1
|
Hannah WB, Derks TGJ, Drumm ML, Grünert SC, Kishnani PS, Vissing J. Glycogen storage diseases. Nat Rev Dis Primers 2023; 9:46. [PMID: 37679331 DOI: 10.1038/s41572-023-00456-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/09/2023]
Abstract
Glycogen storage diseases (GSDs) are a group of rare, monogenic disorders that share a defect in the synthesis or breakdown of glycogen. This Primer describes the multi-organ clinical features of hepatic GSDs and muscle GSDs, in addition to their epidemiology, biochemistry and mechanisms of disease, diagnosis, management, quality of life and future research directions. Some GSDs have available guidelines for diagnosis and management. Diagnostic considerations include phenotypic characterization, biomarkers, imaging, genetic testing, enzyme activity analysis and histology. Management includes surveillance for development of characteristic disease sequelae, avoidance of fasting in several hepatic GSDs, medically prescribed diets, appropriate exercise regimens and emergency letters. Specific therapeutic interventions are available for some diseases, such as enzyme replacement therapy to correct enzyme deficiency in Pompe disease and SGLT2 inhibitors for neutropenia and neutrophil dysfunction in GSD Ib. Progress in diagnosis, management and definitive therapies affects the natural course and hence morbidity and mortality. The natural history of GSDs is still being described. The quality of life of patients with these conditions varies, and standard sets of patient-centred outcomes have not yet been developed. The landscape of novel therapeutics and GSD clinical trials is vast, and emerging research is discussed herein.
Collapse
Affiliation(s)
- William B Hannah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Terry G J Derks
- Division of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah C Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Paediatrics, Duke University Medical Center, Durham, NC, USA
| | - John Vissing
- Copenhagen Neuromuscular Center, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
2
|
Batten K, Bhattacharya K, Simar D, Broderick C. Exercise testing and prescription in patients with inborn errors of muscle energy metabolism. J Inherit Metab Dis 2023; 46:763-777. [PMID: 37350033 DOI: 10.1002/jimd.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/02/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023]
Abstract
Skeletal muscle is a dynamic organ requiring tight regulation of energy metabolism in order to provide bursts of energy for effective function. Several inborn errors of muscle energy metabolism (IEMEM) affect skeletal muscle function and therefore the ability to initiate and sustain physical activity. Exercise testing can be valuable in supporting diagnosis, however its use remains limited due to the inconsistency in data to inform its application in IEMEM populations. While exercise testing is often used in adults with IEMEM, its use in children is far more limited. Once a physiological limitation has been identified and the aetiology defined, habitual exercise can assist with improving functional capacity, with reports supporting favourable adaptations in adult patients with IEMEM. Despite the potential benefits of structured exercise programs, data in paediatric populations remain limited. This review will focus on the utilisation and limitations of exercise testing and prescription for both adults and children, in the management of McArdle Disease, long chain fatty acid oxidation disorders, and primary mitochondrial myopathies.
Collapse
Affiliation(s)
- Kiera Batten
- School of Health Sciences, University of New South Wales, Sydney, Australia
- The Children's Hospital at Westmead, Sydney, Australia
| | - Kaustuv Bhattacharya
- The Children's Hospital at Westmead, Sydney, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - David Simar
- School of Health Sciences, University of New South Wales, Sydney, Australia
| | - Carolyn Broderick
- School of Health Sciences, University of New South Wales, Sydney, Australia
- The Children's Hospital at Westmead, Sydney, Australia
| |
Collapse
|
4
|
Kolovou G, Cokkinos P, Bilianou H, Kolovou V, Katsiki N, Mavrogeni S. Non-traumatic and non-drug-induced rhabdomyolysis. Arch Med Sci Atheroscler Dis 2019; 4:e252-e263. [PMID: 32368681 PMCID: PMC7191942 DOI: 10.5114/amsad.2019.90152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/10/2019] [Indexed: 01/19/2023] Open
Abstract
Rhabdomyolysis (RM), a fortunately rare disease of the striated muscle cells, is a complication of non-traumatic (congenital (glycogen storage disease, discrete mitochondrial myopathies and various muscular dystrophies) or acquired (alcoholic myopathy, systemic diseases, arterial occlusion, viral illness or bacterial sepsis)) and traumatic conditions. Additionally, RM can occur in some individuals under specific circumstances such as toxic substance use and illicit drug abuse. Lipid-lowering drugs in particular are capable of causing RM. This comprehensive review will focus on non-traumatic and non-drug-induced RM. Moreover, the pathology of RM, its clinical manifestation and biochemical effects, and finally its management will be discussed.
