandra T M Hendrickx
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Irenaeus F M de Coo
- Department of Neurology, Erasmus MC-Sophia Children's Hospital Rotterdam, Rotterdam, The Netherlands
| | - Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Charlotte Knowles
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Hubert J M Smeets
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands.,Research School for Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands.,Research School for Cardiovascular Diseases in Maastricht, CARIM, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Dowlati MA, Derakhshandeh-peykar P, Houshmand M, Farhadi M, Shojaei A, Bazzaz JT. Novel human mitochondrial tRNAphemutation in a patient with hearing impairment: A case study. ACTA ACUST UNITED AC 2012; 24:132-6. [DOI: 10.3109/19401736.2012.717935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Zhang AM, Bandelt HJ, Jia X, Zhang W, Li S, Yu D, Wang D, Zhuang XY, Zhang Q, Yao YG. Is mitochondrial tRNA(phe) variant m.593T>C a synergistically pathogenic mutation in Chinese LHON families with m.11778G>A? PLoS One 2011; 6:e26511. [PMID: 22039503 PMCID: PMC3198432 DOI: 10.1371/journal.pone.0026511] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 09/28/2011] [Indexed: 01/28/2023] Open
Abstract
Mitochondrial transfer RNA (mt-tRNA) mutations have been reported to be associated with a variety of diseases. In a previous paper that studied the mtDNA background effect on clinical expression of Leber's hereditary optic neuropathy (LHON) in 182 Chinese families with m.11778G>A, we found a strikingly high frequency (7/182) of m.593T>C in the mitochondrially encoded tRNA phenylalanine (MT-TF) gene in unrelated LHON patients. To determine the potential role of m.593T>C in LHON, we compared the frequency of this variant in 479 LHON patients with m.11778G>A, 843 patients with clinical features of LHON but without the three known primary mutations, and 2374 Han Chinese from the general populations. The frequency of m.593T>C was higher in LHON patients (14/479) than in suspected LHON subjects (12/843) or in general controls (49/2374), but the difference was not statistically significant. The overall penetrance of LHON in families with both m.11778G>A and m.593T>C (44.6%) was also substantially higher than that of families with only m.11778G>A (32.9%) (P = 0.083). Secondary structure prediction of the MT-TF gene with the wild type or m.593T>C showed that this nucleotide change decreases the free energy. Electrophoretic mobility of the MT-TF genes with the wild type or m.593T>C transcribed in vitro further confirmed the change of secondary structure in the presence of this variant. Although our results could suggest a modest synergistic effect of variant m.593T>C on the LHON causing mutation m.11778G>A, the lack of statistical significance probably due to the relatively small sample size analyzed, makes necessary more studies to confirm this effect.
Collapse
Affiliation(s)
- A-Mei Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | | | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dandan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Dong Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Xin-Ying Zhuang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (QZ); (YGY)
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- * E-mail: (QZ); (YGY)
| |
Collapse
|
8
|
Successful cochlear implantation in a patient with mitochondrial hearing loss and m.625G>A transition. The Journal of Laryngology & Otology 2011; 125:1282-5. [PMID: 21914246 DOI: 10.1017/s0022215111002453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE We present a patient with mitochondrial hearing loss and a novel mitochondrial DNA transition, who underwent successful cochlear implantation. CASE REPORT An 11-year-old girl showed epilepsy and progressive hearing loss. Despite the use of hearing aids, she gradually lost her remaining hearing ability. Laboratory data revealed elevated lactate levels, indicating mitochondrial dysfunction. Magnetic resonance imaging showed diffuse, mild brain atrophy. Cochlear implantation was performed, and the patient's hearing ability was markedly improved. Whole mitochondrial DNA genome analysis revealed a novel heteroplasmic mitochondrial 625G>A transition in the transfer RNA gene for phenylalanine. This transition was not detected in blood DNA from the patient's mother and healthy controls. Mitochondrial respiratory chain activities in muscle were predominantly decreased in complex III. CONCLUSION This case indicates that cochlear implantation can be a valuable therapeutic option for patients with mitochondrial syndromic hearing loss.
