1
|
Porcino M, Musumeci O, Usbergo C, Pugliese A, Arena IG, Rodolico C, Schoser B, Toscano A. Management of presymptomatic juvenile patients with late-onset Pompe disease (LOPD). Neuromuscul Disord 2025; 47:105277. [PMID: 39879733 DOI: 10.1016/j.nmd.2025.105277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Late-onset Pompe disease (LOPD) includes patients from 1 year of age to adulthood. The vast heterogeneity in clinical manifestations and disease progression is not fully explained; however, a short disease duration and a young age seem to be good predictors of a better response to treatment. For this purpose, we investigated and followed up a cohort of 13 juvenile patients with LOPD from the clinical and therapeutic point of view, mainly pointing out the transition from presymptomatic to symptomatic status. We retrospectively collected clinical, morphological, biochemical and molecular data from 13 juvenile LOPD patients. Motor and respiratory functional data, obtained during annual follow-up visits, were analyzed. The data included serial evaluations of the Medical Research Council (MRC) scale, the 6-Minute Walking Test (6MWT), the Gait, Stairs, Gower, and Chair (GSGC) score, and seated and supine Forced Vital Capacity (FVC). Muscle Magnetic Resonance Imaging (MRI) was also included, although it was not performed in all cases. Currently, patients mean age is 18 years. All patients but one were diagnosed because of an isolated hyperCKemia: the mean age at diagnosis was 6.8 years (range 1-18). The onset of symptoms occurred from 6 months to 12 years after the diagnosis. The mean clinical follow-up duration was 9 years (range 2-18). From the genetic point of view, the most shared mutation was c.32-13T>G, found in twelve patients as compound heterozygosis. Seven patients underwent muscle biopsy, which showed vacuolar myopathy with glycogen accumulation in four of them with unspecific changes in the other three cases. Five patients developed proximal muscle weakness during the follow-up with a mild waddling gait and a positive Gowers manoeuver. Muscle MRI revealed mild hypotrophy of the thighs at the development of symptoms in four out of five cases. Four patients started alglucosidase alfa, and one avalglucosidase alfa. These five patients on Enzyme Replacement Therapy (ERT) showed motor and respiratory stability in the following years. Timely identification of emerging clinical manifestations in presymptomatic LOPD patients, as a result of careful follow-up, is essential to start prompt treatment to modify the disease natural course.
Collapse
Affiliation(s)
- M Porcino
- UOC of Clinical Neurology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - O Musumeci
- UOC of Clinical Neurology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - C Usbergo
- ERN-NMD Center for Neuromuscular Disorders of Messina - Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - A Pugliese
- UOC of Clinical Neurology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - I G Arena
- UOC of Clinical Neurology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - C Rodolico
- UOC of Clinical Neurology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - B Schoser
- Friedrich-Baur-Institute, Department of Neurology LMU Clinic, Ludwig-Maximilians-University of Munich, Germany
| | - A Toscano
- ERN-NMD Center for Neuromuscular Disorders of Messina - Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| |
Collapse
|
2
|
Lumgair H, Bashorum L, MacCulloch A, Minas E, Timmins G, Bratkovic D, Perry R, Stone M, Blazos V, Conti E, Saich R. Exploring Quality of Life in Adults Living With Late-onset Pompe Disease: A Combined Quantitative and Qualitative Analysis of Patient Perceptions from Australia, France, Italy, and the Netherlands. JOURNAL OF HEALTH ECONOMICS AND OUTCOMES RESEARCH 2025; 12:1-12. [PMID: 39758431 PMCID: PMC11699855 DOI: 10.36469/001c.126018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 01/07/2025]
Abstract
Background: Late-onset Pompe disease (LOPD) is a rare, autosomal recessive metabolic disorder that is heterogeneous in disease presentation and progression. People with LOPD report a significantly lower physical, psychological, and social quality of life (QoL) than the general population. Objectives: This study investigated how individuals' self-reported LOPD status (improving, stable, declining) relates to their QoL. Participant experiences such as use of mobility or ventilation aids, caregivers, symptomology, and daily life impacts were also characterized. Methods: A 2-part observational study was conducted online between October and December 2023 using the 36-item short-form tool (SF-36) and a survey. Adults with LOPD (N=41) from Australia, France, Italy, and the Netherlands were recruited. Results: Participants reporting "declining" LOPD status (56%) had lower physical functioning SF-36 scores than those reporting as "stable" or "improving." Those self-reporting as stable or improving often described an acceptance of declining health in their responses. Physical functioning scores were generally stable in respondents who had been receiving enzyme replacement therapy (ERT) for 1-15 years, but those who had received ERT for >15 years had lower scores. Requiring ventilation and mobility aids had additive negative impacts on physical functioning. Difficulty swallowing, speaking, and scoliosis were the most burdensome symptoms reported by those on ERT for >15-25 years. Discussion: These results demonstrate the humanistic burden of LOPD; through declining physical functioning SF-36 scores over increasing time and increased use of aids, and also through factors related to self-reported LOPD status (where declining status was associated with lower scores) and symptomology variances. Taken holistically, these areas are valuable to explore when informing optimized care. Among a largely declining cohort, even those not self-reporting decline often assumed future deterioration, highlighting the need for improved therapies and the potential to initiate or switch ERT based on evolving symptomology and daily life impacts. Conclusion: Our results indicate that progressing LOPD leads to loss of QoL in ways that relate to time, use of aids, evolving symptomology, and the patient's own perspective. A holistic approach to assessing the individual can help ensure relevant factors are investigated and held in balance, supporting optimized care.
Collapse
Affiliation(s)
| | | | | | | | | | - Drago Bratkovic
- Women's and Children's Hospital, Adelaide, University of Adelaide
| | | | | | | | | | | |
Collapse
|
3
|
Staedler K, Allenbach Y, Salort‐Campana E, Malfatti E, Rigolet A, Attarian S, Maues de Paula A, Léonard‐Louis S, Benveniste O, Stojkovic T. Vacuolar myopathy with monoclonal gammopathy and stiffness (VAMMGAS). Eur J Neurol 2025; 32:e70026. [PMID: 39804003 PMCID: PMC11726623 DOI: 10.1111/ene.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Monoclonal gammopathy (MG) has been reported in association with numerous neurological disorders but the spectrum of MG-associated myopathies remains poorly described. OBJECTIVE To report a newly acquired myopathy associated with MG. METHODS Three adult patients with the same phenotype from two French referral centers were prospectively analyzed. Clinical, electrophysiological, muscle biopsy data, and patients' outcomes under treatment are reported. RESULTS The patients, aged 37, 46, and 56 years, presented progressive weakness with subacute worsening and stiffness, in the context of severe weight loss. The weakness mainly involved the proximal limbs and axial muscles. Creatine kinase levels were 1400-2900 IU/L and electromyography revealed a myopathic pattern with spontaneous complex repetitive discharges. Muscle biopsies showed vacuoles containing glycogen and autophagic material along with the presence of sarcolemmal complement membrane attack complex deposits. There was no evidence of a genetic glycogen metabolic disorder. IgGκ monoclonal gammopathy was identified in all cases, without signs of lymphoplasmocytic proliferation. All patients improved with a treatment combining corticosteroids, intravenous immunoglobulins, and immunosuppressants, and two patients recovered walking ability. CONCLUSION AND RELEVANCE We report a new muscle disease defined by a vacuolar myopathy characterized by axial and proximal muscle weakness with prominent stiffness and high frequency discharges on electromyography associated with monoclonal gammopathy, defined under the acronym VAMMGAS.
Collapse
Affiliation(s)
- Katia Staedler
- Groupe Hospitalier Pitié‐Salpêtrière, Institut de MyologieAP‐HP, Sorbonne UniversitéParisFrance
| | - Yves Allenbach
- Groupe Hospitalier Pitié‐Salpêtrière, Département de médecine interne et d'immunologie cliniqueAP‐HP, Sorbonne UniversitéParisFrance
- INSERM, UMR974ParisFrance
| | | | - Edoardo Malfatti
- Referral Center for Neuromuscular DisordersAP‐HP, Henri Mondor University HospitalCréteilFrance
- University Paris Est Créteil, INSERM, U955, IMRBCréteilFrance
| | - Aude Rigolet
- Groupe Hospitalier Pitié‐Salpêtrière, Département de médecine interne et d'immunologie cliniqueAP‐HP, Sorbonne UniversitéParisFrance
| | - Shahram Attarian
- Centre de Référence des Maladies NeuromusculairesAP‐HM, Hôpital de la TimoneMarseilleFrance
| | | | - Sarah Léonard‐Louis
- Groupe Hospitalier Pitié‐Salpêtrière, Institut de MyologieAP‐HP, Sorbonne UniversitéParisFrance
| | - Olivier Benveniste
- Groupe Hospitalier Pitié‐Salpêtrière, Département de médecine interne et d'immunologie cliniqueAP‐HP, Sorbonne UniversitéParisFrance
- INSERM, UMR974ParisFrance
| | - Tanya Stojkovic
- Groupe Hospitalier Pitié‐Salpêtrière, Institut de MyologieAP‐HP, Sorbonne UniversitéParisFrance
| |
Collapse
|
4
|
Díaz-Manera J, Hughes D, Erdem-Özdamar S, Tard C, Béhin A, Bouhour F, Davison J, Hahn SH, Haack KA, Huynh-Ba O, Periquet M, Tammireddy S, Thibault N, Zhou T, van der Ploeg AT. Home infusion experience in patients with Pompe disease receiving avalglucosidase alfa during three clinical trials. Mol Genet Metab 2024; 143:108608. [PMID: 39566417 DOI: 10.1016/j.ymgme.2024.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
During three previously reported clinical trials of avalglucosidase alfa in patients with Pompe disease, 17 out of 142 participants were considered by the investigators to be appropriate candidates for home infusion. During their respective trials, these participants received a total of 419 avalglucosidase alfa infusions at home under healthcare professional supervision. They were clinically stable with no history of moderate or severe infusion-associated reactions within at least 12 months prior to starting home infusions. As of February 25, 2022, the 15 participants with late-onset Pompe disease (LOPD) had received between 2 and 48 home infusions and the 2 participants with infantile-onset Pompe disease (IOPD) had received 19 and 20 infusions. Adverse events occurred in 8 (53 %) participants with LOPD and neither of the participants with IOPD. Seven participants with LOPD had a total of 15 non-treatment-related, non-serious adverse events. One participant with LOPD experienced infusion-associated reactions of eyelid edema and flushing during the first home infusion; both were non-serious adverse events classified as grade 1 (mild). Home infusion was later resumed for this participant. Among LOPD participants, event rates for home infusions were comparable to those for clinic infusions: overall adverse events (0.028 vs 0.039 participants with events/infusion, respectively) and adverse events classified as infusion-associated reactions (0.003 vs. 0.006, respectively). No medication errors occurred during home infusion. These data suggest that infusion of avalglucosidase alfa at home is feasible and does not compromise safety for patients who have not experienced an infusion-associated reaction during the preceding 12 months of infusions in a clinical setting. Evaluation of real-world experience with avalglucosidase alfa home infusion in countries where it is already approved is ongoing.
Collapse
Affiliation(s)
- Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University International Centre for Life Newcastle upon Tyne, UK.
| | - Derralynn Hughes
- Lysosomal Storage Disorders Unit, Royal Free Hospital, London, UK
| | - Sevim Erdem-Özdamar
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Céline Tard
- CHU de Lille, Centre de Référence des Maladies Neuromusculaires Nord Est Ile de France, Lille, France
| | - Anthony Béhin
- AP-HP, Centre de Référence des Pathologies Neuromusculaires Nord-Est-Ile de France, Service de Neuromyologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Françoise Bouhour
- Referral Centre for Neuromuscular Diseases, Hôpital Neurologique, Lyon-Bron, France
| | - James Davison
- Great Ormond Street Hospital NHS Foundation Trust, London, UK; National Institute of Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Si Houn Hahn
- Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | | | | | | | | | | | | | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Mamarabadi M, Mauney S, Li Y, Aboussouan LS. Evaluation and management of dyspnea as the dominant presenting feature in neuromuscular disorders. Muscle Nerve 2024; 70:916-928. [PMID: 39267292 DOI: 10.1002/mus.28243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Dyspnea is a common symptom in neuromuscular disorders and, although multifactorial, it is usually due to respiratory muscle involvement, associated musculoskeletal changes such as scoliosis or, in certain neuromuscular conditions, cardiomyopathy. Clinical history can elicit symptoms such as orthopnea, trepopnea, sleep disruption, dysphagia, weak cough, and difficulty with secretion clearance. The examination is essential to assist with the diagnosis of an underlying neurologic disorder and determine whether dyspnea is from a cardiac or pulmonary origin. Specific attention should be given to possible muscle loss, use of accessory muscles of breathing, difficulty with neck flexion/extension, presence of thoraco-abdominal paradox, conversational dyspnea, cardiac examination, and should include a detailed neurological examination directed at the suspected differential diagnosis. Pulmonary function testing including sitting and supine spirometry, measures of inspiratory and expiratory muscle strength, cough peak flow, sniff nasal inspiratory pressure, pulse oximetry, transcutaneous CO2, and arterial blood gases will help determine the extent of the respiratory muscle involvement, assess for hypercapnic or hypoxemic respiratory failure, and qualify the patient for noninvasive ventilation when appropriate. Additional testing includes dynamic imaging with sniff fluoroscopy or diaphragm ultrasound, and diaphragm electromyography. Polysomnography is indicated for sleep related symptoms that are not otherwise explained. Noninvasive ventilation alleviates dyspnea and nocturnal symptoms, improves quality of life, and prolongs survival. Therapy targeted at neuromuscular disorders may help control the disease or favorably modify its course. For patients who have difficulty with secretion clearance, support of expiratory function with mechanical insufflation-exsufflation, oscillatory devices can reduce the aspiration risk.
