1
|
Vidal L, Vila I, Venegas V, Sacristán A, Contreras-Muñoz P, Lopez-Garzon M, Giné C, Rodas G, Marotta M. A Novel Minimally Invasive Surgically Induced Skeletal Muscle Injury Model in Sheep. Int J Mol Sci 2024; 25:5612. [PMID: 38891800 PMCID: PMC11171619 DOI: 10.3390/ijms25115612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Sports-related muscle injuries account for 10-55% of all injuries, which is a growing concern, especially given the aging world population. To evaluate the process of skeletal muscle injury and compare it with muscle lesions observed in humans, we developed a novel in vivo model in sheep. In this model, muscle injury was induced by an ultrasound-guided transverse biopsy at the myotendinous junction of the medial gastrocnemius muscle. Twelve male sheep were examined at 3, 7, 14, and 28 days post-injury. Histological, immunofluorescence, and MRI analyses indicate that our sheep model could resemble key human clinicopathological features. Statistically significant differences (p < 0.05) were observed in collagen I, dMHC, α-SMA, and CD68 immunohistochemical detection when comparing injured and healthy muscles. The injured gastrocnemius muscle exhibited elevated levels of type I collagen, infiltration of CD68(+) macrophages, angiogenesis, and the emergence of newly regenerated dMHC(+) myofibers, which persisted for up to 4 weeks post-injury. Similarly, the progression of muscle injury in the sheep model was assessed using advanced clinical 3 T MRI and compared with MRI scans from human patients. The data indicate that the sheep muscle injury model presents features similar to those observed in human skeletal muscle injuries. This makes it a valuable large animal model for studying muscle injuries and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Laura Vidal
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Ingrid Vila
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Vanesa Venegas
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Anabel Sacristán
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Paola Contreras-Muñoz
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Maria Lopez-Garzon
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Carles Giné
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Gil Rodas
- Medical Department of Futbol Club Barcelona (FIFA Medical Center of Excellence) and Barça Innovation, 08970 Sant Joan Despí, Spain
- Sports Medicine Unit, Hospital Clínic and Sant Joan de Déu, 08950 Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Mario Marotta
- Leitat Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Spain
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| |
Collapse
|
2
|
Lazzarin MC, Dos Santos JF, Quintana HT, Pidone FAM, de Oliveira F. Duchenne muscular dystrophy progression induced by downhill running is accompanied by increased endomysial fibrosis and oxidative damage DNA in muscle of mdx mice. J Mol Histol 2023; 54:41-54. [PMID: 36348131 DOI: 10.1007/s10735-022-10109-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle necrosis. One of the major challenges for prescribing physical rehabilitation exercises for DMD patients is associated with the lack of a thorough knowledge of dystrophic muscle responsiveness to exercise. This study aims to understand the relationship between myogenic regulation, inflammation and oxidative stress parameters, and disease progression induced by downhill running in the skeletal muscle of an experimental model of DMD. Six-month-old C57BL/10 and C57BL/10-DMDmdx male mice were distributed into three groups: Control (C), mdx, and mdx + Exercise (mdx + Ex). Animals were trained in a downhill running protocol for seven weeks. The gastrocnemius muscle was subjected to histopathology, muscle regeneration (myoD and myogenin), inflammation (COX-2), oxidative stress (8-OHdG) immunohistochemistry markers, and gene expression (qPCR) of NF-kB and NADP(H)Oxidase 2 (NOX-2) analysis. In the mdx + Ex group, the gastrocnemius muscle showed a higher incidence of endomysial fibrosis and a lower myonecrosis percentage area. Immunohistochemical analysis revealed decreased myogenin immunoexpression in the mdx group, as well as accentuated immunoexpression of nuclear 8-OHdG in both mdx groups and increase in cytoplasmic 8-OHdG only in the mdx + Ex. COX-2 immunoexpression was related to areas of regeneration process and inflammatory infiltrate in the mdx group, while associated with areas of muscle fibrosis in the mdx + Ex. Moreover, the NF-kB gene expression was not influenced by exercise; however, a NAD(P)HOxidase 2 increase was observed. Oxidative stress and oxidative DNA damage play a significant role in the DMD phenotype progression induced by exercise, compromising cellular patterns resulting in increased endomysial fibrosis.
