1
|
O’Neill A, Martinez AL, Mueller AL, Huang W, Accorsi A, Kane MA, Eyerman D, Bloch RJ. Optimization of Xenografting Methods for Generating Human Skeletal Muscle in Mice. Cell Transplant 2024; 33:9636897241242624. [PMID: 38600801 PMCID: PMC11010746 DOI: 10.1177/09636897241242624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Xenografts of human skeletal muscle generated in mice can be used to study muscle pathology and to test drugs designed to treat myopathies and muscular dystrophies for their efficacy and specificity in human tissue. We previously developed methods to generate mature human skeletal muscles in immunocompromised mice starting with human myogenic precursor cells (hMPCs) from healthy individuals and individuals with facioscapulohumeral muscular dystrophy (FSHD). Here, we examine a series of alternative treatments at each stage in order to optimize engraftment. We show that (i) X-irradiation at 25Gy is optimal in preventing regeneration of murine muscle while supporting robust engraftment and the formation of human fibers without significant murine contamination; (ii) hMPC lines differ in their capacity to engraft; (iii) some hMPC lines yield grafts that respond better to intermittent neuromuscular electrical stimulation (iNMES) than others; (iv) some lines engraft better in male than in female mice; (v) coinjection of hMPCs with laminin, gelatin, Matrigel, or Growdex does not improve engraftment; (vi) BaCl2 is an acceptable replacement for cardiotoxin, but other snake venom preparations and toxins, including the major component of cardiotoxin, cytotoxin 5, are not; and (vii) generating grafts in both hindlimbs followed by iNMES of each limb yields more robust grafts than housing mice in cages with running wheels. Our results suggest that replacing cardiotoxin with BaCl2 and engrafting both tibialis anterior muscles generates robust grafts of adult human muscle tissue in mice.
Collapse
Affiliation(s)
- Andrea O’Neill
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anna Llach Martinez
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amber L. Mueller
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Cell Metabolism, Cambridge, MA, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Anthony Accorsi
- Fulcrum Therapeutics, Cambridge, MA, USA
- Blackbird Laboratories, Baltimore, MD, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - David Eyerman
- Fulcrum Therapeutics, Cambridge, MA, USA
- Apellis Pharmaceuticals, Waltham, MA, USA
| | - Robert J. Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Meng J, Moore M, Counsell J, Muntoni F, Popplewell L, Morgan J. Optimized lentiviral vector to restore full-length dystrophin via a cell-mediated approach in a mouse model of Duchenne muscular dystrophy. Mol Ther Methods Clin Dev 2022; 25:491-507. [PMID: 35615709 PMCID: PMC9121076 DOI: 10.1016/j.omtm.2022.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle wasting disorder caused by mutations in the DMD gene. Restoration of full-length dystrophin protein in skeletal muscle would have therapeutic benefit, but lentivirally mediated delivery of such a large gene in vivo has been hindered by lack of tissue specificity, limited transduction, and insufficient transgene expression. To address these problems, we developed a lentiviral vector, which contains a muscle-specific promoter and sequence-optimized full-length dystrophin, to constrain dystrophin expression to differentiated myotubes/myofibers and enhance the transgene expression. We further explored the efficiency of restoration of full-length dystrophin in vivo, by grafting DMD myoblasts that had been corrected by this optimized lentiviral vector intramuscularly into an immunodeficient DMD mouse model. We show that these lentivirally corrected DMD myoblasts effectively reconstituted full-length dystrophin expression in 93.58% ± 2.17% of the myotubes in vitro. Moreover, dystrophin was restored in 64.4% ± 2.87% of the donor-derived regenerated muscle fibers in vivo, which were able to recruit members of the dystrophin-glycoprotein complex at the sarcolemma. This study represents a significant advance over existing cell-mediated gene therapy strategies for DMD that aim to restore full-length dystrophin expression in skeletal muscle.
Collapse
Affiliation(s)
- Jinhong Meng
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Marc Moore
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham TW20 0EX, UK
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - John Counsell
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- UCL Division of Surgery and Interventional Science, Charles Bell House, 43-45 Foley Street, London W1W 7TY, UK
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham TW20 0EX, UK
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| |
Collapse
|
3
|
Moyle LA, Davoudi S, Gilbert PM. Innovation in culture systems to study muscle complexity. Exp Cell Res 2021; 411:112966. [PMID: 34906582 DOI: 10.1016/j.yexcr.2021.112966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/31/2021] [Accepted: 12/04/2021] [Indexed: 11/19/2022]
Abstract
Endogenous skeletal muscle development, regeneration, and pathology are extremely complex processes, influenced by local and systemic factors. Unpinning how these mechanisms function is crucial for fundamental biology and to develop therapeutic interventions for genetic disorders, but also conditions like sarcopenia and volumetric muscle loss. Ex vivo skeletal muscle models range from two- and three-dimensional primary cultures of satellite stem cell-derived myoblasts grown alone or in co-culture, to single muscle myofibers, myobundles, and whole tissues. Together, these systems provide the opportunity to gain mechanistic insights of stem cell behavior, cell-cell interactions, and mature muscle function in simplified systems, without confounding variables. Here, we highlight recent advances (published in the last 5 years) using in vitro primary cells and ex vivo skeletal muscle models, and summarize the new insights, tools, datasets, and screening methods they have provided. Finally, we highlight the opportunity for exponential advance of skeletal muscle knowledge, with spatiotemporal resolution, that is offered by guiding the study of muscle biology and physiology with in silico modelling and implementing high-content cell biology systems and ex vivo physiology platforms.
Collapse
Affiliation(s)
- Louise A Moyle
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada
| | - Sadegh Davoudi
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
4
|
Jaiswal JK, Nagaraju K, Morgan J. Terence A Partridge: A career dedicated to pursuit of curiosity, mentorship, and secrets of skeletal muscle stem cells. J Neuromuscul Dis 2021; 8:S173-S179. [PMID: 34806614 DOI: 10.3233/jnd-219010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.,Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kanneboyina Nagaraju
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, USA
| | - Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
5
|
Meng J, Sweeney NP, Doreste B, Muntoni F, McClure M, Morgan J. Restoration of Functional Full-Length Dystrophin After Intramuscular Transplantation of Foamy Virus-Transduced Myoblasts. Hum Gene Ther 2020; 31:241-252. [PMID: 31801386 PMCID: PMC7047098 DOI: 10.1089/hum.2019.224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy is a promising strategy to treat muscle diseases such as Duchenne muscular dystrophy (DMD). To avoid immune rejection of donor cells or donor-derived muscle, autologous cells, which have been genetically modified to express dystrophin, are preferable to cells derived from healthy donors. Restoration of full-length dystrophin (FL-dys) using viral vectors is extremely challenging, due to the limited packaging capacity of the vectors, but we have recently shown that either a foamy viral or lentiviral vector is able to package FL-dys open-reading frame and transduce myoblasts derived from a DMD patient. Differentiated myotubes derived from these transduced cells produced FL-dys. Here, we transplanted the foamy viral dystrophin-corrected DMD myoblasts intramuscularly into mdx nude mice, and showed that the transduced cells contributed to muscle regeneration, expressing FL-dys in nearly all the muscle fibers of donor origin. Furthermore, we showed that the restored FL-dys recruited members of the dystrophin-associated protein complex and neuronal nitric oxide synthase within donor-derived muscle fibers, evidence that the restored dystrophin protein is functional. Dystrophin-expressing donor-derived muscle fibers expressed lower levels of utrophin than host muscle fibers, providing additional evidence of functional improvement of donor-derived myofibers. This is the first in vivo evidence that foamy virus vector-transduced DMD myoblasts can contribute to muscle regeneration and mediate functional dystrophin restoration following their intramuscular transplantation, representing a promising therapeutic strategy for individual small muscles in DMD.