Collapse
Affiliation(s)
- Mansoureh Mamarabadi
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Sarah Mauney
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Yuebing Li
- Neuromuscular Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Loutfi S Aboussouan
- Respiratory and Neurological Institutes, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Uribe-Carretero E, Rey V, Fuentes JM, Tamargo-Gómez I. Lysosomal Dysfunction: Connecting the Dots in the Landscape of Human Diseases. BIOLOGY 2024; 13:34. [PMID: 38248465 PMCID: PMC10813815 DOI: 10.3390/biology13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Lysosomes are the main organelles responsible for the degradation of macromolecules in eukaryotic cells. Beyond their fundamental role in degradation, lysosomes are involved in different physiological processes such as autophagy, nutrient sensing, and intracellular signaling. In some circumstances, lysosomal abnormalities underlie several human pathologies with different etiologies known as known as lysosomal storage disorders (LSDs). These disorders can result from deficiencies in primary lysosomal enzymes, dysfunction of lysosomal enzyme activators, alterations in modifiers that impact lysosomal function, or changes in membrane-associated proteins, among other factors. The clinical phenotype observed in affected patients hinges on the type and location of the accumulating substrate, influenced by genetic mutations and residual enzyme activity. In this context, the scientific community is dedicated to exploring potential therapeutic approaches, striving not only to extend lifespan but also to enhance the overall quality of life for individuals afflicted with LSDs. This review provides insights into lysosomal dysfunction from a molecular perspective, particularly in the context of human diseases, and highlights recent advancements and breakthroughs in this field.
Collapse
Affiliation(s)
- Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jose Manuel Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
7
|
Hahn P, Siefen RG, Benz K, Jackowski J, Köhler C, Lücke T. [Diagnosis and Management of Late-Onset Pompe Disease]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2024; 92:33-40. [PMID: 37494148 DOI: 10.1055/a-2095-2977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Pompe disease is a lysosomal storage disorder, with onset between the first weeks after birth and adulthood, depending on its phenotype. It can affect multiple organ systems and presents itself with a wide variety of symptoms. Thus, recognizing Pompe disease is difficult. Especially since enzyme replacement therapy for Pompe disease was introduced (in Germany in 2006), early diagnosis by means of enzyme activity determination from dried blood spot analysis and genetic verification has become important for outcome and quality of life. When facing an obscure muscular disorder, it is crucial to consider Pompe disease. This article provides an overview about Pompe disease and focuses on the diagnosis of the late onset type. The most important aspects of interdiciplinary care for patients with Pompe disease are presented. Additionally, it contains a section focusing on psychosocial challenges for children with Pompe disease and their families, which may include mental disorders and social retreat, and gives advice on how to support parents of affected children.
Collapse
Affiliation(s)
- Philipp Hahn
- Universitätsklinik für Kinder- und Jugendmedizin, Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| | - Rainer-Georg Siefen
- Universitätsklinik für Kinder- und Jugendmedizin, Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| | - Korbinian Benz
- Abteilung Zahnärztliche Chirurgie und Poliklinische Ambulanz der privaten Universität Witten/Herdecke, Universitäts-Zahnklinik, Witten/Herdecke, Germany
| | - Jochen Jackowski
- Abteilung Zahnärztliche Chirurgie und Poliklinische Ambulanz der privaten Universität Witten/Herdecke, Universitäts-Zahnklinik, Witten/Herdecke, Germany
| | - Cornelia Köhler
- Universitätsklinik für Kinder- und Jugendmedizin, Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| | - Thomas Lücke
- Universitätsklinik für Kinder- und Jugendmedizin, Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| |
Collapse
|
8
|
Nicolas X, Hurbin F, Periquet M, Richards S, Sensinger C, Welch K, An Haack K. Pharmacokinetics of Alglucosidase Alfa Manufactured at the 4000-L Scale in Participants with Pompe Disease: A Phase 3/4 Open-Label Study. Clin Pharmacol Drug Dev 2023; 12:1185-1193. [PMID: 37705424 DOI: 10.1002/cpdd.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023]
Abstract
Pompe disease is a rare, autosomal recessive, degenerative neuromuscular disease caused by deficiency of acid α-glucosidase, a lysosomal enzyme that degrades α-1,4 and α-1,6 linkages in glycogen. The objectives of this study (PAPAYA; NCT01410890) were to (1) characterize the pharmacokinetics of 20 mg/kg body weight alglucosidase alfa manufactured at the 4000-L scale following a single intravenous dose in participants aged less than 18 and 18 years or older with Pompe disease and (2) evaluate the relationship between anti-alglucosidase alfa antibody titers and the pharmacokinetics of alglucosidase alfa. Mean maximum plasma concentration and area under the concentration-time curve from time zero and extrapolated to infinite time were 204 μg/mL and 1110 μg • h/mL for participants aged less than 18 years (n = 10), respectively, and 307 μg/mL and 1890 μg • h/mL for participants aged 18 years or older (n = 10), respectively. Mean terminal half-life was 5.43 hours in participants aged less than 18 years with a high variability (70%) and 3.84 hours in participants aged 18 years or older with a low variability (21%). Mean maximum plasma concentration and area under the concentration-time curve from time zero and extrapolated to infinite time were 256 μg/mL and 1452 μg • h/mL, respectively, in anti-alglucosidase alfa-negative participants (n = 12) and 262 μg/mL and 1703 μg • h/mL, respectively, in anti-alglucosidase alfa-positive participants (n = 7). The study findings enrich available data from existing information on alglucosidase alfa without changing its known risks and benefits.
Collapse
|
9
|
Hannah WB, Case LE, Smith EC, Walters C, Bali D, Kishnani PS, Koeberl DD. Screening data from 19 patients with late-onset Pompe disease for a phase I clinical trial of AAV8 vector-mediated gene therapy. JIMD Rep 2023; 64:393-400. [PMID: 37701327 PMCID: PMC10494494 DOI: 10.1002/jmd2.12391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Late-onset Pompe disease (LOPD) is a multisystem disorder with significant myopathy. The standard treatment is enzyme replacement therapy (ERT), a therapy that is lifesaving, yet with limitations. Clinical trials have emerged for other potential treatment options, including adeno-associated virus (AAV) gene therapy. We present clinical parameters and AAV antibody titers for 19 individuals with LOPD undergoing screening for a Phase I clinical trial with an AAV serotype 8 vector targeting hepatic transduction (AAV2/8-LSPhGAA). Reported clinical parameters included GAA genotype, assessments of muscle function, upright and supine spirometry, anti-recombinant human GAA antibody titers, and biomarkers. Variability in measured parameters and phenotypes of screened individuals was evident. Eligibility criteria required that all participants have six-minute walk test (6MWT) and upright forced vital capacity (FVC) below the expected range for normal individuals, and were stably treated with ERT for >2 years. All participants had Pompe disease diagnosed by enzyme deficiency, and all had the common c.-32-13T>G LOPD pathogenic variant. Screening identified 14 patients (74%) with no or minimal detectable neutralizing antibodies against AAV8 (titer ≤1:5). 6MWT distance varied significantly (percent of expected distance ranging from 24% to 91% with an average of 60 and standard deviation of 21). Upright FVC percent predicted ranged from 35% predicted to 91% predicted with an average of 66 and standard deviation of 18. None of the participants had significantly elevated alanine transaminase, which has been associated with LOPD and could complicate screening for hepatitis related to AAV gene therapy. We review the parameters considered in screening for eligibility for a clinical trial of AAV8 vector-mediated gene therapy.
Collapse
Affiliation(s)
- William B. Hannah
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Laura E. Case
- Doctor of Physical Therapy Division, Department of OrthopedicsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Edward C. Smith
- Division of Neurology, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Crista Walters
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Deeksha Bali
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Dwight D. Koeberl
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
10
|
Labella B, Cotti Piccinelli S, Risi B, Caria F, Damioli S, Bertella E, Poli L, Padovani A, Filosto M. A Comprehensive Update on Late-Onset Pompe Disease. Biomolecules 2023; 13:1279. [PMID: 37759679 PMCID: PMC10526932 DOI: 10.3390/biom13091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Pompe disease (PD) is an autosomal recessive disorder caused by mutations in the GAA gene that lead to a deficiency in the acid alpha-glucosidase enzyme. Two clinical presentations are usually considered, named infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD), which differ in age of onset, organ involvement, and severity of disease. Assessment of acid alpha-glucosidase activity on a dried blood spot is the first-line screening test, which needs to be confirmed by genetic analysis in case of suspected deficiency. LOPD is a multi-system disease, thus requiring a multidisciplinary approach for efficacious management. Enzyme replacement therapy (ERT), which was introduced over 15 years ago, changes the natural progression of the disease. However, it has limitations, including a reduction in efficacy over time and heterogeneous therapeutic responses among patients. Novel therapeutic approaches, such as gene therapy, are currently under study. We provide a comprehensive review of diagnostic advances in LOPD and a critical discussion about the advantages and limitations of current and future treatments.
Collapse
Affiliation(s)
- Beatrice Labella
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Stefano Cotti Piccinelli
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Barbara Risi
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Filomena Caria
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Simona Damioli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Enrica Bertella
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Loris Poli
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| |
Collapse
|
11
|
Sharma V, Soto O. Clinical Reasoning: Adult Patient Presenting With Spine Pain Following a Motor Vehicle Accident. Neurology 2023; 100:1025-1031. [PMID: 36720640 PMCID: PMC10238157 DOI: 10.1212/wnl.0000000000206880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/16/2022] [Indexed: 02/02/2023] Open
Abstract
A 52-year-old woman with a complex medical history, including a history of consanguinity, developed refractory uncontrollable spine pain after a motor vehicle accident 2 years before presentation. There were no well-defined findings on clinical examination. She was found to have mildly elevated serum creatine phosphokinase levels, and spine imaging revealed fatty replacement and atrophy affecting predominantly lumbar paraspinal muscles. Initial EMG sampling of multiple limb muscles was normal. However, a follow-up concentric needle examination sampling paraspinal and trunk muscles showed abundant myotonic discharges, fibrillations and positive sharp waves, and myopathic motor unit action potential changes. This pattern of neurophysiologic abnormalities prompted the search for a myopathic disorder, which was ultimately confirmed with additional studies. This case highlights the critical role of neurophysiologic evaluation of paraspinal and other trunk muscles in the disambiguation of clinical and imaging data, helping to establish the diagnosis of a rare but treatable myopathy at early disease stages.
Collapse
Affiliation(s)
- Vaishnavi Sharma
- From the Tufts University School of Medicine (V.S., O.S.); Department of Neurology (O.S.), Tufts Medical Center, Boston, MA
| | - Oscar Soto
- From the Tufts University School of Medicine (V.S., O.S.); Department of Neurology (O.S.), Tufts Medical Center, Boston, MA.
| |
Collapse
|
12
|
Erdem Ozdamar S, Koc AF, Durmus Tekce H, Kotan D, Ekmekci AH, Sengun IS, Yuceyar AN, Uluc K. Expert opinion on the diagnostic odyssey and management of late-onset Pompe disease: a neurologist's perspective. Front Neurol 2023; 14:1095134. [PMID: 37265469 PMCID: PMC10229878 DOI: 10.3389/fneur.2023.1095134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/14/2023] [Indexed: 06/03/2023] Open
Abstract
This consensus statement by a panel of neurology experts aimed to provide a practical and implementable guidance document to assist clinicians with the best clinical practice in terms of diagnosis, treatment, and monitoring of late-onset Pompe disease (LOPD). The participating experts consider the clinical suspicion of LOPD by the physician to be of utmost importance in the prevention of diagnostic and therapeutic delay in LOPD patients. A diagnostic algorithm is proposed to facilitate the diagnosis of LOPD in patients presenting with unexplained proximal/axial weakness (with or without respiratory symptoms) or restrictive respiratory insufficiency with hyperCKemia and/or exercise intolerance as the red flag symptoms/signs that raise the index of suspicion for LOPD diagnosis. The diagnosis is based on the subsequent use of dried blood spot (DBS) assay, and the DBS assay can be confirmed by acid alpha-glucosidase (GAA) tissue analysis in leukocytes, fibroblasts, or muscle fibers and/or genetic mutation analysis. Accordingly, experts consider increased awareness among physicians about potential presenting characteristics with a high index of suspicion for LOPD to be crucial to suspect and consider LOPD in the differential diagnosis, while strongly suggesting the use of a diagnostic algorithm combined with DBS assay and confirmatory tests in the timely diagnosis of LOPD and implementation of best practice patterns.
Collapse
Affiliation(s)
- Sevim Erdem Ozdamar
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Ayse Filiz Koc
- Department of Neurology, Cukurova University Faculty of Medicine, Adana, Türkiye
| | - Hacer Durmus Tekce
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Dilcan Kotan
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Türkiye
| | - Ahmet Hakan Ekmekci
- Department of Neurology, Selcuk University Faculty of Medicine, Konya, Türkiye
| | - Ihsan Sukru Sengun
- Department of Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Türkiye
| | - Ayse Nur Yuceyar
- Department of Neurology, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Kayihan Uluc
- Department of Neurology, Marmara University School of Medicine, Istanbul, Türkiye
| |
Collapse
|
13
|
Jiao K, Dong J, Luo S, Yu L, Ke Q, Wang Z, Luan X, Zhang X, Guo J, Chen Y, Li X, Tan S, Qian F, Jiang J, Yu X, Yue D, Liu C, Luo L, Li J, Qu Y, Chen L, Tu J, Sun C, Yan C, Song J, Xi J, Lin J, Lu J, Zhao C, Zhu W, Fang Q. High-risk screening of late-onset Pompe disease: A different early portrait in China. Front Neurol 2022; 13:965207. [PMID: 36237614 PMCID: PMC9553204 DOI: 10.3389/fneur.2022.965207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
Introduction The lack of knowledge regarding the differences between Chinese and other ethnicities in the early manifestation of late-onset Pompe disease (LOPD) prohibits the development of an effective screening strategy. We conducted a multicenter screening study to determine LOPD prevalence in high-risk populations and define the early manifestation of LOPD in China. Methods Between August 2020 and April 2021, the participants were prospectively identified through medical examination at 20 centers from inpatient departments and outpatient neuromuscular clinics in China. The inclusion criteria were as follows: (1) age ≥ 1 year and (2) either one of the following conditions: (a) persistent hyperCKemia, (b) muscle weakness of the axial and/or limb-girdle muscles, or (c) unexplained restrictive respiratory insufficiency (RI). Enzymatic activity of acid α-glucosidase (GAA) was measured in a dried blood spot (DBS) using a tandem mass spectrometry (MS/MS) assay. Next-generation sequencing (NGS) was used to evaluate all samples with decreased GAA activity, searching for GAA mutations and pseudodeficiency alleles. Results Among the 492 cases, 26 positive samples (5.3%) were detected in the DBS test. Molecular studies confirmed a diagnosis of LOPD in eight cases (1.6%). Using MS/MS assay, GAA activities in individuals with pseudodeficiency could be distinguished from those in patients with LOPD. The median interval from the onset of symptoms to diagnosis was 5 years. All patients also showed RI, with a mean forced vital capacity (FVC) of 48%, in addition to axial/proximal muscle weakness. The creatine kinase (CK) level ranged from normal to no more than 5-fold the upper normal limit (UNL). LOPD with isolated hyperCKemia was not identified. Conclusion Less frequent hyperCKemia and predominant RI depict a different early portrait of adult Chinese patients with LOPD. A modified high-risk screening strategy should be proposed for the early diagnosis of Chinese patients with LOPD.