Collapse
Affiliation(s)
- Mariana Cruz Lazzarin
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil.,Laboratory of Pathophysiology, Institute Butantan, São Paulo, SP, Brazil
| | - José Fontes Dos Santos
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil
| | - Hananiah Tardivo Quintana
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil
| | - Flavia Andressa Mazzuco Pidone
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil
| | - Flavia de Oliveira
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Rua Silva Jardim, 136 - Lab 328, Santos, SP, CEP: 11015-020, Brazil.
| |
Collapse
|
3
|
Paun B, Leon DG, Cabello AC, Pages RM, de la Calle Vargas E, Muñoz PC, Garcia VV, Castell-Conesa J, Baleriola MM, Camacho JRH. Modelling the skeletal muscle injury recovery using in vivo contrast-enhanced micro-CT: a proof-of-concept study in a rat model. Eur Radiol Exp 2020; 4:33. [PMID: 32488324 PMCID: PMC7266881 DOI: 10.1186/s41747-020-00163-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/22/2020] [Indexed: 01/06/2023] Open
Abstract
Background Skeletal muscle injury characterisation during healing supports trauma prognosis. Given the potential interest of computed tomography (CT) in muscle diseases and lack of in vivo CT methodology to image skeletal muscle wound healing, we tracked skeletal muscle injury recovery using in vivo micro-CT in a rat model to obtain a predictive model. Methods Skeletal muscle injury was performed in 23 rats. Twenty animals were sorted into five groups to image lesion recovery at 2, 4, 7, 10, or 14 days after injury using contrast-enhanced micro-CT. Injury volumes were quantified using a semiautomatic image processing, and these values were used to build a prediction model. The remaining 3 rats were imaged at all monitoring time points as validation. Predictions were compared with Bland-Altman analysis. Results Optimal contrast agent dose was found to be 20 mL/kg injected at 400 μL/min. Injury volumes showed a decreasing tendency from day 0 (32.3 ± 12.0mm3, mean ± standard deviation) to day 2, 4, 7, 10, and 14 after injury (19.6 ± 12.6, 11.0 ± 6.7, 8.2 ± 7.7, 5.7 ± 3.9, and 4.5 ± 4.8 mm3, respectively). Groups with single monitoring time point did not yield significant differences with the validation group lesions. Further exponential model training with single follow-up data (R2 = 0.968) to predict injury recovery in the validation cohort gave a predictions root mean squared error of 6.8 ± 5.4 mm3. Further prediction analysis yielded a bias of 2.327. Conclusion Contrast-enhanced CT allowed in vivo tracking of skeletal muscle injury recovery in rat.
Collapse
Affiliation(s)
- Bruno Paun
- Medical Molecular Imaging Group, Vall d'Hebron Research Institute (VHIR), CIBER-BBN, CIBBIM-Nanomedicine, ISCIII, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Daniel García Leon
- Medical Molecular Imaging Group, Vall d'Hebron Research Institute (VHIR), CIBER-BBN, CIBBIM-Nanomedicine, ISCIII, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Alex Claveria Cabello
- Medical Molecular Imaging Group, Vall d'Hebron Research Institute (VHIR), CIBER-BBN, CIBBIM-Nanomedicine, ISCIII, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Roso Mares Pages
- Medical Molecular Imaging Group, Vall d'Hebron Research Institute (VHIR), CIBER-BBN, CIBBIM-Nanomedicine, ISCIII, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Elena de la Calle Vargas
- Medical Molecular Imaging Group, Vall d'Hebron Research Institute (VHIR), CIBER-BBN, CIBBIM-Nanomedicine, ISCIII, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Paola Contreras Muñoz
- Health & Biomedicine division, Leitat Technological Center, 2. C/ Pallars, 179-185, 08005, Barcelona, Spain.,Bioengineering, Cell therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Vanessa Venegas Garcia
- Health & Biomedicine division, Leitat Technological Center, 2. C/ Pallars, 179-185, 08005, Barcelona, Spain.,Bioengineering, Cell therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Joan Castell-Conesa
- Medical Molecular Imaging Group, Vall d'Hebron Research Institute (VHIR), CIBER-BBN, CIBBIM-Nanomedicine, ISCIII, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Mario Marotta Baleriola
- Health & Biomedicine division, Leitat Technological Center, 2. C/ Pallars, 179-185, 08005, Barcelona, Spain.,Bioengineering, Cell therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Jose Raul Herance Camacho
- Medical Molecular Imaging Group, Vall d'Hebron Research Institute (VHIR), CIBER-BBN, CIBBIM-Nanomedicine, ISCIII, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
4
|
Balius R, Blasi M, Pedret C, Alomar X, Peña-Amaro J, Vega JA, Pruna R, Ardèvol J, Álvarez G, de la Fuente J, Fernández-Jaén T, Järvinen TA, Rodas G. A Histoarchitectural Approach to Skeletal Muscle Injury: Searching for a Common Nomenclature. Orthop J Sports Med 2020; 8:2325967120909090. [PMID: 32232071 PMCID: PMC7092384 DOI: 10.1177/2325967120909090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, different classifications for muscle injuries have been proposed based on the topographic location of the injury within the bone-tendon-muscle chain. We hereby propose that in addition to the topographic classification of muscle injuries, a histoarchitectonic (description of the damage to connective tissue structures) definition of the injury be included within the nomenclature. Thus, the nomenclature should focus not only on the macroscopic anatomy but also on the histoarchitectonic features of the injury.