Collapse
Affiliation(s)
- Jinhong Meng
- Developmental Neuroscience Programme, Molecular Neurosciences Section, Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Nathan Paul Sweeney
- Jefferiss Research Trust Laboratories, Imperial College London, London, United Kingdom
| | - Bruno Doreste
- Developmental Neuroscience Programme, Molecular Neurosciences Section, Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Francesco Muntoni
- Developmental Neuroscience Programme, Molecular Neurosciences Section, Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Myra McClure
- Jefferiss Research Trust Laboratories, Imperial College London, London, United Kingdom
| | - Jennifer Morgan
- Developmental Neuroscience Programme, Molecular Neurosciences Section, Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| |
Collapse
|
6
|
Mueller AL, Bloch RJ. Skeletal muscle cell transplantation: models and methods. J Muscle Res Cell Motil 2019; 41:297-311. [PMID: 31392564 DOI: 10.1007/s10974-019-09550-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Xenografts of skeletal muscle are used to study muscle repair and regeneration, mechanisms of muscular dystrophies, and potential cell therapies for musculoskeletal disorders. Typically, xenografting involves using an immunodeficient host that is pre-injured to create a niche for human cell engraftment. Cell type and method of delivery to muscle depend on the specific application, but can include myoblasts, satellite cells, induced pluripotent stem cells, mesangioblasts, immortalized muscle precursor cells, and other multipotent cell lines delivered locally or systemically. Some studies follow cell engraftment with interventions to enhance cell proliferation, migration, and differentiation into mature muscle fibers. Recently, several advances in xenografting human-derived muscle cells have been applied to study and treat Duchenne muscular dystrophy and Facioscapulohumeral muscular dystrophy. Here, we review the vast array of techniques available to aid researchers in designing future experiments aimed at creating robust muscle xenografts in rodent hosts.
Collapse
Affiliation(s)
- Amber L Mueller
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
| |
Collapse
|
7
|
Mueller AL, O'Neill A, Jones TI, Llach A, Rojas LA, Sakellariou P, Stadler G, Wright WE, Eyerman D, Jones PL, Bloch RJ. Muscle xenografts reproduce key molecular features of facioscapulohumeral muscular dystrophy. Exp Neurol 2019; 320:113011. [PMID: 31306642 DOI: 10.1016/j.expneurol.2019.113011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 12/07/2022]
Abstract
Aberrant expression of DUX4, a gene unique to humans and primates, causes Facioscapulohumeral Muscular Dystrophy-1 (FSHD), yet the pathogenic mechanism is unknown. As transgenic overexpression models have largely failed to replicate the genetic changes seen in FSHD, many studies of endogenously expressed DUX4 have been limited to patient biopsies and myogenic cell cultures, which never fully differentiate into mature muscle fibers. We have developed a method to xenograft immortalized human muscle precursor cells from patients with FSHD and first-degree relative controls into the tibialis anterior muscle compartment of immunodeficient mice, generating human muscle xenografts. We report that FSHD cells mature into organized and innervated human muscle fibers with minimal contamination of murine myonuclei. They also reconstitute the satellite cell niche within the xenografts. FSHD xenografts express DUX4 and DUX4 downstream targets, retain the 4q35 epigenetic signature of their original donors, and express a novel protein biomarker of FSHD, SLC34A2. Ours is the first scalable, mature in vivo human model of FSHD. It should be useful for studies of the pathogenic mechanism of the disease as well as for testing therapeutic strategies targeting DUX4 expression.
Collapse
Affiliation(s)
- Amber L Mueller
- Department of Physiology, University of Maryland, Baltimore, 655 W, Baltimore St., Baltimore, MD 21201, United States of America
| | - Andrea O'Neill
- Department of Physiology, University of Maryland, Baltimore, 655 W, Baltimore St., Baltimore, MD 21201, United States of America
| | - Takako I Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, United States of America
| | - Anna Llach
- Department of Physiology, University of Maryland, Baltimore, 655 W, Baltimore St., Baltimore, MD 21201, United States of America
| | - Luis Alejandro Rojas
- Fulcrum Therapeutics, 26 Landsdowne St., Cambridge, MA 02139, United States of America
| | - Paraskevi Sakellariou
- Department of Physiology, University of Maryland, Baltimore, 655 W, Baltimore St., Baltimore, MD 21201, United States of America; FAME Laboratory Department of Exercise Science, University of Thessaly, Karies, Trikala 42100, Greece
| | - Guido Stadler
- Department of Cell Biology, UT Southwestern Medical Center Dallas, TX 75390, United States of America
| | - Woodring E Wright
- Department of Cell Biology, UT Southwestern Medical Center Dallas, TX 75390, United States of America
| | - David Eyerman
- Fulcrum Therapeutics, 26 Landsdowne St., Cambridge, MA 02139, United States of America
| | - Peter L Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, United States of America
| | - Robert J Bloch
- Department of Physiology, University of Maryland, Baltimore, 655 W, Baltimore St., Baltimore, MD 21201, United States of America.
| |
Collapse
|
8
|
Lewis FC, Cottle BJ, Shone V, Marazzi G, Sassoon D, Tseng CCS, Dankers PYW, Chamuleau SAJ, Nadal-Ginard B, Ellison-Hughes GM. Transplantation of Allogeneic PW1 pos/Pax7 neg Interstitial Cells Enhance Endogenous Repair of Injured Porcine Skeletal Muscle. ACTA ACUST UNITED AC 2017; 2:717-736. [PMID: 30062184 PMCID: PMC6059014 DOI: 10.1016/j.jacbts.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023]
Abstract
Allogeneic PICs express and secrete an array of pro-regenerative paracrine factors that stimulate a regenerative response in a preclinical muscle injury model applicable to humans. Paracrine factors secreted by allogeneic PICs stimulate endogenous progenitor cell activation and differentiation, leading to accelerated and improved myofiber regeneration and microvessel formation. Allogeneic PICs survive long enough to exert their action before being cleared by the host immune system. Therefore, the cells transplanted are allogeneic but the regeneration is completely autologous. Administration of HGF and IGF-1 improves skeletal muscle regeneration, but not to the same extent as PIC transplantation.