Collapse
|
9
|
Sakiyama Y, Okamoto Y, Higuchi I, Inamori Y, Sangatsuda Y, Michizono K, Watanabe O, Hatakeyama H, Goto YI, Arimura K, Takashima H. A new phenotype of mitochondrial disease characterized by familial late-onset predominant axial myopathy and encephalopathy. Acta Neuropathol 2011; 121:775-83. [PMID: 21424749 PMCID: PMC3098999 DOI: 10.1007/s00401-011-0818-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 01/08/2023]
Abstract
Axial myopathy is a rare neuromuscular disease that is characterized by paraspinal muscle atrophy and abnormal posture, most notably camptocormia (also known as bent spine). The genetic cause of familial axial myopathy is unknown. Described here are the clinical features and cause of late-onset predominant axial myopathy and encephalopathy. A 73-year-old woman presented with a 10-year history of severe paraspinal muscle atrophy and cerebellar ataxia. Her 84-year-old sister also developed late-onset paraspinal muscle atrophy and generalized seizures with encephalopathy. Computed tomography showed severe atrophy and fatty degeneration of their paraspinal muscles. Their mother and maternal aunt also developed bent spines. The existence of many ragged-red fibers and cytochrome c oxidase-negative fibers in the biceps brachii muscle of the proband indicated a mitochondrial abnormality. No significant abnormalities were observed in the respiratory chain enzyme activities; however, the activities of complexes I and IV were relatively low compared with the activities of other complexes. Sequence analysis of the mitochondrial DNA from the muscle revealed a novel heteroplasmic mutation (m.602C>T) in the mitochondrial tRNAPhe gene. This familial case of late-onset predominant axial myopathy and encephalopathy may represent a new clinical phenotype of a mitochondrial disease.
Collapse
Affiliation(s)
- Yusuke Sakiyama
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8520 Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8520 Japan
| | - Itsuro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8520 Japan
| | - Yukie Inamori
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8520 Japan
| | - Yoko Sangatsuda
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kumiko Michizono
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8520 Japan
| | - Osamu Watanabe
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8520 Japan
| | - Hideyuki Hatakeyama
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yu-ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8520 Japan
| |
Collapse
|
10
|
Bray MS, Hagberg JM, Pérusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc 2009; 41:35-73. [PMID: 19123262 DOI: 10.1249/mss.0b013e3181844179] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This update of the human gene map for physical performance and health-related fitness phenotypes covers the research advances reported in 2006 and 2007. The genes and markers with evidence of association or linkage with a performance or a fitness phenotype in sedentary or active people, in responses to acute exercise, or for training-induced adaptations are positioned on the map of all autosomes and sex chromosomes. Negative studies are reviewed, but a gene or a locus must be supported by at least one positive study before being inserted on the map. A brief discussion on the nature of the evidence and on what to look for in assessing human genetic studies of relevance to fitness and performance is offered in the introduction, followed by a review of all studies published in 2006 and 2007. The findings from these new studies are added to the appropriate tables that are designed to serve as the cumulative summary of all publications with positive genetic associations available to date for a given phenotype and study design. The fitness and performance map now includes 214 autosomal gene entries and quantitative trait loci plus seven others on the X chromosome. Moreover, there are 18 mitochondrial genes that have been shown to influence fitness and performance phenotypes. Thus,the map is growing in complexity. Although the map is exhaustive for currently published accounts of genes and exercise associations and linkages, there are undoubtedly many more gene-exercise interaction effects that have not even been considered thus far. Finally, it should be appreciated that most studies reported to date are based on small sample sizes and cannot therefore provide definitive evidence that DNA sequence variants in a given gene are reliably associated with human variation in fitness and performance traits.
Collapse
Affiliation(s)
- Molly S Bray
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Valente L, Piga D, Lamantea E, Carrara F, Uziel G, Cudia P, Zani A, Farina L, Morandi L, Mora M, Spinazzola A, Zeviani M, Tiranti V. Identification of novel mutations in five patients with mitochondrial encephalomyopathy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:491-501. [PMID: 18977334 DOI: 10.1016/j.bbabio.2008.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 09/26/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
Abstract
MELAS, MERRF, LHON and NARP, are well-established mitochondrial syndromes associated with specific point mutations of mitochondrial DNA (mtDNA). However, these recurrent mtDNA mutations account for only a minority of mitochondrial disease cases. To evaluate the impact of novel mtDNA mutations, we performed mtDNA sequence analysis in muscle and other tissues of 240 patients with different mitochondrial neuromuscular syndromes. We identified a total of 33 subjects with novel, private or uncommon mutations. Among these, five novel mutations were found in both paediatric and adult cases. We here report on the clinical description of these patients, as well as the biochemical and molecular genetic characterization of the corresponding mutations. Patients 1 and 2 showed changes in ND genes, patient 3 carried a heteroplasmic deletion in the COI gene, patients 4 and 5 carried heteroplasmic mutations in tRNA(Trp) and tRNA(Phe), respectively. Altogether, these data indicate that mtDNA analysis must become part of the routine screening for mitochondrial disorders.