Collapse
Affiliation(s)
- Kexin Jiao
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Jihong Dong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Liqiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Shanghai, China
| | - Qing Ke
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou, Zhejiang, China
| | - Zhiqiang Wang
- Department of Neurology, Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xinghua Luan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junhong Guo
- Department of Neurology, First Hospital, Shanxi Medical University, Taiyuan, China
| | - Yan Chen
- Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China
| | - Xihua Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Song Tan
- Department of Neurology, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fangyuan Qian
- Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Research Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Jianming Jiang
- Department of Neurology, First Affiliated Hospital to Naval Medical University, Shanghai, China
| | - Xuen Yu
- Affiliated Hospital of the Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Dongyue Yue
- Department of Neurology, Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai, China
| | - Changxia Liu
- Department of Neurology, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Lijun Luo
- Department of Neurology, Wuhan No.1 Hospital, Wuhan, China
| | - Jianping Li
- Department of Geriatrics, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanzhou Qu
- Department of Neurology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Lan Chen
- Department of Neurology, Nantong first people's Hospital, Nantong, Jiangsu, China
| | - Jianglong Tu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chong Sun
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Chong Yan
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Song
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Wenhua Zhu
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Shanghai, China
- Qi Fang
| |
Collapse
|
14
|
Marques JS. The Clinical Management of Pompe Disease: A Pediatric Perspective. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9091404. [PMID: 36138713 PMCID: PMC9497581 DOI: 10.3390/children9091404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/09/2023]
Abstract
Pompe disease (PD) is an inherited metabolic disorder caused by a deficiency of acid α-glucosidase (GAA), leading to lysosomal accumulation of glycogen, mainly in skeletal and cardiac muscles as well as the nervous system. Patients with PD develop cellular dysfunction and muscle damage. PD can be classified into two classic forms, namely infantile-onset PD (IOPD) and late-onset PD (LOPD). Delayed treatment, particularly in IOPD, would result in significant organ damage and early death. Nonetheless, early diagnosis and timely treatment are often hampered by the rarity of PD and its wide variety of, but overlapping, symptoms. This article reviews the common clinical presentations of PD and outlines the essentials of PD management. In particular, the implications of newborn screening (NBS) and clinical performance of enzyme replacement therapy (ERT) are highlighted.
Collapse
Affiliation(s)
- Jorge Sales Marques
- Conde S. Januário Hospital, Macau 999078, China;
- Hospital Cuf Trindade, 4000-541 Porto, Portugal
| |
Collapse
|
15
|
Terzis G, Papadimas G, Krase A, Kontou E, Arnaoutis G, Papadopoulos C. Body composition and 6 minute walking ability in late-onset pompe disease patients after 9 years of enzyme replacement therapy. Int J Neurosci 2022; 132:699-705. [PMID: 33045893 DOI: 10.1080/00207454.2020.1835902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/21/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Pompe disease is a rare autosomal recessive disorder caused by the deficiency of acid α-glycosidase resulting in accumulation of glycogen in the lysosomes. The late-onset form of the disease (LOPD) causes primarily progressive muscle weakness and respiratory insufficiency. Enzyme replacement therapy (ERT) introduced in 2006, showed mild improvement or stabilization of the symptoms although long-term data are limited. Aim of the study was to describe the progression of body composition and walking ability in LOPD patients receiving ERT consistently for 9 years. METHODS Lean body mass, bone mineral density, body fat and 6 min walking distance were assessed in three male and three female LOPD patients (height 165.8 ± 11.2 cm, age 42.3 ± 11.8yrs, body mass 71.1 ± 20.8 kg, at study entry), every three years, for 9 years since ERT initiation (T0, T3, T6, T9). RESULTS Total body and upper extremities' lean mass remained unchanged (p < 0.05), but it was decreased for the lower extremities (T3:13.06 ± 3.848 kg vs. T9:11.63 ± 3.49 kg, p < 0.05). Lean body mass was not significantly different after 9 years of ERT compared to before the ERT initiation (T0 to T9). Bone mineral density remained unchanged. Percent body fat increased (T0:39.1 ± 10.3%, vs. T9:43.1 ± 10.4%, p < 0.05). Six minute walking distance tended to increase after 3 years of ERT and decreased gradually thereafter, with no difference between T0-T9. Lean mass of the lower extremities adjusted for body weight was significantly correlated with 6 min walking distance (r = 0.712, p < 0.05). CONCLUSION The current data show that enzyme replacement therapy may preserve lean body mass, bone mineral density and walking capacity in LOPD patients.
Collapse
Affiliation(s)
- Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Papadimas
- 1st Department of Neurology, School of Medicine, Eginition Hospital, University of Athens, Athens, Greece
| | - Argyro Krase
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Kontou
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Giannis Arnaoutis
- Laboratory of Nutrition and Clinical Dietetics, Harokopion University of Athens, Kallithea, Greece
| | - Constantinos Papadopoulos
- 1st Department of Neurology, School of Medicine, Eginition Hospital, University of Athens, Athens, Greece
| |
Collapse
|
16
|
Niño MY, In't Groen SLM, de Faria DOS, Hoogeveen-Westerveld M, van den Hout HJMP, van der Ploeg AT, Bergsma AJ, Pijnappel WWMP. Broad variation in phenotypes for common GAA genotypes in Pompe disease. Hum Mutat 2021; 42:1461-1472. [PMID: 34405923 PMCID: PMC9292902 DOI: 10.1002/humu.24272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/30/2021] [Accepted: 08/15/2021] [Indexed: 11/09/2022]
Abstract
Patients with the common c.-32-13T > G/null GAA genotype have a broad variation in age at symptom onset, ranging from early childhood to late adulthood. Phenotypic variation for other common GAA genotypes remains largely unexplored. Here, we analyzed variation in age at symptom onset for the most common GAA genotypes using the updated and extended Pompe GAA variant database. Patients with the c.2647-7G > A/null genotype invariably presented symptoms at adulthood, while the c.-32-13T > G/null, c.546G > T/null, c.1076-22T > G/null, c.2238G > C/null, and c.2173C > T/null genotypes led to presentations from early childhood up to late adulthood. The c.1309C > T/null genotype was associated with onset at early to late childhood. Symptom onset shifted toward higher ages in homozygous patients. These findings indicate that a broad variation in symptom onset occurs for various common GAA genotypes, suggesting the presence of modifying factors. We identified three new compound heterozygous c.-32-13T > G/null patients who carried the genetic modifier c.510C > T and who showed symptom onset at childhood. While c.510C > T acted by lowering GAA enzyme activity, other putative genetic modifiers did not at the group level, suggesting that these act in trans on processes downstream of GAA enzyme activity.
Collapse
Affiliation(s)
- Monica Y Niño
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stijn L M In't Groen
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Douglas O S de Faria
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Hannerieke J M P van den Hout
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Atze J Bergsma
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Correlation of GAA Genotype and Acid-α-Glucosidase Enzyme Activity in Hungarian Patients with Pompe Disease. Life (Basel) 2021; 11:life11060507. [PMID: 34072668 PMCID: PMC8228169 DOI: 10.3390/life11060507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/20/2023] Open
Abstract
Pompe disease is caused by the accumulation of glycogen in the lysosomes due to a deficiency of the lysosomal acid-α-glucosidase (GAA) enzyme. Depending on residual enzyme activity, the disease manifests two distinct phenotypes. In this study, we assess an enzymatic and genetic analysis of Hungarian patients with Pompe disease. Twenty-four patients diagnosed with Pompe disease were included. Enzyme activity of acid-α-glucosidase was measured by mass spectrometry. Sanger sequencing and an MLPA of the GAA gene were performed in all patients. Twenty (83.33%) patients were classified as having late-onset Pompe disease and four (16.66%) had infantile-onset Pompe disease. Fifteen different pathogenic GAA variants were detected. The most common finding was the c.-32-13 T > G splice site alteration. Comparing the α-glucosidase enzyme activity of homozygous cases to the compound heterozygous cases of the c.-32-13 T > G disease-causing variant, the mean GAA activity in homozygous cases was significantly higher. The lowest enzyme activity was found in cases where the c.-32-13 T > G variant was not present. The localization of the identified sequence variations in regions encoding the crucial protein domains of GAA correlates with severe effects on enzyme activity. A better understanding of the impact of pathogenic gene variations may help earlier initiation of enzyme replacement therapy (ERT) if subtle symptoms occur. Further information on the effect of GAA gene variation on the efficacy of treatment and the extent of immune response to ERT would be of importance for optimal disease management and designing effective treatment plans.
Collapse
|
18
|
Hernández-Arévalo P, Santotoribio JD, Delarosa-Rodríguez R, González-Meneses A, García-Morillo S, Jiménez-Arriscado P, Guerrero JM, Macher HC. Genotype-phenotype correlation of 17 cases of Pompe disease in Spanish patients and identification of 4 novel GAA variants. Orphanet J Rare Dis 2021; 16:233. [PMID: 34020684 PMCID: PMC8139113 DOI: 10.1186/s13023-021-01864-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/10/2021] [Indexed: 11/15/2022] Open
Abstract
Background Pompe disease (PD) is an autosomal recessive metabolic disorder caused by pathogenic variants in the acid -glucosidase gene (GAA) that produces defects in the lysosomal acid -1,4-glucosidase. We aimed to identify genetic variations and clinical features in Spanish subjects to establish genotypephenotype correlation. Methods A total of 2637 samples of patients who showed symptoms or susceptible signs of PD were enrolled in this observational study. Enzymatic activity was detected by fluorometric techniques and the genetic study was carried out using Next-Generation Sequencing. Results Fourteen different variants from 17 diagnosed patients were identified, seven males and nine females with LOPD (mean age 36.07, SD 20.57, range 764) and a 2-day-old boy with IOPD, four genetic variants had not been described in the literature previously, including a homozygous variant. In all of them -glucosidase activity was decreased. Muscle weakness, respiratory distress, exercise intolerance, hypotonia, dysphagia and myalgia were commonly observed in patients. Conclusions This study report four new genetic variants that contribute to the pathogenic variants spectrum of the GAA gene. We confirm that patients in Spain have a characteristic profile of a European population, with c.-32-13T>G being the most prevalent variant. Furthermore, it was confirmed that the c.236_246delCCACACAGTGC pathogenic variant in homozygosity is associated with early disease and a worse prognosis.
Collapse
Affiliation(s)
- Paula Hernández-Arévalo
- Fundación Pública Andaluza para la Gestión de la Investigación en Salud de Sevilla (FISEVI), Molecular Diagnosis and Rare Diseases Laboratory, Department of Clinical Biochemistry, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - José D Santotoribio
- Molecular Diagnosis and Rare Diseases Laboratory, Department of Clinical Biochemistry, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Rocío Delarosa-Rodríguez
- Fundación Pública Andaluza para la Gestión de la Investigación en Salud de Sevilla (FISEVI), Molecular Diagnosis and Rare Diseases Laboratory, Department of Clinical Biochemistry, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Antonio González-Meneses
- Dysmorphology Unit, Department of Pediatrics, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Salvador García-Morillo
- Collagenosis and Minority Diseases Unit, Experimental Cardiovascular Risk Unit, Department of Internal Medicine, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Pilar Jiménez-Arriscado
- Molecular Diagnosis and Rare Diseases Laboratory, Department of Clinical Biochemistry, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Juan M Guerrero
- Department of Clinical Biochemistry and Molecular Biology Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (Ibis),, Seville University, Seville, Spain
| | - Hada C Macher
- Molecular Diagnosis and Rare Diseases Laboratory, Department of Clinical Biochemistry, Hospital Universitario Virgen del Rocío, Seville, Spain.
| |
Collapse
|
19
|
Limgala RP, Furtak V, Ivanova MM, Changsila E, Wilks F, Fidelia‐Lambert MN, Goker‐Alpan O, Gondré‐Lewis MC. Selective screening for lysosomal storage disorders in a large cohort of minorities of African descent shows high prevalence rates and novel variants. JIMD Rep 2021; 59:60-68. [PMID: 33977031 PMCID: PMC8100401 DOI: 10.1002/jmd2.12201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Population studies point to regional and ethnicity-specific differences in genetic predisposition for some lysosomal storage disorders (LSDs). The aim of the study was to determine the prevalence of the three treatable forms of lysosomal storage disorders (Gaucher disease [GD], Pompe disease [PD], and Fabry disease [FD]) in a cohort of mostly urban-dwelling individuals of African ancestry, a previously unknown genetic landscape for LSDs. Large-scale selective multistep biochemical and genetic screening was performed in patients seeking healthcare for various health concerns. Fluorimetric enzyme assays for GD, PD, and FD were performed on dried blood spots. Targeted gene sequencing was performed on samples that showed significantly lower enzyme activities (<10% of control mean) after two tiers of enzymatic screening. A total of 5287 unique samples representing a cross section of patients who visited Howard University Hospital and College of Medicine from 2015 to 2017 were included in the study. Study samples were obtained from a population where ~90% reported as African-American, ~5% Hispanic, and <5% Caucasian or other. Regarding GD, three subjects had either homozygous or heterozygous mutations in the GBA gene. As to PD, eight subjects were either homozygous or compound heterozygous for GAA mutations, including three novel mutations: (a) c.472 A > G; p.T158A, (b) c.503G > T; p.R168L, (c) c.1985del. Regarding FD, two subjects had pathogenic GLA mutations, and four had single nucleotide polymorphisms in the 5'UTR, previously implicated in modulating gene expression. The findings highlight a higher incidence of abnormal enzyme levels and pathogenic mutations in the target population reflecting ancestry-based specific genotype and phenotype variations.