Skeletal muscle-derived PW1pos/Pax7neg interstitial cells (PICs) express and secrete a multitude of proregenerative growth factors and cytokines. Utilizing a porcine preclinical skeletal muscle injury model, delivery of allogeneic porcine PICs (pPICs) significantly improved and accelerated myofiber regeneration and neocapillarization, compared with saline vehicle control-treated muscles. Allogeneic pPICs did not contribute to new myofibers or capillaries and were eliminated by the host immune system. In conclusion, allogeneic pPIC transplantation stimulated the endogenous stem cell pool to bring about enhanced autologous skeletal muscle repair and regeneration. This allogeneic cell approach is considered a cost-effective, easy to apply, and readily available regenerative therapeutic strategy.
Collapse
Key Words
- BrdU, 5-bromo-2′-deoxyuridine
- CM, pPIC conditioned medium
- CSA, cross sectional area
- CSC, cardiac stem cell
- CTRL, control
- CTX, cardiotoxin
- DAPI, 4′,6-diamidino-2-phenylindole
- DMEM, Dulbecco’s Modified Eagle's medium
- FBS, fetal bovine serum
- GFPpPIC, GFP-positive porcine PW1pos/Pax7neg interstitial cell
- GM, growth medium
- HUVEC, human umbilical vein endothelial cell
- HVG, hematoxylin and van Gieson
- ICM, heat-inactivated conditioned medium
- IV, intravenous
- MHC, myosin heavy chain
- MI, myocardial infarction
- P, passage
- PBMC, peripheral blood mononuclear cell
- PBS, phosphate buffered saline
- PIC, PW1pos/Pax7neg interstitial cell
- PICs
- TA, tibialis anterior
- UM, unconditioned medium
- allogeneic progenitor cells
- growth factors
- nMHC, neonatal myosin heavy chain
- pPIC, porcine PW1pos/Pax7neg interstitial cell
- porcine preclinical model
- qRT-PCR, quantitative reverse transcription polymerase chain reaction
- regeneration
- skeletal muscle
- vWF, Von Willebrand factor
Collapse
Affiliation(s)
- Fiona C Lewis
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - Beverley J Cottle
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - Victoria Shone
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - Giovanna Marazzi
- Stem Cells and Regenerative Medicine UMRS 1166, Institute of Cardiometabolism and Nutrition, Université de Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - David Sassoon
- Stem Cells and Regenerative Medicine UMRS 1166, Institute of Cardiometabolism and Nutrition, Université de Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Cheyenne C S Tseng
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patricia Y W Dankers
- Supramolecular Biomaterials for Translational Biomedical Science, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Steven A J Chamuleau
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bernardo Nadal-Ginard
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - Georgina M Ellison-Hughes
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| |
Collapse
|
9
|
Santos-Zas I, Negroni E, Mamchaoui K, Mosteiro CS, Gallego R, Butler-Browne GS, Pazos Y, Mouly V, Camiña JP. Obestatin Increases the Regenerative Capacity of Human Myoblasts Transplanted Intramuscularly in an Immunodeficient Mouse Model. Mol Ther 2017; 25:2345-2359. [PMID: 28750736 DOI: 10.1016/j.ymthe.2017.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 02/08/2023] Open
Abstract
Although cell-based therapy is considered a promising method aiming at treating different muscular disorders, little clinical benefit has been reported. One of major hurdles limiting the efficiency of myoblast transfer therapy is the poor survival of the transplanted cells. Any intervention upon the donor cells focused on enhancing in vivo survival, proliferation, and expansion is essential to improve the effectiveness of such therapies in regenerative medicine. In the present work, we investigated the potential role of obestatin, an autocrine peptide factor regulating skeletal muscle growth and repair, to improve the outcome of myoblast-based therapy by xenotransplanting primary human myoblasts into immunodeficient mice. The data proved that short in vivo obestatin treatment of primary human myoblasts not only enhances the efficiency of engraftment, but also facilitates an even distribution of myoblasts in the host muscle. Moreover, this treatment leads to a hypertrophic response of the human-derived regenerating myofibers. Taken together, the activation of the obestatin/GPR39 pathway resulted in an overall improvement of the efficacy of cell engraftment within the host's skeletal muscle. These data suggest considerable potential for future therapeutic applications and highlight the importance of combinatorial therapies.
Collapse
Affiliation(s)
- Icia Santos-Zas
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain
| | - Elisa Negroni
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Kamel Mamchaoui
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Carlos S Mosteiro
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain
| | - Rosalia Gallego
- Departamento de Ciencias Morfológicas, Universidad de Santiago de Compostela, 15704 Santiago de Compostela, Spain
| | - Gillian S Butler-Browne
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Yolanda Pazos
- Laboratorio de Patología Digestiva, IDIS, CHUS, SERGAS, 15706 Santiago de Compostela, Spain
| | - Vincent Mouly
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France.
| | - Jesus P Camiña
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Garcia SM, Tamaki S, Xu X, Pomerantz JH. Human Satellite Cell Isolation and Xenotransplantation. Methods Mol Biol 2017; 1668:105-123. [PMID: 28842905 DOI: 10.1007/978-1-4939-7283-8_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Satellite cells are mononucleated cells of the skeletal muscle lineage that exist beneath the basal lamina juxtaposed to the sarcolemma of skeletal muscle fibers. It is widely accepted that satellite cells mediate skeletal muscle regeneration. Within the satellite cell pool of adult muscle are skeletal muscle stem cells (MuSCs), also called satellite stem cells, which fulfill criteria of tissue stem cells: They proliferate and their progeny either occupies the adult MuSC niche during self-renewal or differentiates to regenerate mature muscle fibers. Here, we describe robust methods for the isolation of enriched populations of human satellite cells containing MuSCs from fresh human muscle, utilizing mechanical and enzymatic dissociation and purification by fluorescence-activated cell sorting. We also describe a process for xenotransplantation of human satellite cells into mouse muscle by injection into irradiated, immunodeficient, mouse leg muscle with concurrent notexin or bupivacaine muscle injury to increase engraftment efficiency. The engraftment of human MuSCs and the formation of human muscle can then be analyzed by histological and immunofluorescence staining, or subjected to in vivo experimentation.