Collapse
Affiliation(s)
| | - Ramon Balius
- Ramon Balius, MD, PhD, Consell Català de l’Esport, Generalitat de Catalunya, Av. dels Països Catalans, 12, 08950 Esplugues de Llobregat, Barcelona, Spain ()
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Scarpelli M, Carreño-Gago L, Russignan A, de Luna N, Carnicer-Cáceres C, Ariatti A, Verriello L, Devigili G, Tonin P, Garcia-Arumi E, Pinós T. Identification and characterization of the novel m.8305C>T MTTK and m.4440G>A MTTM gene mutations causing mitochondrial myopathies. Neuromuscul Disord 2017; 28:137-143. [PMID: 29174468 DOI: 10.1016/j.nmd.2017.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 01/20/2023]
Abstract
We report on two novel mtDNA mutations in patients affected with mitochondrial myopathy. The first patient, a 44-year-old woman, had bilateral eyelid ptosis and the m.8305C>T mutation in the MTTK gene. The second patient, a 56-year-old man, had four-limb muscle weakness and the MTTM gene m.4440G>A mutation. Muscle biopsies in both patients showed ragged red fibers and numerous COX-negative fibers as well as a combined defect of complex I, III and IV activities. The two mutations were heteroplasmic and detected only in muscle tissue, with a higher mutation load in COX-negative fibers. Additionally, both mutations occurred in highly conserved mt-tRNA sites, and were not found by an in silico search in 30,589 human mtDNA sequences. Our report further expands the mutational and phenotypic spectrum of diseases associated with mutations in mitochondrial tRNA genes and reinforces the notion that mutations in mitochondrial tRNAs represent hot spots for mitochondrial myopathies in adults.
Collapse
Affiliation(s)
- Mauro Scarpelli
- Section of Neurology, Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Lidia Carreño-Gago
- Mitochondrial Disorders Unit, Vall d'Hebron Institut de Recerca, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Anna Russignan
- Section of Neurology, Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Noemi de Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Laboratori de Malalties Neuromusculars, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Clara Carnicer-Cáceres
- Unidad de Metabolopatías, Servicio de Bioquímica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Alessandra Ariatti
- Department of Neurosciences and Department of Onco-Haematology, University Hospitals of Modena & Reggio Emilia, Italy
| | - Lorenzo Verriello
- Division of Neurology, Department of Neuroscience, Azienda Ospedaliero Universitaria, Udine, Italy
| | - Grazia Devigili
- Division of Neurology, Department of Neuroscience, Azienda Ospedaliero Universitaria, Udine, Italy
| | - Paola Tonin
- Section of Neurology, Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Elena Garcia-Arumi
- Mitochondrial Disorders Unit, Vall d'Hebron Institut de Recerca, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Àrea de Genètica Clínica i Molecular, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| | - Tomàs Pinós
- Mitochondrial Disorders Unit, Vall d'Hebron Institut de Recerca, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
6
|
Morales MG, Acuña MJ, Cabrera D, Goldschmeding R, Brandan E. The pro-fibrotic connective tissue growth factor (CTGF/CCN2) correlates with the number of necrotic-regenerative foci in dystrophic muscle. J Cell Commun Signal 2017; 12:413-421. [PMID: 28887614 DOI: 10.1007/s12079-017-0409-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023] Open
Abstract
Connective tissue growth factor (CTGF/CCN2) has strong inflammatory and profibrotic activities. Its expression is enhanced in skeletal muscular dystrophies such as Duchenne muscular dystrophy (DMD), a myopathy characterized by exacerbated inflammation and fibrosis. In dystrophic tissue, necrotic-regenerative foci, myofibroblasts, newly-regenerated muscle fibers and necrosis all occur simultaneously. To determine if CCN2 is involved in the appearance of the foci, we studied their presence and characteristics in mdx mice (DMD mouse model) compared to mdx mice hemizygous for CCN2 (mdx-Ccn2+/-). We used laser capture microdissection followed by gene expression and immunofluorescence analyses to investigate fibrotic, inflammation and regeneration markers in damaged and non-damaged areas in mdx and mdx-Ccn2+/- skeletal muscle. Mdx mice foci express elevated mRNAs levels of transforming growth factor type beta, collagen, fibronectin, the myofribroblast marker α-SMA, and the myogenic transcription factor myogenin. Mdx foci also show elevated levels of MCP-1 and CD-68 positive cells, indicating that CCN2 could be inducing an inflammatory response. We found a significant reduction in the number of foci in mdx-Ccn2+/- mice muscle. Fibrotic and inflammatory markers were also decreased in these foci. We did not observe any difference in Pax7 mRNA levels, a marker for satellite cells, in mdx mice compared to mdx-Ccn2+/- mice. Thus, CCN2 appears to be involved in the fibrotic response as well as in the inflammatory response in the dystrophic skeletal muscle.