Collapse
Affiliation(s)
- Renuka Pudi Limgala
- Lysosomal and Rare Disorders Research and Treatment CenterFairfaxVirginiaUSA
| | - Vyacheslav Furtak
- Lysosomal and Rare Disorders Research and Treatment CenterFairfaxVirginiaUSA
| | | | - Erk Changsila
- Lysosomal and Rare Disorders Research and Treatment CenterFairfaxVirginiaUSA
| | - Floyd Wilks
- Developmental Neuropsychopharmacology Laboratory, Department of AnatomyHoward University College of MedicineWashingtonDistrict of ColumbiaUSA
| | | | - Ozlem Goker‐Alpan
- Lysosomal and Rare Disorders Research and Treatment CenterFairfaxVirginiaUSA
| | - Marjorie C. Gondré‐Lewis
- Developmental Neuropsychopharmacology Laboratory, Department of AnatomyHoward University College of MedicineWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
20
|
Tucker-Bartley A, Lemme J, Gomez-Morad A, Shah N, Veliu M, Birklein F, Storz C, Rutkove S, Kronn D, Boyce AM, Kraft E, Upadhyay J. Pain Phenotypes in Rare Musculoskeletal and Neuromuscular Diseases. Neurosci Biobehav Rev 2021; 124:267-290. [PMID: 33581222 PMCID: PMC9521731 DOI: 10.1016/j.neubiorev.2021.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
For patients diagnosed with a rare musculoskeletal or neuromuscular disease, pain may transition from acute to chronic; the latter yielding additional challenges for both patients and care providers. We assessed the present understanding of pain across a set of ten rare, noninfectious, noncancerous disorders; Osteogenesis Imperfecta, Ehlers-Danlos Syndrome, Achondroplasia, Fibrodysplasia Ossificans Progressiva, Fibrous Dysplasia/McCune-Albright Syndrome, Complex Regional Pain Syndrome, Duchenne Muscular Dystrophy, Infantile- and Late-Onset Pompe disease, Charcot-Marie-Tooth Disease, and Amyotrophic Lateral Sclerosis. Through the integration of natural history, cross-sectional, retrospective, clinical trials, & case studies we described pathologic and genetic factors, pain sources, phenotypes, and lastly, existing therapeutic approaches. We highlight that while rare diseases possess distinct core pathologic features, there are a number of shared pain phenotypes and mechanisms that may be prospectively examined and therapeutically targeted in a parallel manner. Finally, we describe clinical and research approaches that may facilitate more accurate diagnosis, monitoring, and treatment of pain as well as elucidation of the evolving nature of pain phenotypes in rare musculoskeletal or neuromuscular illnesses.
Collapse
Affiliation(s)
- Anthony Tucker-Bartley
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jordan Lemme
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrea Gomez-Morad
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nehal Shah
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Miranda Veliu
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Frank Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, 55131, Germany
| | - Claudia Storz
- Department of Orthopedics, Physical Medicine and Rehabilitation, University Hospital LMU Munich, Munich, Bavaria, 80539, Germany
| | - Seward Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - David Kronn
- Department of Pathology and Pediatrics, New York Medical College, Valhalla, NY, 10595, USA; Medical Genetics, Inherited Metabolic & Lysosomal Storage Disorders Center, Boston Children's Health Physicians, Westchester, NY, 10532, USA
| | - Alison M Boyce
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eduard Kraft
- Department of Orthopedics, Physical Medicine and Rehabilitation, University Hospital LMU Munich, Munich, Bavaria, 80539, Germany; Interdisciplinary Pain Unit, University Hospital LMU Munich, Munich, 80539, Germany
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
21
|
Molares-Vila A, Corbalán-Rivas A, Carnero-Gregorio M, González-Cespón JL, Rodríguez-Cerdeira C. Biomarkers in Glycogen Storage Diseases: An Update. Int J Mol Sci 2021; 22:4381. [PMID: 33922238 PMCID: PMC8122709 DOI: 10.3390/ijms22094381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023] Open
Abstract
Glycogen storage diseases (GSDs) are a group of 19 hereditary diseases caused by a lack of one or more enzymes involved in the synthesis or degradation of glycogen and are characterized by deposits or abnormal types of glycogen in tissues. Their frequency is very low and they are considered rare diseases. Except for X-linked type IX, the different types are inherited in an autosomal recessive pattern. In this study we reviewed the literature from 1977 to 2020 concerning GSDs, biomarkers, and metabolic imbalances in the symptoms of some GSDs. Most of the reported studies were performed with very few patients. Classification of emerging biomarkers between different types of diseases (hepatics GSDs, McArdle and PDs and other possible biomarkers) was done for better understanding. Calprotectin for hepatics GSDs and urinary glucose tetrasaccharide for Pompe disease have been approved for clinical use, and most of the markers mentioned in this review only need clinical validation, as a final step for their routine use. Most of the possible biomarkers are implied in hepatocellular adenomas, cardiomyopathies, in malfunction of skeletal muscle, in growth retardation, neutropenia, osteopenia and bowel inflammation. However, a few markers have lost interest due to a great variability of results, which is the case of biotinidase, actin alpha 2, smooth muscle, aorta and fibroblast growth factor receptor 4. This is the first review published on emerging biomarkers with a potential application to GSDs.
Collapse
Affiliation(s)
- Alberto Molares-Vila
- Bioinformatics Platform, Health Research Institute in Santiago de Compostela (IDIS), SERGAS-USC, 15706 Santiago de Compostela, Spain;
| | - Alberte Corbalán-Rivas
- Local Office of Health Inspection, Health Ministry at Galician Autonomous Region, 27880 Burela, Spain;
| | - Miguel Carnero-Gregorio
- Department of Molecular Diagnosis (Arrays Division), Institute of Cellular and Molecular Studies (ICM), 27003 Lugo, Spain;
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain;
| | - José Luís González-Cespón
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain;
| | - Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain;
- Dermatology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Meixoeiro Hospital, SERGAS, 36213 Vigo, Spain
| |
Collapse
|
22
|
Starbuck C, Reay J, Silk E, Roberts M, Hendriksz C, Jones R. Are there common walking gait characteristics in patients diagnosed with late-onset Pompe disease? Hum Mov Sci 2021; 77:102777. [PMID: 33730657 DOI: 10.1016/j.humov.2021.102777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/07/2020] [Accepted: 02/28/2021] [Indexed: 11/26/2022]
Abstract
Late-onset Pompe disease (LOPD) is a rare disease, defined as a progressive accumulation of lysosomal glycogen resulting in muscle weakness and respiratory problems. Anecdotally, individuals often have difficulties walking, yet, there is no three-dimensional data supporting these claims. We aimed to assess walking patterns in individuals with LOPD and compare with healthy individuals. Kinematic, kinetic and spatiotemporal data were compared during walking at a self-selected speed between individuals with LOPD (n = 12) and healthy controls (n = 12). Gait profile scores and movement analysis profiles were also determined to indicate gait quality. In comparison with healthy individuals, the LOPD group demonstrated greater thoracic sway (96%), hip adduction angles (56%) and pelvic range of motion (77%) and reduced hip extensor moments (36%). Greater group variance for the LOPD group were also observed. Individuals with LOPD had a slower (15%) walking speed and reduced cadence (7%). Gait profile scores were 37% greater in the LOPD group compared to the healthy group. Proximal muscular weakness associated with LOPD disease is likely to have resulted in a myopathic gait pattern, slower selected walking speeds and deviations in gait patterns. Although individuals with LOPD presented with some common characteristics, greater variability in gait patterns is likely to be a result of wide variability in phenotype spectrum observed with LOPD. This is the first study to examine walking in individuals with LOPD using instrumented gait analysis and provides an understanding of LOPD on walking function which can help orientate physiotherapy treatment for individuals with LOPD.
Collapse
Affiliation(s)
- Chelsea Starbuck
- Human Movement and Rehabilitation, School of Health and Society, University of Salford, Salford, UK.
| | - Julie Reay
- Human Movement and Rehabilitation, School of Health and Society, University of Salford, Salford, UK
| | - Edward Silk
- The Mark Holland Metabolic Unit, Salford Royal NHS Foundation Trust, Stott Lane, Salford, UK
| | - Mark Roberts
- The Mark Holland Metabolic Unit, Salford Royal NHS Foundation Trust, Stott Lane, Salford, UK
| | - Christian Hendriksz
- The Mark Holland Metabolic Unit, Salford Royal NHS Foundation Trust, Stott Lane, Salford, UK
| | - Richard Jones
- Human Movement and Rehabilitation, School of Health and Society, University of Salford, Salford, UK
| |
Collapse
|
23
|
van Kooten HA, Roelen CHA, Brusse E, van der Beek NAME, Michels M, van der Ploeg AT, Wagenmakers MAEM, van Doorn PA. Cardiovascular disease in non-classic Pompe disease: A systematic review. Neuromuscul Disord 2021; 31:79-90. [PMID: 33386209 DOI: 10.1016/j.nmd.2020.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/14/2023]
Abstract
Pompe disease is a rare inherited metabolic and neuromuscular disorder, presenting as a spectrum, with the classic infantile form on one end and the more slowly progressive non-classic form on the other end. While being a hallmark in classic infantile Pompe disease, cardiac involvement in non-classic Pompe disease seems rare. Vascular abnormalities, such as aneurysms and arterial dolichoectasia, likely caused by glycogen accumulation in arterial walls, have been reported in non-classic Pompe patients. With this first systematic review on cardiovascular disease in non-classic Pompe disease, we aim to gain insight in the prevalence and etiology of cardiovascular disease in these patients. Forty-eight studies (eight case-control studies, 15 cohort studies and 25 case reports/series) were included. Fourteen studies reported cardiac findings, 25 studies described vascular findings, and nine studies reported both cardiac and vascular findings. Severe cardiac involvement in non-classic Pompe disease patients has rarely been reported, particularly in adult-onset patients carrying the common IVS1 mutation. There are indications that intracranial dolichoectasia and aneurysms are more prevalent in non-classic Pompe patients compared to the general population. To further investigate the prevalence of cardiovascular disease in non-classic Pompe patients, larger case-control studies that also study established cardiovascular risk factors should be conducted.
Collapse
Affiliation(s)
- H A van Kooten
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - C H A Roelen
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - E Brusse
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - N A M E van der Beek
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - M Michels
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - A T van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, the Netherlands
| | - M A E M Wagenmakers
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - P A van Doorn
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| |
Collapse
|
24
|
Fernandes SA, Khan AA, Boggs T, Bowling M, Austin S, Stefanescu M, Case L, Kishnani PS. Quantitative whole-body magnetic resonance imaging in children with Pompe disease: Clinical tools to evaluate severity of muscle disease. JIMD Rep 2021; 57:94-101. [PMID: 33473345 PMCID: PMC7802624 DOI: 10.1002/jmd2.12174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Since the introduction of enzyme replacement therapy (ERT) with alglucosidase alfa, there has been increased survival in patients with Pompe disease. It is essential to characterize and quantify the burden of disease in these patients. Here, we report a measure of muscle fat infiltration in children with infantile and pediatric late-onset Pompe disease (IPD and LOPD, respectively) to better understand the extent of muscle involvement. METHODS Eleven pediatric patients with Pompe disease (five IPD, six LOPD), ages 7-17 years, received whole-body magnetic resonance imaging (WBMRI), muscle strength testing using the modified Medical Research Council (mMRC) scale, functional assessment using gait, stairs, gowers, chair (GSGC), and urine glucose tetrasaccharide (Glc4) testing. The intramuscular fat seen on WBMRI was quantified using proton density fat fraction (PDFF) and correlated to appropriate muscle strength and functional tests, and urine Glc4. RESULTS Patients with IPD, although younger, had higher mean PDFF values than LOPD patients (11.61% vs 8.52%). Significant correlation existed between PDFF and the GSGC assessment (r = .9273, P = .0003). Moderate correlation existed between PDFF and mMRC (r = -.667, P = .0831), and PDFF and urine Glc4 (r = .6121, P = .0667). Anterior tibialis was in the top quartile of muscle involvement for patients with LOPD. CONCLUSION In the past, physical therapy assessments alone have been used to track disease progression. Here, we show the clinical utility of WBMRI in quantifying muscle involvement in children with Pompe disease, especially regarding the novel involvement of anterior tibialis in children with LOPD, to better assess baseline muscle burden and mapping disease progression in children treated with ERT.
Collapse
Affiliation(s)
- Samuela A. Fernandes
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Aleena A. Khan
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Tracy Boggs
- Division of Physical Therapy, Department of Community and Family MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Michael Bowling
- Multi‐Dimensional Image Processing Laboratory, Department of RadiologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Stephanie Austin
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Mihaela Stefanescu
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Laura Case
- Doctor of Physical Therapy Division, Department of OrthopedicsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
25
|
Shah NM, Sharma L, Ganeshamoorthy S, Kaltsakas G. Respiratory failure and sleep-disordered breathing in late-onset Pompe disease: a narrative review. J Thorac Dis 2020; 12:S235-S247. [PMID: 33214927 PMCID: PMC7642632 DOI: 10.21037/jtd-cus-2020-007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/01/2020] [Indexed: 11/06/2022]
Abstract
Late-onset Pompe disease (LOPD) is a rare autosomal recessive glycogen storage disease that results in accumulation of glycogen in muscle cells causing muscular weakness. It causes a progressive proximal myopathy, accompanied by respiratory muscle weakness, which can lead to ventilatory failure. In untreated LOPD, the most common cause of death is respiratory failure. Patients suffering from respiratory compromise may present with symptoms of sleep-disordered breathing (SDB) before overt signs of respiratory failure. Diaphragm weakness leads to nocturnal hypoventilation, which can result in sleep disruption. Both subjective and objective sleep quality can be impaired with associated excessive daytime sleepiness (EDS). Health-related quality of life worsens as sleep disturbance increases. The mainstay of treatment for SDB and respiratory failure in LOPD is non-invasive ventilation (NIV), which aims to ensure adequate ventilation, particularly during sleep, and prevent acute hypercapnic failure. These patients are at risk of acute deterioration due to lower respiratory tract infections; effective secretion clearance and vaccination against common pathogens is an important facet of care. Whilst disease-modifying enzyme replacement therapy (ERT) delays progression of locomotor dysfunction and prolongs life, its effect on respiratory function and SDB remains unclear. There are no data demonstrating the impact of ERT on sleep quality or SDB.