Collapse
Affiliation(s)
- Steven M Garcia
- Program in Craniofacial Biology, Division of Plastic and Reconstructive Surgery, Department of Surgery, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.,Program in Craniofacial Biology, Division of Plastic and Reconstructive Surgery, Department of Orofacial Sciences, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Stanley Tamaki
- Program in Craniofacial Biology, Division of Plastic and Reconstructive Surgery, Department of Surgery, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.,Program in Craniofacial Biology, Division of Plastic and Reconstructive Surgery, Department of Orofacial Sciences, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Xiaoti Xu
- Program in Craniofacial Biology, Division of Plastic and Reconstructive Surgery, Department of Surgery, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.,Program in Craniofacial Biology, Division of Plastic and Reconstructive Surgery, Department of Orofacial Sciences, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Jason H Pomerantz
- Program in Craniofacial Biology, Division of Plastic and Reconstructive Surgery, Department of Surgery, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA. .,Program in Craniofacial Biology, Division of Plastic and Reconstructive Surgery, Department of Orofacial Sciences, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
11
|
Xu X, Wilschut KJ, Kouklis G, Tian H, Hesse R, Garland C, Sbitany H, Hansen S, Seth R, Knott PD, Hoffman WY, Pomerantz JH. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles. Stem Cell Reports 2016; 5:419-34. [PMID: 26352798 PMCID: PMC4618654 DOI: 10.1016/j.stemcr.2015.07.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 12/24/2022] Open
Abstract
Identification of human satellite cells that fulfill muscle stem cell criteria is an unmet need in regenerative medicine. This hurdle limits understanding how closely muscle stem cell properties are conserved among mice and humans and hampers translational efforts in muscle regeneration. Here, we report that PAX7 satellite cells exist at a consistent frequency of 2-4 cells/mm of fiber in muscles of the human trunk, limbs, and head. Xenotransplantation into mice of 50-70 fiber-associated, or 1,000-5,000 FACS-enriched CD56(+)/CD29(+) human satellite cells led to stable engraftment and formation of human-derived myofibers. Human cells with characteristic PAX7, CD56, and CD29 expression patterns populated the satellite cell niche beneath the basal lamina on the periphery of regenerated fibers. After additional injury, transplanted satellite cells robustly regenerated to form hundreds of human-derived fibers. Together, these findings conclusively delineate a source of bona-fide endogenous human muscle stem cells that will aid development of clinical applications.
Collapse
Affiliation(s)
- Xiaoti Xu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karlijn J Wilschut
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gayle Kouklis
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hua Tian
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert Hesse
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Catharine Garland
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hani Sbitany
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Scott Hansen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rahul Seth
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - P Daniel Knott
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - William Y Hoffman
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason H Pomerantz
- Division of Plastic and Reconstructive Surgery, Departments of Surgery and Orofacial Sciences, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
12
|
Neuromuscular electrical stimulation promotes development in mice of mature human muscle from immortalized human myoblasts. Skelet Muscle 2016; 6:4. [PMID: 26925213 PMCID: PMC4769538 DOI: 10.1186/s13395-016-0078-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/06/2016] [Indexed: 12/25/2022] Open
Abstract
Background Studies of the pathogenic mechanisms underlying human myopathies and muscular dystrophies often require animal models, but models of some human diseases are not yet available. Methods to promote the engraftment and development of myogenic cells from individuals with such diseases in mice would accelerate such studies and also provide a useful tool for testing therapeutics. Here, we investigate the ability of immortalized human myogenic precursor cells (hMPCs) to form mature human myofibers following implantation into the hindlimbs of non-obese diabetic-Rag1nullIL2rγnull (NOD-Rag)-immunodeficient mice. Results We report that hindlimbs of NOD-Rag mice that are X-irradiated, treated with cardiotoxin, and then injected with immortalized control hMPCs or hMPCs from an individual with facioscapulohumeral muscular dystrophy (FSHD) develop mature human myofibers. Furthermore, intermittent neuromuscular electrical stimulation (iNMES) of the peroneal nerve of the engrafted limb enhances the development of mature fibers in the grafts formed by both immortal cell lines. With control cells, iNMES increases the number and size of the human myofibers that form and promotes closer fiber-to-fiber packing. The human myofibers in the graft are innervated, fully differentiated, and minimally contaminated with murine myonuclei. Conclusions Our results indicate that control and FSHD human myofibers can form in mice engrafted with hMPCs and that iNMES enhances engraftment and subsequent development of mature human muscle.
Collapse
|
13
|
Meng J, Counsell JR, Reza M, Laval SH, Danos O, Thrasher A, Lochmüller H, Muntoni F, Morgan JE. Autologous skeletal muscle derived cells expressing a novel functional dystrophin provide a potential therapy for Duchenne Muscular Dystrophy. Sci Rep 2016; 6:19750. [PMID: 26813695 PMCID: PMC4728433 DOI: 10.1038/srep19750] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/17/2015] [Indexed: 12/21/2022] Open
Abstract
Autologous stem cells that have been genetically modified to express dystrophin are a possible means of treating Duchenne Muscular Dystrophy (DMD). To maximize the therapeutic effect, dystrophin construct needs to contain as many functional motifs as possible, within the packaging capacity of the viral vector. Existing dystrophin constructs used for transduction of muscle stem cells do not contain the nNOS binding site, an important functional motif within the dystrophin gene. In this proof-of-concept study, using stem cells derived from skeletal muscle of a DMD patient (mdcs) transplanted into an immunodeficient mouse model of DMD, we report that two novel dystrophin constructs, C1 (ΔR3-R13) and C2 (ΔH2-R23), can be lentivirally transduced into mdcs and produce dystrophin. These dystrophin proteins were functional in vivo, as members of the dystrophin glycoprotein complex were restored in muscle fibres containing donor-derived dystrophin. In muscle fibres derived from cells that had been transduced with construct C1, the largest dystrophin construct packaged into a lentiviral system, nNOS was restored. The combination of autologous stem cells and a lentivirus expressing a novel dystrophin construct which optimally restores proteins of the dystrophin glycoprotein complex may have therapeutic application for all DMD patients, regardless of their dystrophin mutation.