Collapse
Affiliation(s)
- María Gabriela Morales
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María José Acuña
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Cabrera
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Contreras-Muñoz P, Torrella JR, Serres X, Rizo-Roca D, De la Varga M, Viscor G, Martínez-Ibáñez V, Peiró JL, Järvinen TAH, Rodas G, Marotta M. Postinjury Exercise and Platelet-Rich Plasma Therapies Improve Skeletal Muscle Healing in Rats But Are Not Synergistic When Combined. Am J Sports Med 2017; 45:2131-2141. [PMID: 28453295 DOI: 10.1177/0363546517702864] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Skeletal muscle injuries are the most common sports-related injury and a major concern in sports medicine. The effect of platelet-rich plasma (PRP) injections on muscle healing is still poorly understood, and current data are inconclusive. PURPOSE To evaluate the effects of an ultrasound-guided intramuscular PRP injection, administered 24 hours after injury, and/or posttraumatic daily exercise training for 2 weeks on skeletal muscle healing in a recently established rat model of skeletal muscle injury that highly mimics the muscle trauma seen in human athletes. STUDY DESIGN Controlled laboratory study. METHODS A total of 40 rats were assigned to 5 groups. Injured rats (medial gastrocnemius injury) received a single PRP injection (PRP group), daily exercise training (Exer group), or a combination of a single PRP injection and daily exercise training (PRP-Exer group). Untreated and intramuscular saline-injected animals were used as controls. Muscle force was determined 2 weeks after muscle injury, and muscles were harvested and evaluated by means of histological assessment and immunofluorescence microscopy. RESULTS Both PRP (exhibiting 4.8-fold higher platelet concentration than whole blood) and exercise training improved muscle strength (maximum tetanus force, TetF) in approximately 18%, 20%, and 30% of rats in the PRP, PRP-Exer, and Exer groups, respectively. Specific markers of muscle regeneration (developmental myosin heavy chain, dMHC) and scar formation (collagen I) demonstrated the beneficial effect of the tested therapies in accelerating the muscle healing process in rats. PRP and exercise treatments stimulated the growth of newly formed regenerating muscle fibers (1.5-, 2-, and 2.5-fold increase in myofiber cross-sectional area in PRP, PRP-Exer, and Exer groups, respectively) and reduced scar formation in injured skeletal muscle (20%, 34%, and 41% of reduction in PRP, PRP-Exer, and Exer groups, respectively). Exercise-treated muscles (PRP-Exer and Exer groups) had significantly reduced percentage of dMHC-positive regenerating fibers (35% and 47% decrease in dMHC expression, respectively), indicating that exercise therapies accelerated the muscle healing process witnessed by the more rapid replacement of the embryonic-developmental myosin isoform by mature muscle myosin isoforms. CONCLUSION Intramuscular PRP injection and, especially, treadmill exercise improve histological outcome and force recovery of the injured skeletal muscle in a rat injury model that imitates sports-related muscle injuries in athletes. However, there was not a synergistic effect when both treatments were combined, suggesting that PRP does not add any beneficial effect to exercise-based therapy in the treatment of injured skeletal muscle. CLINICAL RELEVANCE This study demonstrates the efficacy of an early active rehabilitation protocol or single intramuscular PRP injection on muscle recovery. The data also reveal that the outcome of the early active rehabilitation is adversely affected by the PRP injection when the two therapies are combined, and this could explain why PRP therapies have failed in randomized clinical trials where the athletes have adhered to postinjection rehabilitation protocols based on the principle of early, active mobilization.