Collapse
Affiliation(s)
- Neeraj Mukesh Shah
- Lane Fox Respiratory Service, St. Thomas’ Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Lane Fox Clinical Respiratory Physiology Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Centre for Human and Applied Physiological Sciences (CHAPS), King’s College London, London, UK
| | - Lakshya Sharma
- Lane Fox Respiratory Service, St. Thomas’ Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Santhosh Ganeshamoorthy
- Lane Fox Respiratory Service, St. Thomas’ Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Georgios Kaltsakas
- Lane Fox Respiratory Service, St. Thomas’ Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Lane Fox Clinical Respiratory Physiology Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Centre for Human and Applied Physiological Sciences (CHAPS), King’s College London, London, UK
| |
Collapse
|
26
|
van den Dorpel JJA, Poelman E, Harlaar L, van Kooten HA, van der Giessen LJ, van Doorn PA, van der Ploeg AT, van den Hout JMP, van der Beek NAME. Distal muscle weakness is a common and early feature in long-term enzyme-treated classic infantile Pompe patients. Orphanet J Rare Dis 2020; 15:247. [PMID: 32928284 PMCID: PMC7488760 DOI: 10.1186/s13023-020-01482-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022] Open
Abstract
Background Enzyme replacement therapy (ERT; alglucosidase alfa) has improved the prospects for patients with classic infantile Pompe disease considerably. However, over time we noticed that many of these children exhibit distal muscle weakness at an early age, which is in contrast to the primarily proximal and axial muscle weakness in patients with late-onset Pompe disease. This was reason to study the prevalence and severity of distal muscle weakness, and the sequence of muscle involvement over time in patients that had learned to walk under ERT. Methods In this prospective, single-center cohort study, we studied 16 classic infantile patients. We used video recordings that were made during regular standardized assessments to investigate distal muscle function (active dorsiflexion of the feet during walking; ability to use a pincer grasp/actively extend the fingers) and proximal muscle function (standing up from a supine position; raising the arms above the head). Results Median age at start of ERT was 3.2 months (0.1–5.8 months), median age at study end was 5.6 years (2.9–18.2 years). Six patients (6/16, 38%) initially had no evident signs of distal muscle weakness and developed a gait with active dorsiflexion of the feet. The other 10 patients never exhibited active dorsiflexion of the feet during walking. At study-end two patients showed no loss of distal muscle function. A subset of five patients (5/16, 31%) developed also weakness of the hands, particularly of the extensors of the 3rd and 4th digit. Conclusions We found that the majority (14/16, 88%) of patients who had learned to walk exhibited distal muscle weakness of the lower extremities, while a subset (5/16, 31%) also developed weakness of the hands. The distal muscle weakness was often more serious than, and preceded the development of, the proximal muscle weakness.
Collapse
Affiliation(s)
- J J A van den Dorpel
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center, P.O. Box 2060, Rotterdam, 3000, CB, The Netherlands
| | - E Poelman
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center, P.O. Box 2060, Rotterdam, 3000, CB, The Netherlands
| | - L Harlaar
- Center for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center, P.O. Box 2060, Rotterdam, 3000, CB, The Netherlands
| | - H A van Kooten
- Center for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center, P.O. Box 2060, Rotterdam, 3000, CB, The Netherlands
| | - L J van der Giessen
- Center for Lysosomal and Metabolic Diseases, Department of Pediatric Physiotherapy, Erasmus MC University Medical Center, P.O. Box 2060, Rotterdam, 3000, CB, The Netherlands
| | - P A van Doorn
- Center for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center, P.O. Box 2060, Rotterdam, 3000, CB, The Netherlands
| | - A T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center, P.O. Box 2060, Rotterdam, 3000, CB, The Netherlands
| | - J M P van den Hout
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center, P.O. Box 2060, Rotterdam, 3000, CB, The Netherlands
| | - N A M E van der Beek
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus MC University Medical Center, P.O. Box 2060, Rotterdam, 3000, CB, The Netherlands. .,Center for Lysosomal and Metabolic Diseases, Department of Neurology, Erasmus MC University Medical Center, P.O. Box 2060, Rotterdam, 3000, CB, The Netherlands.
| |
Collapse
|
27
|
Rana J, Biswas M. Regulatory T cell therapy: Current and future design perspectives. Cell Immunol 2020; 356:104193. [PMID: 32823038 DOI: 10.1016/j.cellimm.2020.104193] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Tregs) maintain immune equilibrium by suppressing immune responses through various multistep contact dependent and independent mechanisms. Cellular therapy using polyclonal Tregs in transplantation and autoimmune diseases has shown promise in preclinical models and clinical trials. Although novel approaches have been developed to improve specificity and efficacy of antigen specific Treg based therapies, widespread application is currently restricted. To date, design-based approaches to improve the potency and persistence of engineered chimeric antigen receptor (CAR) Tregs are limited. Here, we describe currently available Treg based therapies, their advantages and limitations for implementation in clinical studies. We also examine various strategies for improving CAR T cell design that can potentially be applied to CAR Tregs, such as identifying co-stimulatory signalling domains that enhance suppressive ability, determining optimal scFv affinity/avidity, and co-expression of accessory molecules. Finally, we discuss the importance of tailoring CAR Treg design to suit the individual disease.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
28
|
Taverna S, Cammarata G, Colomba P, Sciarrino S, Zizzo C, Francofonte D, Zora M, Scalia S, Brando C, Curto AL, Marsana EM, Olivieri R, Vitale S, Duro G. Pompe disease: pathogenesis, molecular genetics and diagnosis. Aging (Albany NY) 2020; 12:15856-15874. [PMID: 32745073 PMCID: PMC7467391 DOI: 10.18632/aging.103794] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Pompe disease (PD) is a rare autosomal recessive disorder caused by mutations in the GAA gene, localized on chromosome 17 and encoding for acid alpha-1,4-glucosidase (GAA). Currently, more than 560 mutations spread throughout GAA gene have been reported. GAA catalyzes the hydrolysis of α-1,4 and α-1,6-glucosidic bonds of glycogen and its deficiency leads to lysosomal storage of glycogen in several tissues, particularly in muscle. PD is a chronic and progressive pathology usually characterized by limb-girdle muscle weakness and respiratory failure. PD is classified as infantile and childhood/adult forms. PD patients exhibit a multisystemic manifestation that depends on age of onset. Early diagnosis is essential to prevent or reduce the irreversible organ damage associated with PD progression. Here, we make an overview of PD focusing on pathogenesis, clinical phenotypes, molecular genetics, diagnosis, therapies, autophagy and the role of miRNAs as potential biomarkers for PD.
Collapse
Affiliation(s)
- Simona Taverna
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Giuseppe Cammarata
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Paolo Colomba
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Serafina Sciarrino
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Carmela Zizzo
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Daniele Francofonte
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Marco Zora
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Simone Scalia
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Chiara Brando
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Alessia Lo Curto
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Emanuela Maria Marsana
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Roberta Olivieri
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Silvia Vitale
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| |
Collapse
|
29
|
Khan AA, Boggs T, Bowling M, Austin S, Stefanescu M, Case L, Kishnani PS. Whole-body magnetic resonance imaging in late-onset Pompe disease: Clinical utility and correlation with functional measures. J Inherit Metab Dis 2020; 43:549-557. [PMID: 31710733 DOI: 10.1002/jimd.12190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/02/2023]
Abstract
Whole-body magnetic resonance imaging (WBMRI) has clinical utility in measuring the amount of fatty infiltration in late-onset Pompe disease (LOPD). Muscle strength and function testing also provide valuable insight to the progression of myopathy seen in these patients. The main purpose of this study was to determine how closely muscle strength and functional testing correlate to the amount of fatty infiltration seen on WBMRI. LOPD patients were followed longitudinally and WBMRI, muscle strength testing using the modified Medical Research Council (mMRC) scale, muscle function testing using the Gait, Stairs, Gowers, Chair (GSGC) score, and labs including urinary glucose tetrasaccharide (Glc4) were performed at each visit. The amount of fat seen on WBMRI was quantified using proton density fat fraction (PDFF) and correlated to appropriate muscle strength and functional tests. Nineteen patients with LOPD aged 10 to 67 years were followed for a 1 to 2 year duration. There was a small increase of 1.26% (±2.57%) in overall PDFF per year in patients on ERT. Muscle strength (mMRC) and functional testing (GSGC) correlated highly with PDFF (r = -.7596, P < .0001 and r = .8267, P < .0001, respectively). Time to carry out individual tasks of the GSGC also correlated highly with PDFF of the muscles involved. Glc4 levels were normal on most visits (27/39) despite varying severity of muscle weakness in patients. Muscle strength and GSGC scores correlate highly with PDFF values from WBMRI. They may be used in assessing severity of muscle disease and to follow LOPD patients over time.
Collapse
Affiliation(s)
- Aleena A Khan
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Tracy Boggs
- Division of Physical Therapy, Department of Community and Family Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Michael Bowling
- Multi-Dimensional Image Processing Laboratory, Department of Radiology, Duke University School of Medicine, Durham, North Carolina
| | - Stephanie Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Mihaela Stefanescu
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Laura Case
- Division of Physical Therapy, Department of Community and Family Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
30
|
Häuser F, Gökce S, Werner G, Danckwardt S, Sollfrank S, Neukirch C, Beyer V, Hennermann JB, Lackner KJ, Mengel E, Rossmann H. A non-invasive diagnostic assay for rapid detection and characterization of aberrant mRNA-splicing by nonsense mediated decay inhibition. Mol Genet Metab 2020; 130:27-35. [PMID: 32222271 DOI: 10.1016/j.ymgme.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND Interpretation of genetic variants detected by sequencing of genomic DNA, which may cause splicing defects, regularly requires mRNA analysis. Usually, only bioinformatic testing is provided, because simple and non-invasive assay protocols are lacking. Furthermore, the detection of mis-splicing is often hampered by nonsense mediated mRNA decay (NMD). METHODS Starting from a case of Pompe disease with two potential splicing variants an assay for the analysis of splice defects in general was developed. We analyzed the transcripts from the gene of interest by standard methods after short-term culture of the patient's lymphocytes in the presence and absence of a NMD inhibitor. Variant and wild type transcript expression were quantified by allele specific PCR in the patient and both parents and the expression ratio with/without NMD inhibition was calculated for each transcript. RESULTS NMD detection in lymphocytes was optimized and evaluated by analyzing a naturally occurring NMD transcript. Several compounds inhibited NMD successfully, including potential therapeutic agents. Sample storage for up to 4 days at room temperature prior to lymphocyte isolation did not affect results. In a proof of concept we identified two candidate variants as severe splicing variants in a patient with Pompe disease, but the strategy can also be used to screen for any mis-spliced transcripts prone to NMD. CONCLUSIONS We developed a simple, non-invasive assay for the detection and characterization of potential splicing variants. This is essential, because early and near-term diagnosis and disease classification is required to facilitate therapy in many genetic diseases.
Collapse
Affiliation(s)
- Friederike Häuser
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Seyfullah Gökce
- Center for Pediatric and Adolescent Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Gesa Werner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Sven Danckwardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Stefanie Sollfrank
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Carolin Neukirch
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Vera Beyer
- Institute of Human Genetics, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Julia B Hennermann
- Center for Pediatric and Adolescent Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Eugen Mengel
- Center for Pediatric and Adolescent Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
31
|
Kuchenbecker KS, Kirschner-Hermanns R, Kornblum C, Jaekel A, Anding R, Kohler A. Urodynamic and clinical studies in patients with late-onset Pompe disease and lower urinary tract symptoms. Neurourol Urodyn 2020; 39:1437-1446. [PMID: 32343026 DOI: 10.1002/nau.24369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/28/2020] [Accepted: 04/14/2020] [Indexed: 11/08/2022]
Abstract
AIMS In late-onset Pompe disease (LOPD), a lysosomal storage disorder with glycogen accumulation in several tissues, patients suffer from progressive skeletal muscle weakness. Lower urinary tract symptoms (LUTS) have rarely been reported. The aim of this study is to objectively assess LUTS in patients with LOPD for the first time using urodynamic studies and to determine differences between LOPD patients with and without LUTS. METHODS Eighteen patients with LOPD were recruited, of whom seven patients (38.9%) reported LUTS (both voiding and storage symptoms). Six of these patients underwent urodynamic studies. Medical histories and motor function tests were compared between the 7 patients with LUTS and the 11 patients without LUTS. The Student t test was used to determine an association between the two cohorts. RESULTS In the seven LOPD patients with LUTS urodynamics revealed neurogenic dysfunction, underactive detrusor, and bladder outlet obstruction. These patients had suffered from clinical symptoms for a longer period of time before starting enzyme replacement therapy (P = .017) than patients without LUTS. They also scored more poorly on muscle function tests. Urodynamic results point to neurogenic causes for LUTS in LOPD, that is, neurogenic reflex bladder or impaired filling sensation. This could be due to glycogen accumulation in the urothelium and central nervous system. Patients with LUTS also seem to be more severely affected by LOPD than patients without LUTS. CONCLUSION LUTS in LOPD requires early and specific treatment to limit the development of severe health problems. Urodynamic studies should be considered in assessing LUTS.