Collapse
Affiliation(s)
- Jinhong Meng
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, UK, WC1N 1EH
| | - John R Counsell
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, UK, WC1N 1EH.,UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, UK, WC1E 6BT.,Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, UK, WC1N 1EH
| | - Mojgan Reza
- John Walton Centre for Muscular Dystrophy Research, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK, NE1 3BZ
| | - Steven H Laval
- John Walton Centre for Muscular Dystrophy Research, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK, NE1 3BZ
| | - Olivier Danos
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, UK, WC1E 6BT
| | - Adrian Thrasher
- Molecular and Cellular Immunology, Institute of Child Health, University College London, 30 Guilford Street, London, UK, WC1N 1EH
| | - Hanns Lochmüller
- John Walton Centre for Muscular Dystrophy Research, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK, NE1 3BZ
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, UK, WC1N 1EH
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, UK, WC1N 1EH
| |
Collapse
|
14
|
Zhang Y, Zhu Y, Li Y, Cao J, Zhang H, Chen M, Wang L, Zhang C. Long-term engraftment of myogenic progenitors from adipose-derived stem cells and muscle regeneration in dystrophic mice. Hum Mol Genet 2015; 24:6029-40. [DOI: 10.1093/hmg/ddv316] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022] Open
|
15
|
Meng J, Bencze M, Asfahani R, Muntoni F, Morgan JE. The effect of the muscle environment on the regenerative capacity of human skeletal muscle stem cells. Skelet Muscle 2015; 5:11. [PMID: 25949786 PMCID: PMC4422426 DOI: 10.1186/s13395-015-0036-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/12/2015] [Indexed: 12/31/2022] Open
Abstract
Background Muscle stem cell transplantation is a possible treatment for muscular dystrophy. In addition to the intrinsic properties of the stem cells, the local and systemic environment plays an important role in determining the fate of the grafted cells. We therefore investigated the effect of modulating the host muscle environment in different ways (irradiation or cryoinjury or a combination of irradiation and cryoinjury) in two immunodeficient mouse strains (mdx nude and recombinase-activating gene (Rag)2-/γ chain-/C5-) on the regenerative capacity of two types of human skeletal muscle-derived stem cell (pericytes and CD133+ cells). Methods Human skeletal muscle-derived pericytes or CD133+ cells were transplanted into muscles of either mdx nude or recombinase-activating gene (Rag)2-/γ chain-/C5- host mice. Host muscles were modulated prior to donor cell transplantation by either irradiation, or cryoinjury, or a combination of irradiation and cryoinjury. Muscles were analysed four weeks after transplantation, by staining transverse cryostat sections of grafted muscles with antibodies to human lamin A/C, human spectrin, laminin and Pax 7. The number of nuclei and muscle fibres of donor origin and the number of satellite cells of both host and donor origin were quantified. Results Within both host strains transplanted intra-muscularly with both donor cell types, there were significantly more nuclei and muscle fibres of donor origin in host muscles that had been modulated by cryoinjury, or irradiation+cryoinjury, than by irradiation alone. Irradiation has no additive effects in further enhancing the transplantation efficiency than cryodamage. Donor pericytes did not give rise to satellite cells. However, using CD133+ cells as donor cells, there were significantly more nuclei, muscle fibres, as well as satellite cells of donor origin in Rag2-/γ chain-/C5- mice than mdx nude mice, when the muscles were injured by either cryodamage or irradiation+cryodamage. Conclusions Rag2-/γ chain-/C5- mice are a better recipient mouse strain than mdx nude mice for human muscle stem cell transplantation. Cryodamage of host muscle is the most effective method to enhance the transplantation efficiency of human skeletal muscle stem cells. This study highlights the importance of modulating the muscle environment in preclinical studies to optimise the efficacy of transplanted stem cells. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0036-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinhong Meng
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Maximilien Bencze
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Rowan Asfahani
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| |
Collapse
|
16
|
Wang Z, Cheung D, Zhou Y, Han C, Fennelly C, Criswell T, Soker S. An in vitro culture system that supports robust expansion and maintenance of in vivo engraftment capabilities for myogenic progenitor cells from adult mice. Biores Open Access 2014; 3:79-87. [PMID: 24940559 PMCID: PMC4048971 DOI: 10.1089/biores.2014.0007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Muscle cell therapy and tissue engineering require large numbers of functional muscle precursor/progenitor cells (MPCs), making the in vitro expansion of MPCs a critical step for these applications. The cells must maintain their myogenic properties upon robust expansion, especially for cellular therapy applications, in order to achieve efficacious treatment. A major obstacle associated with MPCs expansion is the loss of "stemness," or regenerative capacity, of freshly isolated cells, presumably due to the absence of the native cellular niches. In the current study, we developed an in vitro system that allowed for long-term culture and massive expansion of murine MPCs (mMPCs) with the preservation of myogenic regeneration capabilities. Long term in vitro expanded mMPC expressed the myogenic stem cell markers Pax3 and Pax7 and formed spontaneously contracting myotubes. Furthermore, expanded mMPC injected into the tibialis anterior muscle of nude mice engrafted and formed myofibers. Collectively, the method developed in this study can be potentially adapted for the expansion of human MPCs to high enough numbers for treatment of muscle injuries in human patients.
Collapse
Affiliation(s)
- Zhan Wang
- Wake Forest Institute for Regenerative Medicine , Winston-Salem, North Carolina
| | - Daniel Cheung
- Oregon State University , School of Chemical, Biological, and Environmental Engineering, Corvallis, Oregon
| | - Yu Zhou
- Wake Forest Institute for Regenerative Medicine , Winston-Salem, North Carolina
| | - Changjie Han
- Wake Forest Institute for Regenerative Medicine , Winston-Salem, North Carolina
| | - Colin Fennelly
- Wake Forest Institute for Regenerative Medicine , Winston-Salem, North Carolina
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine , Winston-Salem, North Carolina. ; Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine , Winston-Salem, North Carolina. ; Wake Forest School of Medicine , Winston-Salem, North Carolina
| |
Collapse
|
17
|
Meng J, Chun S, Asfahani R, Lochmüller H, Muntoni F, Morgan J. Human skeletal muscle-derived CD133(+) cells form functional satellite cells after intramuscular transplantation in immunodeficient host mice. Mol Ther 2014; 22:1008-17. [PMID: 24569833 DOI: 10.1038/mt.2014.26] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/16/2014] [Indexed: 12/28/2022] Open
Abstract
Stem cell therapy is a promising strategy for treatment of muscular dystrophies. In addition to muscle fiber formation, reconstitution of functional stem cell pool by donor cells is vital for long-term treatment. We show here that some CD133(+) cells within human muscle are located underneath the basal lamina of muscle fibers, in the position of the muscle satellite cell. Cultured hCD133(+) cells are heterogeneous and multipotent, capable of forming myotubes and reserve satellite cells in vitro. They contribute to extensive muscle regeneration and satellite cell formation following intramuscular transplantation into irradiated and cryodamaged tibialis anterior muscles of immunodeficient Rag2-/γ chain-/C5-mice. Some donor-derived satellite cells expressed the myogenic regulatory factor MyoD, indicating that they were activated. In addition, when transplanted host muscles were reinjured, there was significantly more newly-regenerated muscle fibers of donor origin in treated than in control, nonreinjured muscles, indicating that hCD133(+) cells had given rise to functional muscle stem cells, which were able to activate in response to injury and contribute to a further round of muscle regeneration. Our findings provide new evidence for the location and characterization of hCD133(+) cells, and highlight that these cells are highly suitable for future clinical application.
Collapse
Affiliation(s)
- Jinhong Meng
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, UK
| | - Soyon Chun
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, UK
| | - Rowan Asfahani
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, UK
| | - Hanns Lochmüller
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, UK
| | - Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, UK
| |
Collapse
|
18
|
Castiglioni A, Hettmer S, Lynes MD, Rao TN, Tchessalova D, Sinha I, Lee BT, Tseng YH, Wagers AJ. Isolation of progenitors that exhibit myogenic/osteogenic bipotency in vitro by fluorescence-activated cell sorting from human fetal muscle. Stem Cell Reports 2014; 2:92-106. [PMID: 24678452 PMCID: PMC3966115 DOI: 10.1016/j.stemcr.2013.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 11/26/2022] Open
Abstract
Fluorescence-activated cell sorting (FACS) strategies to purify distinct cell types from the pool of fetal human myofiber-associated (hMFA) cells were developed. We demonstrate that cells expressing the satellite cell marker PAX7 are highly enriched within the subset of CD45(-)CD11b(-)GlyA(-)CD31(-)CD34(-)CD56(int)ITGA7(hi) hMFA cells. These CD45(-)CD11b(-)GlyA(-)CD31(-)CD34(-)CD56(int)ITGA7(hi) cells lack adipogenic capacity but exhibit robust, bipotent myogenic and osteogenic activity in vitro and engraft myofibers when transplanted into mouse muscle. In contrast, CD45(-)CD11b(-)GlyA(-)CD31(-)CD34(+) fetal hMFA cells represent stromal constituents of muscle that do not express PAX7, lack myogenic function, and exhibit adipogenic and osteogenic capacity in vitro. Adult muscle likewise contains PAX7(+) CD45(-)CD11b(-)GlyA(-)CD31(-)CD34(-)CD56(int)ITGA7(hi) hMFA cells with in vitro myogenic and osteogenic activity, although these cells are present at lower frequency in comparison to their fetal counterparts. The ability to directly isolate functionally distinct progenitor cells from human muscle will enable novel insights into muscle lineage specification and homeostasis.