Collapse
Affiliation(s)
- Paola Contreras-Muñoz
- Leitat Foundation, Leitat Technological Center, Barcelona, Spain.,Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Ramon Torrella
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Serres
- Ultrasound Unit, Department of Radiology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - David Rizo-Roca
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | - Ginés Viscor
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Vicente Martínez-Ibáñez
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Luis Peiró
- Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.,Translational Research in Fetal Surgery for Congenital Malformations Laboratory, Center for Fetal, Cellular and Molecular Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tero A H Järvinen
- Medical School, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Gil Rodas
- Leitat Foundation, Leitat Technological Center, Barcelona, Spain.,Medical Services, Futbol Club Barcelona, Ciutat Esportiva Futbol Club Barcelona, Barcelona, Spain
| | - Mario Marotta
- Leitat Foundation, Leitat Technological Center, Barcelona, Spain.,Bioengineering, Cell Therapy and Surgery in Congenital Malformations Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Yoon SH, Chen J, Grynpas MD, Mitchell J. Prophylactic pamidronate partially protects from glucocorticoid-induced bone loss in the mdx mouse model of Duchenne muscular dystrophy. Bone 2016; 90:168-80. [PMID: 27373502 DOI: 10.1016/j.bone.2016.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 01/19/2023]
Abstract
Glucocorticoids are extensively used to treat patients with Duchenne muscular dystrophy because of their ability to delay muscle damage, prolong ambulation and extend life. However, use of glucocorticoids significantly increases bone loss, fragility and fractures. To determine if antiresorptive bisphosphonates could prevent the effects of glucocorticoids on bone quality, we used dystrophic mdx mice treated with the glucocorticoid prednisone during 8weeks of rapid bone growth from 5 to 13weeks of age and treated some mice with the bisphosphonate pamidronate during the first two weeks of prednisone administration. Prednisone reduced long bone growth, decreased cortical bone thickness and area and decreased the strength of the femurs. Pamidronate treatment protected mice from cortical bone loss but did not increase bone strength. The combination of prednisone and pamidronate inhibited remodeling of metaphyseal trabecular bone with large numbers of trabeculae containing remnants of calcified cartilage. Prednisone improved muscle strength in the mdx mice and decreased serum creatine kinase with evidence of improved muscle histology and these effects were maintained in mice treated with pamidronate.
Collapse
Affiliation(s)
- Sung-Hee Yoon
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Jinghan Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Marc D Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
9
|
Contreras O, Rebolledo DL, Oyarzún JE, Olguín HC, Brandan E. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis. Cell Tissue Res 2016; 364:647-660. [DOI: 10.1007/s00441-015-2343-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 12/03/2015] [Indexed: 02/06/2023]
|
10
|
Saera-Vila A, Kasprick DS, Junttila TL, Grzegorski SJ, Louie KW, Chiari EF, Kish PE, Kahana A. Myocyte Dedifferentiation Drives Extraocular Muscle Regeneration in Adult Zebrafish. Invest Ophthalmol Vis Sci 2015; 56:4977-93. [PMID: 26230763 DOI: 10.1167/iovs.14-16103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to characterize the injury response of extraocular muscles (EOMs) in adult zebrafish. METHODS Adult zebrafish underwent lateral rectus (LR) muscle myectomy surgery to remove 50% of the muscle, followed by molecular and cellular characterization of the tissue response to the injury. RESULTS Following myectomy, the LR muscle regenerated an anatomically correct and functional muscle within 7 to 10 days post injury (DPI). Following injury, the residual muscle stump was replaced by a mesenchymal cell population that lost cell polarity and expressed mesenchymal markers. Next, a robust proliferative burst repopulated the area of the regenerating muscle. Regenerating cells expressed myod, identifying them as myoblasts. However, both immunofluorescence and electron microscopy failed to identify classic Pax7-positive satellite cells in control or injured EOMs. Instead, some proliferating nuclei were noted to express mef2c at the very earliest point in the proliferative burst, suggesting myonuclear reprogramming and dedifferentiation. Bromodeoxyuridine (BrdU) labeling of regenerating cells followed by a second myectomy without repeat labeling resulted in a twice-regenerated muscle broadly populated by BrdU-labeled nuclei with minimal apparent dilution of the BrdU signal. A double-pulse experiment using BrdU and 5-ethynyl-2'-deoxyuridine (EdU) identified double-labeled nuclei, confirming the shared progenitor lineage. Rapid regeneration occurred despite a cell cycle length of 19.1 hours, whereas 72% of the regenerating muscle nuclei entered the cell cycle by 48 hours post injury (HPI). Dextran lineage tracing revealed that residual myocytes were responsible for muscle regeneration. CONCLUSIONS EOM regeneration in adult zebrafish occurs by dedifferentiation of residual myocytes involving a muscle-to-mesenchyme transition. A mechanistic understanding of myocyte reprogramming may facilitate novel approaches to the development of molecular tools for targeted therapeutic regeneration in skeletal muscle disorders and beyond.