Collapse
Affiliation(s)
| | - Ruth Kirschner-Hermanns
- Neuro-Urologie/Klinik für Urologie und Kinderurologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Cornelia Kornblum
- Neuro-Urologie/Klinik für Urologie und Kinderurologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Anke Jaekel
- Neuro-Urologie/Klinik für Urologie und Kinderurologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Ralf Anding
- Neuro-Urologie/Klinik für Urologie und Kinderurologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Annette Kohler
- Neuro-Urologie/Klinik für Urologie und Kinderurologie, Universitätsklinikum Bonn, Bonn, Germany
| |
Collapse
|
32
|
Tchan M, Henderson R, Kornberg A, Kairaitis K, Fuller M, Davis M, Ellaway C, Reardon K, Corbett A, Needham M, McKelvie P. Is it Pompe Disease? Australian diagnostic considerations. Neuromuscul Disord 2020; 30:389-399. [PMID: 32418839 DOI: 10.1016/j.nmd.2020.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/29/2022]
Abstract
Pompe Disease is a spectrum disorder with an evolving phenotype in which diagnostic delay is common. Contributing factors include the rarity of the disorder, its wide clinical spectrum, signs and symptoms that overlap with those of other neuromuscular disorders, variable diagnostic approaches, lack of awareness of the clinical manifestations and difficulties in completing the diagnostic inventory. International updates and recommendations have been published providing diagnostic guidelines and management criteria. However, questions remain in the Australian setting. A panel (two neurologists, one clinical geneticist) reviewed the literature, examined clinical questions of relevance to the Australian setting, and developed a framework for the guidance. A wider panel, comprising the initial panel plus eight additional members, critiqued the framework and contributed clinical guidance within the scope of their respective areas of clinical expertise. The resultant expert consensus recommendations build on currently available data to propose an appropriate management framework incorporating the diagnosis, classification, therapeutic approach, multidisciplinary care, and on-going monitoring of patients with Pompe Disease in the Australian setting. It is hoped that diagnostic delay can be reduced with appropriate recourse to evidence-based insights and practical advice on diagnosis and management tailored to the Australian setting.
Collapse
Affiliation(s)
- Michel Tchan
- Genetic Medicine, Westmead Hospital, The University of Sydney, Westmead, NSW, Australia.
| | - Robert Henderson
- Neurology, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Andrew Kornberg
- Neurology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Kristina Kairaitis
- Department of Respiratory and Sleep Medicine, and University of Sydney at Westmead Hospital, the Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, Adelaide, SA, Australia
| | - Mark Davis
- Neurogenetics Unit, Department of Diagnostic Genomics, PathWest Laboratory Medicine, Perth, WA, Australia
| | - Carolyn Ellaway
- Paediatrician, Clinical Geneticist Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | | | - Alastair Corbett
- Neurology, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Merrilee Needham
- Neurology, Fiona Stanley Hospital, Institute for Immunology and Infectious Diseases, Murdoch University, Notre Dame University, WA, Australia
| | - Penny McKelvie
- Neuropathology, St Vincent's Hospital, Fitzroy, VIC, Australia
| |
Collapse
|
33
|
Iolascon G, Vitacca M, Carraro E, Chisari C, Fiore P, Messina S, Mongini T, Moretti A, Sansone VA, Toscano A, Siciliano G. Adapted physical activity and therapeutic exercise in late-onset Pompe disease (LOPD): a two-step rehabilitative approach. Neurol Sci 2020; 41:859-868. [PMID: 31811531 DOI: 10.1007/s10072-019-04178-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
Abstract
Aerobic exercise, training to sustain motor ability, and respiratory rehabilitation may improve general functioning and quality of life (QoL) in neuromuscular disorders. Patients with late-onset Pompe disease (LOPD) typically show progressive muscle weakness, respiratory dysfunction and minor cardiac involvement. Characteristics and modalities of motor and respiratory rehabilitation in LOPD are not well defined and specific guidelines are lacking. Therefore, we evaluated the role of physical activity, therapeutic exercise, and pulmonary rehabilitation programs in order to promote an appropriate management of motor and respiratory dysfunctions and improve QoL in patients with LOPD. We propose two operational protocols: one for an adapted physical activity (APA) plan and the other for an individual rehabilitation plan, particularly focused on therapeutic exercise (TE) and respiratory rehabilitation.
Collapse
Affiliation(s)
- Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", Via De Crecchio 4, 80138, Naples, Italy.
| | - Michele Vitacca
- FERS Respiratory Rehabilitation Unit, ICS S. Maugeri IRCCS, Lumezzane, BS, Italy
| | - Elena Carraro
- NeuroMuscular Omnicentre, Fondazione Serena Onlus, Neurorehabilitation Unit, University of Milan, Milan, Italy
| | - Carmelo Chisari
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Pietro Fiore
- Department of Basic Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Sonia Messina
- Neurology and Neuromuscular Unit, University of Messina, Messina, Italy
| | - Tiziana Mongini
- Neuromuscular Unit, Department of Neurosciences, University of Turin, Turin, Italy
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", Via De Crecchio 4, 80138, Naples, Italy
| | - Valeria A Sansone
- NeuroMuscular Omnicentre, Fondazione Serena Onlus, Neurorehabilitation Unit, University of Milan, Milan, Italy
| | - Antonio Toscano
- Neurology and Neuromuscular Unit, University of Messina, Messina, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
34
|
van Kooten HA, Harlaar L, van der Beek NAME, van Doorn PA, van der Ploeg AT, Brusse E. Discontinuation of enzyme replacement therapy in adults with Pompe disease: Evaluating the European POmpe Consortium stop criteria. Neuromuscul Disord 2019; 30:59-66. [PMID: 31911071 DOI: 10.1016/j.nmd.2019.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/17/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022]
Abstract
Enzyme replacement therapy for Pompe disease received market authorization in 2006. To implement this costly treatment in the Netherlands in the most sensible way, a multidisciplinary expert committee was installed. We evaluated decision making in adult patients in relation to the European POmpe Consortium stop criteria. Of 125 adult Pompe patients, 111 started treatment; subsequently treatment stopped in 24 patients (21%). In 10 patients, treatment was discontinued for medical or personal reasons, as defined in the six stop criteria (median treatment duration: 2.1 years, range: 0.3-14.6 years). Three of these patients continued follow-up (follow-up: 1.3-8.0 years), these patients did not display a more rapid decline after discontinuation. In 14 of 24 patients, therapy ended at time of death. In 10 patients death was related to Pompe disease (median treatment duration: 7.2 years, range: 0.4-10.3 years). All 10 patients were severely affected at start of treatment, treatment had elicited positive effects in eight. The European POmpe Consortium guidelines worked well in decision making on stopping treatment. However, (re)evaluation of the rationale for continuation of treatment in advanced disease stage is not addressed. We suggest to add this to the treatment evaluation and to handle treatment decisions in a multidisciplinary expert team.
Collapse
Affiliation(s)
- H A van Kooten
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - L Harlaar
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - N A M E van der Beek
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - P A van Doorn
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - A T van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, the Netherlands
| | - E Brusse
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| | | |
Collapse
|
35
|
Molecular Approaches for the Treatment of Pompe Disease. Mol Neurobiol 2019; 57:1259-1280. [PMID: 31713816 DOI: 10.1007/s12035-019-01820-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Glycogen storage disease type II (GSDII, Pompe disease) is a rare metabolic disorder caused by a deficiency of acid alpha-glucosidase (GAA), an enzyme localized within lysosomes that is solely responsible for glycogen degradation in this compartment. The manifestations of GSDII are heterogeneous but are classified as early or late onset. The natural course of early-onset Pompe disease (EOPD) is severe and rapidly fatal if left untreated. Currently, one therapeutic approach, namely, enzyme replacement therapy, is available, but advances in molecular medicine approaches hold promise for even more effective therapeutic strategies. These approaches, which we review here, comprise splicing modification by antisense oligonucleotides, chaperone therapy, stop codon readthrough therapy, and the use of viral vectors to introduce wild-type genes. Considering the high rate at which innovations are translated from bench to bedside, it is reasonable to expect substantial improvements in the treatment of this illness in the foreseeable future.
Collapse
|
36
|
Kulessa M, Weyer-Menkhoff I, Viergutz L, Kornblum C, Claeys KG, Schneider I, Plöckinger U, Young P, Boentert M, Vielhaber S, Mawrin C, Bergmann M, Weis J, Ziagaki A, Stenzel W, Deschauer M, Nolte D, Hahn A, Schoser B, Schänzer A. An integrative correlation of myopathology, phenotype and genotype in late onset Pompe disease. Neuropathol Appl Neurobiol 2019; 46:359-374. [PMID: 31545528 DOI: 10.1111/nan.12580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022]
Abstract
AIMS Pompe disease is caused by pathogenic mutations in the alpha 1,4-glucosidase (GAA) gene and in patients with late onset Pome disease (LOPD), genotype-phenotype correlations are unpredictable. Skeletal muscle pathology includes glycogen accumulation and altered autophagy of various degrees. A correlation of the muscle morphology with clinical features and the genetic background in GAA may contribute to the understanding of the phenotypic variability. METHODS Muscle biopsies taken before enzyme replacement therapy were analysed from 53 patients with LOPD. On resin sections, glycogen accumulation, fibrosis, autophagic vacuoles and the degree of muscle damage (morphology-score) were analysed and the results were compared with clinical findings. Additional autophagy markers microtubule-associated protein 1A/1B-light chain 3, p62 and Bcl2-associated athanogene 3 were analysed on cryosections from 22 LOPD biopsies. RESULTS The myopathology showed a high variability with, in most patients, a moderate glycogen accumulation and a low morphology-score. High morphology-scores were associated with increased fibrosis and autophagy highlighting the role of autophagy in severe stages of skeletal muscle damage. The morphology-score did not correlate with the patient's age at biopsy, disease duration, nor with the residual GAA enzyme activity or creatine-kinase levels. In 37 patients with LOPD, genetic analysis identified the most frequent mutation, c.-32-13T>G, in 95%, most commonly in combination with c.525delT (19%). No significant correlation was found between the different GAA genotypes and muscle morphology type. CONCLUSIONS Muscle morphology in LOPD patients shows a high variability with, in most cases, moderate pathology. Increased pathology is associated with more fibrosis and autophagy.
Collapse
Affiliation(s)
- M Kulessa
- Institute of Neuropathology, Justus Liebig University, Giessen, Germany
| | - I Weyer-Menkhoff
- Institute of Clinical Pharmacology, Goethe University, Frankfurt/Main, Germany
| | - L Viergutz
- Institute of Neuropathology, Justus Liebig University, Giessen, Germany
| | - C Kornblum
- Department of Neurology, University Hospital Bonn, Bonn, Germany.,Center for Rare Diseases, University Hospital Bonn, Bonn, Germany
| | - K G Claeys
- Department of Neurology, University Hospital Leuven, Leuven, Belgium.,Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - I Schneider
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - U Plöckinger
- Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, Berlin, Germany
| | - P Young
- Department of Sleep Medicine and Neuromuscular Disorders, Muenster University Hospital, Münster, Germany.,Medical Park Reithofpark, Bad Feilnbach, Germany
| | - M Boentert
- Department of Sleep Medicine and Neuromuscular Disorders, Muenster University Hospital, Münster, Germany
| | - S Vielhaber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - C Mawrin
- Institute of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany
| | - M Bergmann
- Institute of Clinical Neuropathology, Klinikum Bremen-Mitte, Bremen, Germany
| | - J Weis
- Institute of Neuropathology, RWTH University Hospital, Aachen, Germany
| | - A Ziagaki
- Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, Berlin, Germany
| | - W Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin, Berlin, Germany
| | - M Deschauer
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - D Nolte
- Institute of Human Genetics, Justus Liebig University Giessen, Giessen, Germany
| | - A Hahn
- Department of Child Neurology, Justus Liebig University Giessen, Giessen, Germany
| | - B Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU University Munich, Munich, Germany
| | - A Schänzer
- Institute of Neuropathology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
37
|
Common pre-diagnostic features in individuals with different rare diseases represent a key for diagnostic support with computerized pattern recognition? PLoS One 2019; 14:e0222637. [PMID: 31600214 PMCID: PMC6786570 DOI: 10.1371/journal.pone.0222637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/04/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rare diseases (RD) result in a wide variety of clinical presentations, and this creates a significant diagnostic challenge for health care professionals. We hypothesized that there exist a set of consistent and shared phenomena among all individuals affected by (different) RD during the time before diagnosis is established. OBJECTIVE We aimed to identify commonalities between different RD and developed a machine learning diagnostic support tool for RD. METHODS 20 interviews with affected individuals with different RD, focusing on the time period before their diagnosis, were performed and qualitatively analyzed. Out of these pre-diagnostic experiences, we distilled key phenomena and created a questionnaire which was then distributed among individuals with the established diagnosis of i.) RD, ii.) other common non-rare diseases (NRO) iii.) common chronic diseases (CD), iv.), or psychosomatic/somatoform disorders (PSY). Finally, four combined single machine learning methods and a fusion algorithm were used to distinguish the different answer patterns of the questionnaires. RESULTS The questionnaire contained 53 questions. A total sum of 1763 questionnaires (758 RD, 149 CD, 48 PSY, 200 NRO, 34 healthy individuals and 574 not evaluable questionnaires) were collected. Based on 3 independent data sets the 10-fold stratified cross-validation method for the answer-pattern recognition resulted in sensitivity values of 88.9% to detect the answer pattern of a RD, 86.6% for NRO, 87.7% for CD and 84.2% for PSY. CONCLUSION Despite the great diversity in presentation and pathogenesis of each RD, patients with RD share surprisingly similar pre-diagnosis experiences. Our questionnaire and data-mining based approach successfully detected unique patterns in groups of individuals affected by a broad range of different rare diseases. Therefore, these results indicate distinct patterns that may be used for diagnostic support in RD.