Collapse
Affiliation(s)
- Alessandra Castiglioni
- Howard Hughes Medical Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA ; Joslin Diabetes Center and the Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA 02115, USA ; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Simone Hettmer
- Howard Hughes Medical Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA ; Joslin Diabetes Center and the Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA 02115, USA ; Department of Pediatric Oncology, Dana Farber Cancer Institute and Division of Pediatric Hematology/Oncology, Children's Hospital, Boston, MA 02115, USA
| | - Matthew D Lynes
- Joslin Diabetes Center and the Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Tata Nageswara Rao
- Howard Hughes Medical Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA ; Joslin Diabetes Center and the Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Daria Tchessalova
- Howard Hughes Medical Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA ; Joslin Diabetes Center and the Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bernard T Lee
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Yu-Hua Tseng
- Joslin Diabetes Center and the Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Amy J Wagers
- Howard Hughes Medical Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA ; Joslin Diabetes Center and the Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Rozkalne A, Adkin C, Meng J, Lapan A, Morgan JE, Gussoni E. Mouse regenerating myofibers detected as false-positive donor myofibers with anti-human spectrin. Hum Gene Ther 2013; 25:73-81. [PMID: 24152287 DOI: 10.1089/hum.2013.126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract Stem cell transplantation is being tested as a potential therapy for a number of diseases. Stem cells isolated directly from tissue specimens or generated via reprogramming of differentiated cells require rigorous testing for both safety and efficacy in preclinical models. The availability of mice with immune-deficient background that carry additional mutations in specific genes facilitates testing the efficacy of cell transplantation in disease models. The muscular dystrophies are a heterogeneous group of disorders, of which Duchenne muscular dystrophy is the most severe and common type. Cell-based therapy for muscular dystrophy has been under investigation for several decades, with a wide selection of cell types being studied, including tissue-specific stem cells and reprogrammed stem cells. Several immune-deficient mouse models of muscular dystrophy have been generated, in which human cells obtained from various sources are injected to assess their preclinical potential. After transplantation, the presence of engrafted human cells is detected via immunofluorescence staining, using antibodies that recognize human, but not mouse, proteins. Here we show that one antibody specific to human spectrin, which is commonly used to evaluate the efficacy of transplanted human cells in mouse muscle, detects myofibers in muscles of NOD/Rag1(null)mdx(5cv), NOD/LtSz-scid IL2Rγ(null) mice, or mdx nude mice, irrespective of whether they were injected with human cells. These "reactive" clusters are regenerating myofibers, which are normally present in dystrophic tissue and the spectrin antibody is likely recognizing utrophin, which contains spectrin-like repeats. Therefore, caution should be used in interpreting data based on detection of single human-specific proteins, and evaluation of human stem cell engraftment should be performed using multiple human-specific labeling strategies.
Collapse
Affiliation(s)
- Anete Rozkalne
- 1 Program in Genomics and Division of Genetics, Boston Children's Hospital , Boston, MA 02115
| | | | | | | | | | | |
Collapse
|
20
|
Briggs D, Morgan JE. Recent progress in satellite cell/myoblast engraftment -- relevance for therapy. FEBS J 2013; 280:4281-93. [PMID: 23560812 PMCID: PMC3795440 DOI: 10.1111/febs.12273] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 12/18/2022]
Abstract
There is currently no cure for muscular dystrophies, although several promising strategies are in basic and clinical research. One such strategy is cell transplantation with satellite cells (or their myoblast progeny) to repair damaged muscle and provide dystrophin protein with the aim of preventing subsequent myofibre degeneration and repopulating the stem cell niche for future use. The present review aims to cover recent advances in satellite cell/myoblast therapy and to discuss the challenges that remain for it to become a realistic therapy.
Collapse
Affiliation(s)
- Deborah Briggs
- The Dubowitz Neuromuscular Centre, UCL Institute of Child HealthLondon, UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, UCL Institute of Child HealthLondon, UK
| |
Collapse
|
21
|
Skuk D, Goulet M, Tremblay JP. Intramuscular transplantation of myogenic cells in primates: importance of needle size, cell number, and injection volume. Cell Transplant 2013; 23:13-25. [PMID: 23294849 DOI: 10.3727/096368912x661337] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to quantitatively define the main measurable technical parameters for the intramuscular transplantation of myogenic cells in primates. Myoblasts transduced with the gene coding for β-galactosidase were injected into the skeletal muscles of 15 monkeys. The following parameters were studied: needle size, number of cells per injection, and volume of cell suspension per injection. Monkeys were immunosuppressed with tacrolimus. The cell-injected sites were biopsied 1 or 2 months later. Biopsies were examined histologically to assess the myoblast engraftment and the muscle structure. The conclusions were as follows: (1) Needles should be thin enough to avoid important tissue damage and allow muscle regeneration as satisfactory as possible. Among those tested, 27G should be the choice if the length is consistent with depth of injection. (2) At least 100,000 cells should be delivered per centimeter of needle trajectory. (3) The smallest volumes of cell suspension per injection should be used. In this study, 1 µl/cm of injection trajectory was sufficient. In principle, these parameters apply to muscles in which no damage occurred other than the injections.
Collapse
Affiliation(s)
- Daniel Skuk
- Neurosciences Division-Human Genetics, CHUQ Research Center-CHUL, Quebec, QC, Canada
| | | | | |
Collapse
|
22
|
Accelerated skeletal muscle recovery after in vivo polyphenol administration. J Nutr Biochem 2012; 23:1072-9. [DOI: 10.1016/j.jnutbio.2011.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/10/2011] [Accepted: 05/28/2011] [Indexed: 11/17/2022]
|
23
|
Jean E, Laoudj-Chenivesse D, Notarnicola C, Rouger K, Serratrice N, Bonnieu A, Gay S, Bacou F, Duret C, Carnac G. Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells. J Cell Mol Med 2011; 15:119-33. [PMID: 19840193 PMCID: PMC3822499 DOI: 10.1111/j.1582-4934.2009.00942.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR, a fluorescent substrate for ALDH, and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast-CD56+ fraction in those cells, but, we also observed heterogeneity of ALDH activity levels within CD56-purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly, ALDH activity and Aldh1a1 expression levels were very low in mouse, rat, rabbit and non-human primate myoblasts. Using different approaches, from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde, an inhibitor of class I ALDH, to cell fractionation by flow cytometry using the ALDEFLUOR assay, we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H2O2)-induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity, as a purification strategy, could allow non-toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage.