Collapse
|
11
|
Choi YM, Suh Y, Shin S, Lee K. Skeletal muscle characterization of Japanese quail line selectively bred for lower body weight as an avian model of delayed muscle growth with hypoplasia. PLoS One 2014; 9:e95932. [PMID: 24763754 PMCID: PMC3999150 DOI: 10.1371/journal.pone.0095932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 04/02/2014] [Indexed: 01/17/2023] Open
Abstract
This study was designed to extensively characterize the skeletal muscle development in the low weight (LW) quail selected from random bred control (RBC) Japanese quail in order to provide a new avian model of impaired and delayed growth in physically normal animals. The LW line had smaller embryo and body weights than the RBC line in all age groups (P<0.05). During 3 to 42 d post-hatch, the LW line exhibited approximately 60% smaller weight of pectoralis major muscle (PM), mainly resulting from lower fiber numbers compared to the RBC line (P<0.05). During early post-hatch period when myotubes are still actively forming, the LW line showed impaired PM growth with prolonged expression of Pax7 and lower expression levels of MyoD, Myf-5, and myogenin (P<0.05), likely leading to impairment of myogenic differentiation and consequently, reduced muscle fiber formation. Additionally, the LW line had delayed transition of neonatal to adult myosin heavy chain isoform, suggesting delayed muscle maturation. This is further supported by the finding that the LW line continued to grow unlike the RBC line; difference in the percentages of PMW to body weights between both quail lines diminished with increasing age from 42 to 75 d post-hatch. This delayed muscle growth in the LW line is accompanied by higher levels of myogenin expression at 42 d (P<0.05), higher percentage of centered nuclei at 42 d (P<0.01), and greater rate of increase in fiber size between 42 and 75 d post-hatch (P<0.001) compared to the RBC line. Analysis of physiological, morphological, and developmental parameters during muscle development of the LW quail line provided a well-characterized avian model for future identification of the responsible genes and for studying mechanisms of hypoplasia and delayed muscle growth.
Collapse
Affiliation(s)
- Young Min Choi
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Sangsu Shin
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
12
|
Antiangiogenic VEGF isoform in inflammatory myopathies. Mediators Inflamm 2013; 2013:219313. [PMID: 23840094 PMCID: PMC3694558 DOI: 10.1155/2013/219313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/01/2013] [Accepted: 05/15/2013] [Indexed: 11/18/2022] Open
Abstract
Objective. To investigate expression of vascular endothelial growth factor (VEGF) antiangiogenic isoform A-165b on human muscle in idiopathic inflammatory myopathies (IIM) and to compare distribution of angiogenic/antiangiogenic VEGFs, as isoforms shifts are described in other autoimmune disorders. Subjects and Methods. We analyzed VEGF-A165b and VEGF-A by western blot and immunohistochemistry on skeletal muscle biopsies from 21 patients affected with IIM (polymyositis, dermatomyositis, and inclusion body myositis) and 6 control muscle samples. TGF-β, a prominent VEGF inductor, was analogously evaluated. Intergroup differences of western blot bands density were statistically examined. Endomysial vascularization, inflammatory score, and muscle regeneration, as pathological parameters of IIM, were quantitatively determined and their levels were confronted with VEGF expression. Results. VEGF-A165b was significantly upregulated in IIM, as well as TGF-β. VEGF-A was diffusely expressed on unaffected myofibers, whereas regenerating/atrophic myofibres strongly reacted for both VEGF-A isoforms. Most inflammatory cells and endomysial vessels expressed both isoforms. VEGF-A165b levels were in positive correlation to inflammatory score, endomysial vascularization, and TGF-β. Conclusions. Our findings indicate skeletal muscle expression of antiangiogenic VEGF-A165b and preferential upregulation in IIM, suggesting that modulation of VEGF-A isoforms may occur in myositides.
Collapse
|
13
|
Pinós T, Melià MJ, Ortiz N, Martinez-Vea A, Raventós-Estellé A, Gallardo E, Hernández-Losa J, Cámara Y, Andreu AL, García-Arumí E. Identification of the novel mutation m.5658T>C in the mitochondrial tRNA(Asn) gene in a patient with myopathy, bilateral ptosis and ophthalmoparesis. Neuromuscul Disord 2013; 23:330-6. [PMID: 23375258 DOI: 10.1016/j.nmd.2013.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/25/2012] [Accepted: 01/02/2013] [Indexed: 12/13/2022]
Abstract
We report a heteroplasmic novel mutation m.5658T>C in the mt-tRNA(Asn) gene in a patient who initially presented myopathy, bilateral ptosis and ophthalmoparesis and several years later developed a non-nephrotic proteinuria. The muscle biopsy showed cytochrome c oxidase (COX) negative and ragged red fibers and in the kidney biopsy that was taken in order to identify the causes of non-nephrotic proteinuria, a focal segmental glomerulosclerosis was observed. Using laser capture microdissection we isolated COX negative fibers and COX positive fibers from the muscle of the patient and determined that there was a clear increase in the mutation load in the COX negative muscle fibers. However, the low degree of mutation load found in the renal biopsy of the patient does not allow us to conclude that the m.5658T>C mutation is responsible for focal glomerulosclerosis. Additionally, we hypothesize that the mutated m.5658T nucleotide might be structurally relevant, as it is one of the fifteen nucleotides conserved in all the species analyzed and is situated contiguously to the discriminator base in the 3'end of the mt-tRNA, where the tRNase Z cleaves the 3' trailer sequence during mt-tRNA maturation.