Collapse
|
38
|
Musumeci O, Toscano A. Diagnostic tools in late onset Pompe disease (LOPD). ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:286. [PMID: 31392198 DOI: 10.21037/atm.2019.06.60] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pompe disease is a rare metabolic disorder due to deficiency of the lysosomal acid alpha-glucosidase (GAA) that causes glycogen accumulation in all tissues with a predominant involvement of skeletal muscle. The late onset form of Pompe disease (LOPD) is characterized by a progressive weakness of proximal and axial muscles, often mimicking limb-girdle muscular dystrophies or inflammatory myopathies, with respiratory distress mainly due to a diaphragmatic weakness. Diagnostic delay is still common, and clinicians need a high index of suspicion to recognize this condition because the disorder is quite rare, the clinical spectrum is wide, and signs and symptoms are not distinguishable from those in other neuromuscular disorders that present in a similar fashion. Diagnostic laboratory tests are quite fast and reliable to detect the enzymatic deficiency. Enzyme replacement therapy has been available for several years, and other new therapeutic strategies such as gene therapy are underway. Here, we discuss the main diagnostic tools currently used for the evaluation of patients with suspected LOPD.
Collapse
Affiliation(s)
- Olimpia Musumeci
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
39
|
Toscano A, Rodolico C, Musumeci O. Multisystem late onset Pompe disease (LOPD): an update on clinical aspects. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:284. [PMID: 31392196 DOI: 10.21037/atm.2019.07.24] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pompe disease is classified by age of onset, organ involvement, severity, and rate of progression in two main forms: the first one, infantile onset Pompe disease (IOPD), presents before the age of 12 months with generalized muscle weakness, hypotonia, respiratory distress, and hypertrophic cardiomyopathy as main clinical features. The second form, late onset Pompe disease (LOPD), is characterized by an onset at the age of 12 months to adulthood, hyperCKemia, and limb-girdle and axial muscle weakness, often complicated by respiratory muscles degeneration. In the last 10-15 years, an increasing interest in Pompe disease has led to multiple studies in an effort to clarify the emerging clinical aspects, to find out the best diagnostic tools to identify the disease as early as possible, and to offer new therapeutic options apart from enzyme replacement therapy (ERT). Since 2006, ERT-the first treatment for Pompe disease-has been universally accepted in the majority of countries all over the world. Although for years Pompe disease has been primarily considered a muscle disorder, nowadays it is clear that the involvement of several other organs has changed the cultural approach to this entity which is now viewed as a multisystem disorder. The emerging clinical aspects have greatly expanded the spectrum of the disease manifestations. In fact, central, peripheral, and autonomous nervous systems are often involved; vascular malformations and heart involvement are frequently observed; musculoskeletal and bone changes as well as oro-gastrointestinal and urinary tract alterations have been better defined. A great deal of effort has been made to clarify the clinical aspects of Pompe disease, to raise awareness of the LOPD patients' problems and to improve their quality of life.
Collapse
Affiliation(s)
- Antonio Toscano
- Neurology and Neuromuscular Disorders Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmelo Rodolico
- Neurology and Neuromuscular Disorders Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olimpia Musumeci
- Neurology and Neuromuscular Disorders Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
40
|
Corrado B, Ciardi G, Iammarrone CS. Rehabilitation management of Pompe disease, from childhood trough adulthood: A systematic review of the literature. Neurol Int 2019; 11:7983. [PMID: 31281600 PMCID: PMC6589625 DOI: 10.4081/ni.2019.7983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
Pompe disease (PD) is a rare neuromuscular disorder caused by a deficiency of the enzyme acid alpha-glucosidase. There are three forms of PD depending on the age at onset and clinical severity. PD causes involvement of different organ systems, such as the heart, musculoskeletal system, and respiratory system. As of today, enzyme replacement therapy represents the main therapeutic tool for PD. Rehabilitation is an integral part of a multidisciplinary approach to this pathology. The goal of the present review is to find scientific evidence for the rehabilitative approach to PD, with respect to both the infantile- and adult-onset forms. A systematic literature review was made using the following databases: Pubmed, Pedro, Cochrane Library, EDS Base Index, Trip, and Cinhal. Randomized controlled trials or cohort studies with a sample population of at least six subjects were retrieved. The PICO method was used to formulate the clinical query. The search resulted in 1665 articles. Of these, four cohort studies were subjected to the final phase of the review. Three studies regarded inspiratory muscle training with a threshold, while the fourth study analyzed the effectiveness of therapeutic, aerobic, and reinforcement exercises. Inspiratory muscle training with a threshold increases the pressures generated during inhalation. Aerobic exercise is capable of increasing patients' muscular endurance and performance. To date, however, rehabilitative treatment for patients with PD has no validation in evidencebased medicine. Further studies, possibly with a larger sample size and higher quality are necessary to confirm the effectiveness of rehabilitation in patients with PD.
Collapse
Affiliation(s)
- Bruno Corrado
- Department of Public Health, ‘Federico II’ University of Naples, Italy
| | | | | |
Collapse
|
41
|
Bergsma AJ, In 't Groen SLM, van den Dorpel JJA, van den Hout HJMP, van der Beek NAME, Schoser B, Toscano A, Musumeci O, Bembi B, Dardis A, Morrone A, Tummolo A, Pasquini E, van der Ploeg AT, Pijnappel WWMP. A genetic modifier of symptom onset in Pompe disease. EBioMedicine 2019; 43:553-561. [PMID: 30922962 PMCID: PMC6562017 DOI: 10.1016/j.ebiom.2019.03.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neonatal screening for Pompe disease is complicated by difficulties in predicting symptom onset in patients with the common c.-32-13T>G (IVS1) variant/null (i.e. fully deleterious) acid α-glucosidase (GAA) genotype. This splicing variant occurs in 90% of Caucasian late onset patients, and is associated with a broad range of symptom onset. METHODS We analyzed a cohort of 143 compound heterozygous and 10 homozygous IVS1 patients, and we assessed ages at symptom onset, the presence of cis-acting single nucleotide variants (SNVs), and performed splicing analysis and enzyme activity assays. FINDINGS In compound heterozygous IVS1 patients, the synonymous variant c.510C>T was uniquely present on the IVS1 allele in 9/33 (27%) patients with childhood onset, but was absent from 110 patients with onset in adulthood. GAA enzyme activity was lower in fibroblasts from patients who contained c.510C>T than it was in patients without c.510C>T. By reducing the extent of leaky wild-type splicing, c.510C>T modulated aberrant splicing caused by the IVS1 variant. The deleterious effect of c.510C>T was also found in muscle cells, the main target cells in Pompe disease. In homozygous IVS1 patients, the c.510C>T variant was absent in 4/4 (100%) asymptomatic individuals and present in 3/6 (50%) symptomatic patients. In cells from homozygous IVS1 patients, c.510C>T caused reduced leaky wild-type splicing. INTERPRETATION c.510C>T is a genetic modifier in compound heterozygous and homozygous IVS1 patients. This finding is important for neonatal screening programs for Pompe disease. FUND: This work was funded by grants from Sophia Children's Hospital Foundation (SSWO, grant S17-32) and Metakids (2016-063).
Collapse
Affiliation(s)
- Atze J Bergsma
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Stijn L M In 't Groen
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Jan J A van den Dorpel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Hannerieke J M P van den Hout
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Nadine A M E van der Beek
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olimpia Musumeci
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Bruno Bembi
- Academic Hospital "Santa Maria della Misericordia", Udine, Italy
| | - Andrea Dardis
- Academic Hospital "Santa Maria della Misericordia", Udine, Italy
| | - Amelia Morrone
- Neurofarba, University of Florence, Meyer Children's Hospital, Florence, Italy
| | | | | | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands.
| |
Collapse
|
42
|
Confalonieri M, Vitacca M, Scala R, Polverino M, Sabato E, Crescimanno G, Ceriana P, Antonaglia C, Siciliano G, Ring N, Zacchigna S, Salton F, Vianello A. Is early detection of late-onset Pompe disease a pneumologist's affair? A lesson from an Italian screening study. Orphanet J Rare Dis 2019; 14:62. [PMID: 30832705 PMCID: PMC6399888 DOI: 10.1186/s13023-019-1037-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/21/2019] [Indexed: 01/14/2023] Open
Abstract
Background Late-onset Pompe disease (LOPD) is a recessive disease caused by α-glucosidase (GAA) deficiency, leading to progressive muscle weakness and/or respiratory failure in children and adults. Respiratory derangement can be the first indication of LOPD, but the diagnosis may be difficult for pneumologists. We hypothesize that assessing the GAA activity in suspected patients by a dried blood spot (DBS) may help the diagnosis of LOPD in the pneumological setting. Population and methods We performed a multicenter DBS survey of patients with suspected LOPD according to a predefined clinical algorithm. From February 2015 to December 2017, 140 patients (57 ± 16 yrs., 80 males) were recruited in 19 Italian pneumological units. The DBS test was performed by a drop of blood collected on absorbent paper. Patients with GAA activity < 2.6 μmol/L/h were considered positive. A second DBS test was performed in the patients positive to the first assay. Patients testing positive at the re-test underwent a skeletal muscle biopsy to determine the GAA enzymatic activity. Results 75 recruited subjects had outpatient access, 65 subjects were admitted for an acute respiratory failure episode. Two patients tested positive in both the first and second DBS test (1.4% prevalence), and the LOPD diagnosis was confirmed through histology, with patients demonstrating a deficient GAA muscle activity (3.6 and 9.1 pmol/min/mg). A further five subjects were positive in the first DBS test but were not confirmed at re-test. The two positive cases were both diagnosed after hospitalization for acute respiratory failure and need of noninvasive ventilation. Most of the recruited patients had reduced maximal respiratory pressures (MIP 50 ± 27% and MEP 55 ± 27% predicted), restrictive pattern (FEV1/FVC 81.3 ± 13.6) and hypoxaemia (PaO2 70.9 ± 14.5 mmHg). Respiratory symptoms were present in all the patients, but only 48.6% of them showed muscle weakness in the pelvic girdle and/or in the scapular girdle (35.7%). Conclusions DBS GAA activity test may be a powerful screening tool among pneumologists, particularly in the acute setting. A simple clinical algorithm may aid in the selection of patients on which to administer the DBS test.
Collapse
Affiliation(s)
- Marco Confalonieri
- Pneumology Unit, Dept. of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy. .,Pulmonology Unit, University Hospital of Cattinara, Strada di Fiume 447, 34149, Trieste, Italy.
| | - Michele Vitacca
- ICS S. Maugeri, Care and Research Institute, Respiratory Rehabilitation Unit, Lumezzane, Bs, Italy
| | - Raffaele Scala
- Pneumology and Respiratory Intensive Care Unit, San Donato Hospital, Arezzo, Italy
| | - Mario Polverino
- Lung Diseases High Specialty Institute, Medical Sciences Department, Scafati, Salerno, Italy
| | - Eugenio Sabato
- Pneumology Unit, "A. Perrino" General Hospital, Brindisi, Italy
| | - Grazia Crescimanno
- Institute of Biomedicine and Molecular Immunology, Italian National Research Council, Palermo, Italy
| | - Piero Ceriana
- ICS S. Maugeri, Care and Research Institute, Pulmonary Rehabilitation Unit, Pavia, Italy
| | - Caterina Antonaglia
- Pneumology Unit, Dept. of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Nadja Ring
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Francesco Salton
- Pneumology Unit, Dept. of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Andrea Vianello
- Respiratory Pathophysiology and Intensive Care Unit, Department of Cardio-Thoracic, University-City Hospital of Padova, Padova, Italy
| | | |
Collapse
|
43
|
Adadi N, Sahli M, Egéa G, Ratbi I, Taoudi M, Zniber L, Jdioui W, El Mouatassim S, Sefiani A. Post-mortem diagnosis of Pompe disease by exome sequencing in a Moroccan family: a case report. J Med Case Rep 2018; 12:322. [PMID: 30371346 PMCID: PMC6205784 DOI: 10.1186/s13256-018-1855-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 09/21/2018] [Indexed: 11/21/2022] Open
Abstract
Background Pompe disease is an autosomal recessive lysosomal storage disorder characterized by progressive myopathy with proximal muscle weakness, respiratory muscle dysfunction, and cardiomyopathy. Its prevalence ranges between 1/9000 and 1/40,000. It is caused by compound heterozygous or homozygous mutations in the GAA gene, which encodes for the lysosomal enzyme alpha-glucosidase, required for the degrading of lysosomal glycogen. Case presentation In this study, we report the case of a Moroccan consanguineous family with hypertrophic cardiomyopathy and sudden cardiac deaths at an early age; our patient was a 7-month-old Moroccan girl. Whole exome sequencing identified the deleterious homozygous mutation c.236_246delCCACACAGTGC (p.Pro79ArgfsX13) of GAA gene leading to a post-mortem diagnosis of Pompe disease. Conclusion The identification of the genetic substrate in our patient, the daughter, confirmed the clinical diagnosis of Pompe disease and allowed us to provide appropriate genetic counseling to the family for future pregnancies.