Collapse
Affiliation(s)
- Elise Jean
- INSERM, ERI 25, Muscle et Pathologies, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Meng J, Adkin CF, Xu SW, Muntoni F, Morgan JE. Contribution of human muscle-derived cells to skeletal muscle regeneration in dystrophic host mice. PLoS One 2011; 6:e17454. [PMID: 21408080 PMCID: PMC3052358 DOI: 10.1371/journal.pone.0017454] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 02/04/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Stem cell transplantation is a promising potential therapy for muscular dystrophies, but for this purpose, the cells need to be systemically-deliverable, give rise to many muscle fibres and functionally reconstitute the satellite cell niche in the majority of the patient's skeletal muscles. Human skeletal muscle-derived pericytes have been shown to form muscle fibres after intra-arterial transplantation in dystrophin-deficient host mice. Our aim was to replicate and extend these promising findings. METHODOLOGY/PRINCIPAL FINDINGS Isolation and maintenance of human muscle derived cells (mdcs) was performed as published for human pericytes. Mdscs were characterized by immunostaining, flow cytometry and RT-PCR; also, their ability to differentiate into myotubes in vitro and into muscle fibres in vivo was assayed. Despite minor differences between human mdcs and pericytes, mdscs contributed to muscle regeneration after intra-muscular injection in mdx nu/nu mice, the CD56+ sub-population being especially myogenic. However, in contrast to human pericytes delivered intra-arterially in mdx SCID hosts, mdscs did not contribute to muscle regeneration after systemic delivery in mdx nu/nu hosts. CONCLUSIONS/SIGNIFICANCE Our data complement and extend previous findings on human skeletal muscle-derived stem cells, and clearly indicate that further work is necessary to prepare pure cell populations from skeletal muscle that maintain their phenotype in culture and make a robust contribution to skeletal muscle regeneration after systemic delivery in dystrophic mouse models. Small differences in protocols, animal models or outcome measurements may be the reason for differences between our findings and previous data, but nonetheless underline the need for more detailed studies on muscle-derived stem cells and independent replication of results before use of such cells in clinical trials.
Collapse
Affiliation(s)
- Jinhong Meng
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | - Carl F. Adkin
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | - Shi-wen Xu
- Centre for Rheumatology, Department of Medicine, University College London - Royal Free Campus, London, United Kingdom
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | - Jennifer E. Morgan
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Skuk D, Tremblay JP. Intramuscular cell transplantation as a potential treatment of myopathies: clinical and preclinical relevant data. Expert Opin Biol Ther 2011; 11:359-74. [PMID: 21204740 DOI: 10.1517/14712598.2011.548800] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Myopathies produce deficits in skeletal muscle function and, in some cases, literally progressive loss of skeletal muscles. The transplantation of cells able to differentiate into myofibers is an experimental strategy for the potential treatment of some of these diseases. AREAS COVERED Among the two routes used to deliver cells to skeletal muscles, that is intramuscular and intravascular, this paper focuses on the intramuscular route due to our expertise and because it is the most used in animal experiments and the only tested so far in humans. Given the absence of recent reviews about clinical observations and the profusion based on mouse results, this review prioritizes observations made in humans and non-human primates. The review provides a vision of cell transplantation in myology centered on what can be learned from clinical trials and from preclinical studies in non-human primates and leading mouse studies. EXPERT OPINION Experiments on myogenic cell transplantation in mice are essential to quickly identify potential treatments, but studies showing the possibility to scale up the methods in large mammals are indispensable to determine their applicability in humans and to design clinical protocols.
Collapse
Affiliation(s)
- Daniel Skuk
- CHUQ Research Center - CHUL, Neurosciences Division - Human Genetics, 2705 Boulevard Laurier, Quebec, Quebec G1V 4G2, Canada.
| | | |
Collapse
|
26
|
Meng J, Muntoni F, Morgan JE. Stem cells to treat muscular dystrophies – Where are we? Neuromuscul Disord 2011; 21:4-12. [DOI: 10.1016/j.nmd.2010.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/13/2010] [Accepted: 10/08/2010] [Indexed: 12/18/2022]
|
27
|
Palmieri B, Tremblay JP, Daniele L. Past, present and future of myoblast transplantation in the treatment of Duchenne muscular dystrophy. Pediatr Transplant 2010; 14:813-9. [PMID: 20963914 DOI: 10.1111/j.1399-3046.2010.01377.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DMD is a genetic X-linked recessive disease that affects approximately one in 3500 male births. Boys with DMD have progressive and predictable muscle destruction because of the absence of Dys, a protein present under the muscle fiber membrane. Dys deficiency induces contraction-related membrane damages, activation of inflammatory-necrosis-fibrosis up to the cardiac-diaphragmatic failure and death. This review supports the therapeutic role of MT associated with immunosuppression in DMD patients, describing the history and the rationale of such approach. The authors underline the importance to evaluate a protocol of myoblast intradermal multi-injection to apply in young DMD patients
Collapse
Affiliation(s)
- Beniamino Palmieri
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy.
| | | | | |
Collapse
|
28
|
Myoblast transplantation: a possible surgical treatment for a severe pediatric disease. Surg Today 2010; 40:902-8. [PMID: 20872191 PMCID: PMC7087795 DOI: 10.1007/s00595-009-4242-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 08/26/2009] [Indexed: 12/29/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic X-linked recessive orphan disease that affects approximately 1 in 3 500 male births. Boys with DMD have progressive and predictable muscle destruction due to the absence of dystrophin, a protein present under the muscle fiber membrane. This absence induces contraction-related membrane damage and activation of inflammatory necrosis and fibrosis, leading to cardiac/diaphragmatic failure and death. The authors support the therapeutic role of myoblast transplantation in DMD, and describe the history and rationale for such an approach.
Collapse
|
29
|
Boldrin L, Muntoni F, Morgan JE. Are human and mouse satellite cells really the same? J Histochem Cytochem 2010; 58:941-55. [PMID: 20644208 DOI: 10.1369/jhc.2010.956201] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Satellite cells are quiescent cells located under the basal lamina of skeletal muscle fibers that contribute to muscle growth, maintenance, repair, and regeneration. Mouse satellite cells have been shown to be muscle stem cells that are able to regenerate muscle fibers and self-renew. As human skeletal muscle is also able to regenerate following injury, we assume that the human satellite cell is, like its murine equivalent, a muscle stem cell. In this review, we compare human and mouse satellite cells and highlight their similarities and differences. We discuss gaps in our knowledge of human satellite cells, compared with that of mouse satellite cells, and suggest ways in which we may advance studies on human satellite cells, particularly by finding new markers and attempting to re-create the human satellite cell niche in vitro.