Collapse
Affiliation(s)
- Tomàs Pinós
- Departament de Patología Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Laser capture microdissection of metachromatically stained skeletal muscle allows quantification of fiber type specific gene expression. Mol Cell Biochem 2012. [PMID: 23196635 DOI: 10.1007/s11010-012-1538-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Skeletal muscle contains various myofiber types closely associated with satellite stem cells, vasculature, and neurons, thus making it difficult to perform genetic or proteomic expression analysis with sufficient cellular specificity to resolve differences at the individual cell or myofiber type level. Here, we describe the combination of a simple histochemical method capable of simultaneously identifying Type I, IIA, IIB, and IIC myofibers followed by laser capture micro-dissection (LCM) to compare the expression profiles of individual fiber types, myonuclear domains, and satellite cells in frozen muscle sections of control and atrophied muscle. Quantitative RT-PCR (qPCR) was used to verify the integrity of the cell-specific RNAs harvested after histologic staining, while qPCR for specific genes of interest was used to quantify atrophy-associated changes in mRNA. Our data demonstrate that the differential myofiber atrophy previously described by histologic means is related to differential expression of atrophy-related genes, such as MuRF1 and MAFbx (a.k.a. Atrogin-1), within different myofiber type populations. This spatially resolved molecular pathology (SRMP) technique allowed quantitation of atrophy-related gene products within individual fiber types that could not be resolved by expression analysis of the whole muscle. The present study demonstrates the importance of fiber type specific expression profiling in understanding skeletal muscle biology especially during muscle atrophy and provides a practical method of performing such research.
Collapse
|
15
|
Verhaart IEC, Heemskerk H, Karnaoukh TG, Kolfschoten IGM, Vroon A, van Ommen GJB, van Deutekom JCT, Aartsma-Rus A. Prednisolone treatment does not interfere with 2'-O-methyl phosphorothioate antisense-mediated exon skipping in Duchenne muscular dystrophy. Hum Gene Ther 2012; 23:262-73. [PMID: 22017442 DOI: 10.1089/hum.2011.127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In Duchenne muscular dystrophy (DMD), dystrophin deficiency leading to progressive muscular degeneration is caused by frame-shifting mutations in the DMD gene. Antisense oligonucleotides (AONs) aim to restore the reading frame by skipping of a specific exon(s), thereby allowing the production of a shorter, but semifunctional protein, as is found in the mostly more mildly affected patients with Becker muscular dystrophy. AONs are currently being investigated in phase 3 placebo-controlled clinical trials. Most of the participating patients are treated symptomatically with corticosteroids (mainly predniso[lo]ne) to stabilize the muscle fibers, which might affect the uptake and/or efficiency of AONs. Therefore the effect of prednisolone on 2'-O-methyl phosphorothioate AON efficacy in patient-derived cultured muscle cells and the mdx mouse model (after local and systemic AON treatment) was assessed in this study. Both in vitro and in vivo skip efficiency and biomarker expression were comparable between saline- and prednisolone-cotreated cells and mice. After systemic exon 23-specific AON (23AON) treatment for 8 weeks, dystrophin was detectable in all treated mice. Western blot analyses indicated slightly higher dystrophin levels in prednisolone-treated mice, which might be explained by better muscle condition and consequently more target dystrophin pre-mRNA. In addition, fibrotic and regeneration biomarkers were normalized to some extent in prednisolone- and/or 23AON-treated mice. Overall these results show that the use of prednisone forms no barrier to participation in clinical trials with AONs.