Collapse
Affiliation(s)
- Lucia Valente
- IRCCS Foundation Neurological Institute C. Besta, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Scaglia F, Wong LJC. Human mitochondrial transfer RNAs: role of pathogenic mutation in disease. Muscle Nerve 2008; 37:150-71. [PMID: 17999409 DOI: 10.1002/mus.20917] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The human mitochondrial genome encodes 13 proteins. All are subunits of the respiratory chain complexes involved in energy metabolism. These proteins are translated by a set of 22 mitochondrial transfer RNAs (tRNAs) that are required for codon reading. Human mitochondrial tRNA genes are hotspots for pathogenic mutations and have attracted interest over the last two decades with the rapid discovery of point mutations associated with a vast array of neuromuscular disorders and diverse clinical phenotypes. In this review, we use a scoring system to determine the pathogenicity of the mutations and summarize the current knowledge of structure-function relationships of these mutant tRNAs. We also provide readers with an overview of a large variety of mechanisms by which mutations may affect the mitochondrial translation machinery and cause disease.
Collapse
Affiliation(s)
- Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
13
|
Wang S, Jiang C, Zhang Y, Chen J, Wang B, Chen Q, Long M. Membrane Deformability and Membrane Tension of Single Isolated Mitochondria. Cell Mol Bioeng 2008. [DOI: 10.1007/s12195-008-0002-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
14
|
Ling J, Roy H, Qin D, Rubio MAT, Alfonzo JD, Fredrick K, Ibba M. Pathogenic mechanism of a human mitochondrial tRNAPhe mutation associated with myoclonic epilepsy with ragged red fibers syndrome. Proc Natl Acad Sci U S A 2007; 104:15299-304. [PMID: 17878308 PMCID: PMC2000536 DOI: 10.1073/pnas.0704441104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Indexed: 11/18/2022] Open
Abstract
Human mitochondrial tRNA (hmt-tRNA) mutations are associated with a variety of diseases including mitochondrial myopathies, diabetes, encephalopathies, and deafness. Because the current understanding of the precise molecular mechanisms of these mutations is limited, there is no efficient method to treat their associated mitochondrial diseases. Here, we use a variety of known mutations in hmt-tRNA(Phe) to investigate the mechanisms that lead to malfunctions. We tested the impact of hmt-tRNA(Phe) mutations on aminoacylation, structure, and translation elongation-factor binding. The majority of the mutants were pleiotropic, exhibiting defects in aminoacylation, global structure, and elongation-factor binding. One notable exception was the G34A anticodon mutation of hmt-tRNA(Phe) (mitochondrial DNA mutation G611A), which is associated with MERRF (myoclonic epilepsy with ragged red fibers). In vitro, the G34A mutation decreases aminoacylation activity by 100-fold, but does not affect global folding or recognition by elongation factor. Furthermore, G34A hmt-tRNA(Phe) does not undergo adenosine-to-inosine (A-to-I) editing, ruling out miscoding as a possible mechanism for mitochondrial malfunction. To improve the aminoacylation state of the mutant tRNA, we modified the tRNA binding domain of the nucleus-encoded human mitochondrial phenylalanyl-tRNA synthetase, which aminoacylates hmt-tRNA(Phe) with cognate phenylalanine. This variant enzyme displayed significantly improved aminoacylation efficiency for the G34A mutant, suggesting a general strategy to treat certain classes of mitochondrial diseases by modification of the corresponding nuclear gene.
Collapse
Affiliation(s)
| | - Hervé Roy
- Department of Microbiology, and
- Ohio State RNA Group, Ohio State University, Columbus, OH 43210
| | | | - Mary Anne T. Rubio
- Department of Microbiology, and
- Ohio State RNA Group, Ohio State University, Columbus, OH 43210
| | - Juan D. Alfonzo
- *Ohio State Biochemistry Program
- Department of Microbiology, and
- Ohio State RNA Group, Ohio State University, Columbus, OH 43210
| | - Kurt Fredrick
- *Ohio State Biochemistry Program
- Department of Microbiology, and
- Ohio State RNA Group, Ohio State University, Columbus, OH 43210
| | - Michael Ibba
- *Ohio State Biochemistry Program
- Department of Microbiology, and
- Ohio State RNA Group, Ohio State University, Columbus, OH 43210
| |
Collapse
|