Collapse
Affiliation(s)
- Luisa Boldrin
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom.
| | | | | |
Collapse
|
30
|
Skuk D, Paradis M, Goulet M, Chapdelaine P, Rothstein DM, Tremblay JP. Intramuscular transplantation of human postnatal myoblasts generates functional donor-derived satellite cells. Mol Ther 2010; 18:1689-97. [PMID: 20606644 DOI: 10.1038/mt.2010.128] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Myogenic cell transplantation is an experimental approach for the treatment of myopathies. In this approach, transplanted cells need to fuse with pre-existing myofibers, form new myofibers, and generate new muscle precursor cells (MPCs). The last property was fully reported following myoblast transplantation in mice but remains poorly studied with human myoblasts. In this study, we provide evidence that the intramuscular transplantation of postnatal human myoblasts in immunodeficient mice generates donor-derived MPCs and specifically donor-derived satellite cells. In a first experiment, cells isolated from mouse muscles 1 month after the transplantation of human myoblasts proliferated in vitro as human myoblasts. These cells were retransplanted in mice and formed myofibers expressing human dystrophin. In a second experiment, we observed that inducing muscle regeneration 2 months following transplantation of human myoblasts led to myofiber regeneration by human-derived MPCs. In a third experiment, we detected by immunohistochemistry abundant human-derived satellite cells in mouse muscles 1 month after transplantation of postnatal human myoblasts. These human-derived satellite cells may correspond totally or partially to the human-derived MPCs evidenced in the first two experiments. Finally, we present evidence that donor-derived satellite cells may be produced in patients that received myoblast transplantation.
Collapse
Affiliation(s)
- Daniel Skuk
- Unité de recherche en Génétique humaine, Centre Hospitalier de l'Université Laval, Quebec City, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
31
|
The contribution of human synovial stem cells to skeletal muscle regeneration. Neuromuscul Disord 2010; 20:6-15. [PMID: 20034794 DOI: 10.1016/j.nmd.2009.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/23/2009] [Accepted: 11/04/2009] [Indexed: 12/31/2022]
Abstract
Stem cell therapy holds promise for treating muscle diseases. Although satellite cells regenerate skeletal muscle, they only have a local effect after intra-muscular transplantation. Alternative cell types, more easily obtainable and systemically-deliverable, were therefore sought. Human synovial stem cells (hSSCs) have been reported to regenerate muscle fibres and reconstitute the satellite cell pool. We therefore determined if these cells are able to regenerate skeletal muscle after intra-muscular injection into cryodamaged muscles of Rag2-/gamma chain-/C5-mice. We found that hSSCs possess only limited capacity to undergo myogenic differentiation in vitro or to contribute to muscle regeneration in vivo. However, this is enhanced by over-expression of human MyoD1. Interestingly, hSSCs express extracellular matrix components laminin alpha2 and collagen VI within grafted muscles. Therefore, despite their limited capacity to regenerate skeletal muscle, hSSCs could play a role in treating muscular dystrophies secondary to defects in extracellular matrix proteins.
Collapse
|
32
|
In vivo fluorescence imaging of muscle cell regeneration by transplanted EGFP-labeled myoblasts. Mol Ther 2010; 18:835-42. [PMID: 20125125 DOI: 10.1038/mt.2010.3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In vivo fluorescence imaging (FLI) enables monitoring fluorescent protein (FP)-labeled cells and proteins in living organisms noninvasively. Here, we examined whether this modality could reach a sufficient sensitivity to allow evaluation of the regeneration process of enhanced green fluorescent protein (eGFP)-labeled muscle precursors (myoblasts). Using a basic FLI station, we were able to detect clear fluorescence signals generated by 40,000 labeled cells injected into a tibialis anterior (TA) muscle of mouse. We observed that the signal declined to approximately 25% on the 48 hours of cell injection followed by a recovery starting at the second day and reached a peak of approximately 45% of the original signal by the 7th day, suggesting that the survived population underwent a limited run of proliferation before differentiation. To assess whether transplanted myoblasts could form satellite cells, we injured the transplanted muscles repeatedly with cardiotoxin. We observed a recovery of fluorescence signal following a disappearance of the signal after each cardiotoxin injection. Histology results showed donor-derived cells located underneath basal membrane and expressing Pax7, confirming that the regeneration observed by imaging was indeed mediated by donor-derived satellite cells. Our results show that FLI is a powerful tool that can extend our ability to unveil complicated biological processes such as stem cell-mediated regeneration.
Collapse
|
33
|
Wang Z, Glenn H, Brown C, Valavanis C, Liu JX, Seth A, Thomas JE, Karlstrom RO, Schwartz LM. Regulation of muscle differentiation and survival by Acheron. Mech Dev 2009; 126:700-9. [PMID: 19481601 DOI: 10.1016/j.mod.2009.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 05/15/2009] [Accepted: 05/20/2009] [Indexed: 11/27/2022]
Abstract
Acheron (Achn), a phylogenetically-conserved member of the Lupus antigen family of RNA binding proteins, was initially identified as a novel cell death-associated gene from the intersegmental muscles of the tobacco hawkmoth Manduca sexta. C(2)C(12) cells are a standard model for the study of myogenesis. When deprived of growth factors, these cells can be induced to: form multinucleated myotubes, arrest as quiescent satellite-like reserve cells, or undergo apoptosis. Achn expression is induced in myoblasts that form myotubes and acts upstream of the muscle specific transcription factor MyoD. Forced expression of ectopic Achn resulted in the formation of larger myotubes and massive reserve cell death relative to controls. Conversely, dominant-negative or antisense Achn blocked myotube formation following loss of growth factors, suggesting that Achn plays an essential, permissive role in myogenesis. Studies in zebrafish embryos support this hypothesis. Reduction of Achn with antisense morpholinos led to muscle fiber loss and an increase in the number of surviving cells in the somites, while ectopic Achn enhanced muscle fiber formation and reduced cell numbers. These results display a crucial evolutionarily conserved role for Achn in myogenesis and suggest that it plays key roles in the processes of differentiation and self-renewal.
Collapse
Affiliation(s)
- Zhaohui Wang
- Molecular and Cellular Biology Program, Morrill Science Center, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Makarov AA, Kovalyov LI, Kovalyova MA, Toropygin IY, Shishkin SS. A study of protein profile changes in differentiating human myoblasts. Russ J Dev Biol 2009. [DOI: 10.1134/s1062360409020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Abstract
One of the hallmarks of development is that many more cells are produced than are ultimately needed for organogenesis. In the case of striated skeletal muscle, large numbers of myoblasts are generated in the somites and then migrate to take up residence in the limbs and the trunk. A subset of these cells fuses to form multinucleated skeletal muscle fibers, while a second group, known as satellite cells, exits the cell cycle and persists as a pool of lineage-restricted stem cells that can repair damaged muscle. The remaining cells initiate apoptosis and are rapidly lost. Primary myoblasts and established satellite cell lines are powerful tools for dissecting the regulatory events that mediate differentiative decisions and have proven to be important models. As well, muscle diseases represent debilitating and often fatal disorders. This chapter provides a general background for muscle development and then details a variety of assays for monitoring the differentiation and the death of muscle. While some of these methods are specialized to address the phenotypic properties of skeletal muscle, others can be employed with a wide variety of cell types.
Collapse
|
36
|
Tremblay JP, Skuk D. Another New “Super Muscle Stem Cell” Leaves Unaddressed the Real Problems of Cell Therapy for Duchenne Muscular Dystrophy. Mol Ther 2008; 16:1907-9. [DOI: 10.1038/mt.2008.243] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|