Collapse
Affiliation(s)
- Najlae Adadi
- Centre de Génomique Humaine, Faculté de Médecine et Pharmacie, Mohammed V University, Rabat, Morocco. .,Department of Medical Genetics, National Institute of Health, BP 769 Agdal, 10090, Rabat, Morocco.
| | - Maryem Sahli
- Centre de Génomique Humaine, Faculté de Médecine et Pharmacie, Mohammed V University, Rabat, Morocco.,Department of Medical Genetics, National Institute of Health, BP 769 Agdal, 10090, Rabat, Morocco
| | - Grégory Egéa
- Département de Génétique Moléculaire, Laboratoire Biomnis, Lyon, France
| | - Ilham Ratbi
- Centre de Génomique Humaine, Faculté de Médecine et Pharmacie, Mohammed V University, Rabat, Morocco
| | - Mohamed Taoudi
- Département de Génétique Moléculaire, Laboratoire Biomnis, Lyon, France
| | | | - Wafaa Jdioui
- Centre de Génomique Humaine, Faculté de Médecine et Pharmacie, Mohammed V University, Rabat, Morocco.,Department of Medical Genetics, National Institute of Health, BP 769 Agdal, 10090, Rabat, Morocco
| | - Said El Mouatassim
- Département de Génétique Moléculaire, Laboratoire Biomnis, Lyon, France.,Appolonbioteck, Brignais, France
| | - Abdelaziz Sefiani
- Centre de Génomique Humaine, Faculté de Médecine et Pharmacie, Mohammed V University, Rabat, Morocco.,Department of Medical Genetics, National Institute of Health, BP 769 Agdal, 10090, Rabat, Morocco
| |
Collapse
|
44
|
Menzella F, Codeluppi L, Lusuardi M, Galeone C, Valzania F, Facciolongo N. Acute respiratory failure as presentation of late-onset Pompe disease complicating the diagnostic process as a labyrinth: a case report. Multidiscip Respir Med 2018; 13:32. [PMID: 30186604 PMCID: PMC6119261 DOI: 10.1186/s40248-018-0145-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023] Open
Abstract
Background Acute respiratory failure can be triggered by several causes, either of pulmonary or extra-pulmonary origin. Pompe disease, or type II glycogen storage disease, is a serious and often fatal disorder, due to a pathological accumulation of glycogen caused by a defective activiy of acid α-glucosidase (acid maltase), a lysosomal enzyme involved in glycogen degradation. The prevalence of the disease is estimated between 1 in 40,000 to 1 in 300,000 subjects. Case presentation This case report describes a difficult diagnosis of late-onset Pompe disease (LOPD) in a 52 year old Caucasian woman with acute respiratory failure requiring orotracheal intubation and subsequent tracheostomy for long-term mechanical ventilation 24 h/day. Despite a complex diagnostic process including several blood tests, bronchoscopy with BAL, chest CT, brain NMR, electromyographies, only a muscle biopsy allowed to reach the correct diagnosis. Discussion The most frequent presentation of myopathies, including LOPD, is proximal limb muscle weakness. Respiratory related symptoms (dyspnea on effort, reduced physical capacity, recurrent infections, etc.) and respiratory failure are often evident in the later stages of the diseases, but they have been rarely described as the onset symptoms in LOPD. In our case, a third stage LOPD, the cooperation between pulmonologists and neurologists was crucial in reaching a correct diagnosis despite a very complex clinical scenario due to different confounding co-morbidities as potential causes of respiratory failure and an atypical presentation. In this patient, enzyme replacement therapy with infusion of alglucosidase alfa was associated with progressive reduction of ventilatory support to night hours, and recovery of autonomous walking.
Collapse
Affiliation(s)
- Francesco Menzella
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia- IRCCS, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Luca Codeluppi
- Neuromotor & Rehabilitation Department, Neurology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Reggio Emilia, Italy
| | - Mirco Lusuardi
- Unit of Respiratory Rehabilitation, Azienda USL di Reggio Emilia, S. Sebastiano Hospital, Correggio, Italy
| | - Carla Galeone
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia- IRCCS, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Franco Valzania
- Neuromotor & Rehabilitation Department, Neurology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Reggio Emilia, Italy
| | - Nicola Facciolongo
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia- IRCCS, Via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
45
|
Enzymatic replacement therapy in patients with late-onset Pompe disease – 6-Year follow up. Neurol Neurochir Pol 2018; 52:465-469. [DOI: 10.1016/j.pjnns.2018.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 11/20/2022]
|
46
|
Hansen JS, Pedersen EG, Gaist D, Bach FW, Vilholm OJ, Sandal B, Weitemeyer L, Nielsen K, Schlesinger FE, Preisler N, Vissing J, Andersen H. Screening for late-onset Pompe disease in western Denmark. Acta Neurol Scand 2018; 137:85-90. [PMID: 28832912 DOI: 10.1111/ane.12811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Late-onset Pompe disease (LOPD) is a rare autosomal recessively inherited metabolic myopathy caused by reduced activity of the lysosomal enzyme alpha-glucosidase. In a previous screening study at two large neuromuscular university clinics in Denmark, three patients with LOPD were identified out of 103 patients screened. No systematic screening has been performed at the other neurological departments in the western part of Denmark. Thus, patients with a diagnosis of unspecified myopathy were screened for LOPD. MATERIALS AND METHODS At seven neurological departments in the western part of Denmark, medical records were evaluated for all patients registered with myopathy diagnosis codes (ICD 10 codes: G 71.0-71.9 and G 72.0-72.9) during the period January 1, 2002, to December 31, 2012. If no specific diagnosis has been reached, patients were invited for screening. Dried blood spot (DBS) test was used to analyze the activity of the enzyme alpha-glucosidase. RESULT A total of 654 patients were identified. From the medical records, information was obtained concerning symptoms, family history, electromyography, muscle biopsy results and creatine kinase levels. Eighty-seven patients (13.3%) (males 61%) at a mean age of 53.3 years (SD 16.5) fulfilled the criteria for screening. A DBS test was performed in 47 (54%) patients. In all patients, the enzyme activity was within reference values. CONCLUSION None of the screened patients had a reduced activity of the enzyme alpha-glucosidase. Although the cohort studied was small, our findings do not suggest that LOPD is underdiagnosed in patients with unspecified myopathy in western Denmark.
Collapse
Affiliation(s)
- J. S. Hansen
- Department of Neurology; Aarhus University Hospital; Aarhus C Denmark
| | - E. G. Pedersen
- Department of Neurology; Odense University Hospital; Odense Denmark
| | - D. Gaist
- Department of Neurology; Odense University Hospital; Odense Denmark
| | - F. W. Bach
- Department of Neurology; Aalborg University Hospital; Aalborg Denmark
| | - O. J. Vilholm
- Department of Neurology; Lillebaelt Hospital; Vejle Hospital; Vejle Denmark
| | - B. Sandal
- Department of Neurology; Regional Hospital West Jutland; Holstebro Hospital; Holstebro Denmark
| | - L. Weitemeyer
- Department of Neurology; Sønderborg Hospital; Sønderborg Denmark
| | - K. Nielsen
- Department of Neurology; Esbjerg Hospital; Esbjerg Denmark
| | - F. E. Schlesinger
- Department of Neurology; Regional Hospital Central Jutland; Viborg Hospital; Viborg Denmark
| | - N. Preisler
- Department of Neurology; Copenhagen Neuromuscular Center; Rigshospitalet; Copenhagen Denmark
| | - J. Vissing
- Department of Neurology; Copenhagen Neuromuscular Center; Rigshospitalet; Copenhagen Denmark
| | - H. Andersen
- Department of Neurology; Aarhus University Hospital; Aarhus C Denmark
| |
Collapse
|
47
|
Prevalence of adult Pompe disease in patients with proximal myopathic syndrome and undiagnosed muscle biopsy. Neuromuscul Disord 2017; 28:257-261. [PMID: 29326002 DOI: 10.1016/j.nmd.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/22/2017] [Accepted: 12/04/2017] [Indexed: 11/21/2022]
Abstract
We examined patients with limb-girdle muscle weakness and/or hyper-CKaemia and undiagnosed muscle biopsy for late onset Pompe disease (LOPD). Patients with an inconclusive limb-girdle muscle weakness who presented at our neuromuscular centre between 2005 and 2015 with undiagnosed muscle biopsies were examined by dry blood spot testing (DBS) including determination of the enzyme activity of acid alpha-glucosidase (GAA). In the case of depressed enzyme activity, additional gene testing of the GAA gene was carried out. Of the 340 evaluated muscle biopsies, 69 patients fulfilled the inclusion criteria and were examined with DBS. Among those patients, 76% showed a limb-girdle muscle weakness and 14% showed a hyper-CKaemia. A diagnosis of LOPD could be established in the case of two patients (2.9%) with reduced GAA enzyme activity and proof of mutations in the GAA gene. One of the two patients presents in the muscle biopsy suggestive features of Pompe disease including vacuoles with positive acid phosphatase reaction. In summary, our results show that a muscle biopsy can be helpful in identifying LOPD patients, but vacuolation with glycogen storage can also be absent. An inconspicuous muscle biopsy does not rule out Pompe disease. Consequently, all patients with limb-girdle muscle weakness should be examined by DBS before conducting a muscle biopsy.
Collapse
|
48
|
Finsterer J, Wanschitz J, Quasthoff S, Iglseder S, Löscher W, Grisold W. Causally treatable, hereditary neuropathies in Fabry's disease, transthyretin-related familial amyloidosis, and Pompe's disease. Acta Neurol Scand 2017; 136:558-569. [PMID: 28295152 DOI: 10.1111/ane.12758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Most acquired neuropathies are treatable, whereas genetic neuropathies respond to treatment in Fabry's disease (FD), transthyretin-related familial amyloidosis (TTR-FA), and Pompe's disease (PD). This review summarizes and discusses recent findings and future perspectives concerning etiology, pathophysiology, clinical presentation, diagnosis, treatment, and outcome of neuropathy in FD, TTR-FA, and PD. METHODS Literature review. RESULTS Neuropathy in FD concerns particularly small, unmyelinated, or myelinated sensory fibers (small fiber neuropathy [SFN]) and autonomic fibers, manifesting as acroparesthesias, Fabry's crises, or autonomous disturbances. FD neuropathy benefits from agalsidase alpha (0.2 mg/kg every second week intravenously) or from beta (1.0 mg/kg every second week intravenously). Neuropathy in TTR-FA is axonal and affects large and small sensory, motor, and autonomous fibers. Neuropathy in TTR-FA profits from liver transplantation and the TTR kinetic stabilizer tafamidis (20 mg/d). Neuropathy in PD particularly occurs in late-onset PD and manifests as mononeuropathy, polyneuropathy, or SFN. PD neuropathy presumably responds to alglucosidase-alpha (20 mg/kg every second week intravenously). CONCLUSIONS Neuropathy in FD, TTR-FA, and PD is predominantly a SFN and can be the dominant feature in FD and TTR-FA. SFN in FD, TTR-FA, and PD needs to be recognized and benefits from enzyme replacement treatment or TT-kinetic stabilizers.
Collapse
Affiliation(s)
| | - J. Wanschitz
- Department of Neurology; Medical University Innsbruck; Innsbruck Austria
| | - S. Quasthoff
- Department of Neurology; Medical University Graz; Graz Austria
| | - S. Iglseder
- Neurological Department; KH Barmherzige Brüder; Linz Austria
| | - W. Löscher
- Department of Neurology; Medical University Innsbruck; Innsbruck Austria
| | - W. Grisold
- Neurological Department; Kaiser-Franz Josef Spital; Vienna Austria
| |
Collapse
|
49
|
Pompe disease in Austria: clinical, genetic and epidemiological aspects. J Neurol 2017; 265:159-164. [PMID: 29181627 PMCID: PMC5760608 DOI: 10.1007/s00415-017-8686-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/15/2017] [Accepted: 11/18/2017] [Indexed: 11/27/2022]
Abstract
In this study, we performed a survey of infantile and late-onset Pompe disease (IOPD and LOPD) in Austria. Paediatric and neuromuscular centres were contacted to provide a set of anonymized clinical and genetic data of patients with IOPD and LOPD. The number of patients receiving enzyme replacement therapy (ERT) was obtained from the pharmaceutical company providing alglucosidase alfa. We found 25 patients in 24 families, 4 IOPD and 21 LOPD with a resulting prevalence of 1:350,914. The most frequent clinical manifestation in LOPD was a lower limb-girdle phenotype combined with axial weakness. Three patients were clinically pauci- or asymptomatic and were diagnosed because of persistent hyperCKemia. Diagnostic delay in LOPD was 7.4 ± 9.7 years. The most common mutation was c.-32-13T > G. All IOPD and 17 symptomatic LOPD patients are receiving ERT. Standardized follow-up was only available in six LOPD patients for the 6-min walk test (6minWT) and in ten for the forced vital capacity (FVC). Mean FVC did not decline (before ERT; 63.6 ± 39.7%; last evaluation during ERT: 61.9 ± 26.9%; P = 0.5) while there was a trend to decline in the mean distance covered by the 6minWT (before ERT: 373.5 ± 117.9 m; last evaluation during ERT: 308.5 ± 120.8 m; P = 0.077). The study shows a lower prevalence of Pompe disease in Austria than in other European countries and corroborates a limb-girdle phenotype with axial weakness as the most common clinical presentation, although asymptomatic hyperCKemia may be the first indication of LOPD.
Collapse
|
50
|
Hwang HE, Hsu TR, Lee YH, Wang HK, Chiou HJ, Niu DM. Muscle ultrasound: A useful tool in newborn screening for infantile onset pompe disease. Medicine (Baltimore) 2017; 96:e8415. [PMID: 29095275 PMCID: PMC5682794 DOI: 10.1097/md.0000000000008415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Our study aimed to evaluate the utility of muscle ultrasound in newborn screening of infantile-onset Pompe disease (IOPD) and to establish a system of severity grading. We retrospectively selected 35 patients with initial low acid alpha-glucosidase (GAA) activity and collected data including muscle ultrasound features, GAA gene mutation, activity/performance, and pathological and laboratory findings. The echogenicity of 6 muscles (the bilateral vastus intermedius, rectus femoris, and sartorius muscles) was compared to that of epimysium on ultrasound and rated either 1 (normal), 2 (mildly increased), or 3 (obviously increased). These grades were used to divide patients into 3 groups. IOPD was present in none of the grade-1 patients, 5 of 9 grade-2 patients, and 5 of 5 grade-3 patients (P < .001). Comparing grade-2 plus grade-3 patients to grade-1 patients, muscle ultrasound detected IOPD with a sensitivity and specificity of 100.0% (95% confidence interval [CI]: 69.2%-100%) and 84.0% (95% CI: 63.9%-95.5%), respectively. The mean number of affected muscles was larger in grade-3 patients than in grade-2 patients (4.2 vs. 2.0, P = .005). Mean alanine transaminase (ALT), aspartate transaminase (AST), creatine kinase (CK), and lactate dehydrogenase (LDH) levels were differed significantly different between grade-3 and grade-1 patients (P < .001). Because it permits direct visualization of injured muscles, muscle ultrasound can be used to screen for IOPD. Our echogenicity grades of muscle injury also correlate well with serum levels of muscle-injury biochemical markers.
Collapse
Affiliation(s)
| | - Ting-Rong Hsu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | - Dau-Ming Niu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|