Collapse
Affiliation(s)
- Ingrid E C Verhaart
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Spassov A, Gredes T, Lehmann C, Gedrange T, Lucke S, Pavlovic D, Kunert-Keil C. Myogenic differentiation factor 1 and myogenin expression not elevated in regenerated masticatory muscles of dystrophic (mdx) mice. J Orofac Orthop 2011; 72:469-75. [DOI: 10.1007/s00056-011-0051-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 08/15/2011] [Indexed: 12/21/2022]
|
17
|
The miRNA pathway in neurological and skeletal muscle disease: implications for pathogenesis and therapy. J Mol Med (Berl) 2011; 89:1065-77. [PMID: 21751030 DOI: 10.1007/s00109-011-0781-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 01/10/2023]
Abstract
RNA interference (RNAi) represents a powerful post-transcriptional gene silencing network which fine-tunes gene expression in all eukaryotic cells. The endogenous triggers of RNAi, microRNAs (miRNAs), are proposed to regulate expression of up to a third of all protein-coding genes, and have been shown to have critical roles in developmental processes including in the central nervous system and skeletal muscle. Further, many have been reported to display differential expression in various disease states. Here we describe present understanding of the biogenesis and function of miRNAs, review current knowledge of miRNA abnormalities in both human neurological and skeletal muscle disease and discuss their potential as novel disease biomarkers. Finally, we highlight the many ways in which the miRNA pathway may be targeted for therapeutic benefit.
Collapse
|
18
|
Spassov A, Gredes T, Gedrange T, Lucke S, Pavlovic D, Kunert-Keil C. The expression of myogenic regulatory factors and muscle growth factors in the masticatory muscles of dystrophin-deficient (mdx) mice. Cell Mol Biol Lett 2011; 16:214-25. [PMID: 21327869 PMCID: PMC6275649 DOI: 10.2478/s11658-011-0003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 02/07/2011] [Indexed: 12/16/2022] Open
Abstract
The activities of myogenic regulatory factors (MRF) and muscle growth factors increase in muscle that is undergoing regeneration, and may correspond to some specific changes. Little is known about the role of MRFs in masticatory muscles in mdx mice (the model of Duchenne muscular dystrophy) and particularly about their mRNA expression during the process of muscle regeneration. Using Taqman RT-PCR, we examined the mRNA expression of the MRFs myogenin and MyoD1 (myogenic differentiation 1), and of the muscle growth factors myostatin, IGF1 (insulin-like growth factor) and MGF (mechano-growth factor) in the masseter, temporal and tongue masticatory muscles of mdx mice (n = 6 to 10 per group). The myogenin mRNA expression in the mdx masseter and temporal muscle was found to have increased (P < 0.05), whereas the myostatin mRNA expressions in the mdx masseter (P < 0.005) and tongue (P < 0.05) were found to have diminished compared to those for the controls. The IGF and MGF mRNA amounts in the mdx mice remained unchanged. Inside the mdx animal group, gender-related differences in the mRNA expressions were also found. A higher mRNA expression of myogenin and MyoD1 in the mdx massterer and temporal muscles was found in females in comparison to males, and the level of myostatin was higher in the masseter and tongue muscle (P < 0.001 for all comparisons). Similar gender-related differences were also found within the control groups. This study reveals the intermuscular differences in the mRNA expression pattern of myogenin and myostatin in mdx mice. The existence of these differences implies that dystrophinopathy affects the skeletal muscles differentially. The finding of gender-related differences in the mRNA expression of the examined factors may indicate the importance of hormonal influences on muscle regeneration.
Collapse
Affiliation(s)
- Alexander Spassov
- Department of Orthodontics, Faculty of Medicine, University of Greifswald, Rotgerber Str. 8, 17475, Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
A novel mutation in the mitochondrial tRNAAla gene (m.5636T>C) in a patient with progressive external ophthalmoplegia. Mitochondrion 2011; 11:228-33. [DOI: 10.1016/j.mito.2010.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/21/2010] [Accepted: 08/20/2010] [Indexed: 11/23/2022]
|
20
|
Sáenz A, Azpitarte M, Armañanzas R, Leturcq F, Alzualde A, Inza I, García-Bragado F, De la Herran G, Corcuera J, Cabello A, Navarro C, De la Torre C, Gallardo E, Illa I, López de Munain A. Gene expression profiling in limb-girdle muscular dystrophy 2A. PLoS One 2008; 3:e3750. [PMID: 19015733 PMCID: PMC2582180 DOI: 10.1371/journal.pone.0003750] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 10/25/2008] [Indexed: 11/18/2022] Open
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3). Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens), cell adhesion (fibronectin), muscle development (myosins and melusin) and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB) is upregulated in LGMD2A muscle samples, it could be hypothesized that beta-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1). Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies.
Collapse
Affiliation(s)
- Amets Sáenz
- Experimental Unit, Hospital Donostia, Donostia-San Sebastián, Basque Country, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|