Collapse
Affiliation(s)
- Genovefa Kolovou
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Philip Cokkinos
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | | | - Vana Kolovou
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
- Molecular Immunology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece
| | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology-Metabolism, Diabetes Center, AHEPA University Hospital, Thessaloniki, Greece
| | - Sophie Mavrogeni
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| |
Collapse
|
5
|
Santalla A, Nogales-Gadea G, Encinar AB, Vieitez I, González-Quintana A, Serrano-Lorenzo P, Consuegra IG, Asensio S, Ballester-Lopez A, Pintos-Morell G, Coll-Cantí J, Pareja-Galeano H, Díez-Bermejo J, Pérez M, Andreu AL, Pinós T, Arenas J, Martín MA, Lucia A. Genotypic and phenotypic features of all Spanish patients with McArdle disease: a 2016 update. BMC Genomics 2017; 18:819. [PMID: 29143597 PMCID: PMC5688471 DOI: 10.1186/s12864-017-4188-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We recently described the genotype/phenotype features of all Spanish patients diagnosed with McArdle disease as of January 2011 (n = 239, prevalence of ~1/167,000) (J Neurol Neurosurg Psychiatry 2012;83:322-8). Several caveats were however identified suggesting that the prevalence of the disease is actually higher. METHODS We have now updated main genotype/phenotype data, as well as potential associations within/between them, of all Spanish individuals currently diagnosed with McArdle disease (December 2016). RESULTS Ninety-four new patients (all Caucasian) have been diagnosed, yielding a prevalence of ~1/139,543 individuals. Around 55% of the mutated alleles have the commonest PYGM pathogenic mutation p.R50X, whereas p.W798R and p.G205S account for 10 and 9% of the allelic variants, respectively. Seven new mutations were identified: p.H35R, p.R70C, p.R94Q, p.L132WfsX163, p.Q176P, p.R576Q, and c.244-3_244-2CA. Almost all patients show exercise intolerance, the second wind phenomenon and high serum creatine kinase activity. There is, however, heterogeneity in clinical severity, with 8% of patients being asymptomatic during normal daily life, and 21% showing limitations during daily activities and fixed muscle weakness. A major remaining challenge is one of diagnosis, which is often delayed until the third decade of life in 72% of new patients despite the vast majority (86%) reporting symptoms before 20 years. An important development is the growing proportion of those reporting a 4-year improvement in disease severity (now 34%) and following an active lifestyle (50%). Physically active patients are more likely to report an improvement after a 4-year period in the clinical course of the disease than their inactive peers (odds ratio: 13.98; 95% confidence interval: 5.6, 34.9; p < 0.001). Peak oxygen uptake is also higher in the former (20.7 ± 6.0 vs. 16.8 ± 5.3 mL/kg/min, p = 0.0013). Finally, there is no association between PYGM genotype and phenotype manifestation of the disease. CONCLUSIONS The reported prevalence of McArdle disease grows exponentially despite frequent, long delays in genetic diagnosis, suggesting that many patients remain undiagnosed. Until a genetic cure is available (which is not predicted in the near future), current epidemiologic data support that adoption of an active lifestyle is the best medicine for these patients.
Collapse
Affiliation(s)
- Alfredo Santalla
- Universidad Pablo de Olavide, Sevilla, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Gisela Nogales-Gadea
- Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Camí de les Escoles, s/n 08916, (Barcelona), Badalona, Spain. .,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| | - Alberto Blázquez Encinar
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
| | - Irene Vieitez
- Rare Diseases and Pediatric Medicine Group, Galicia Sur Health Research Institute, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Adrian González-Quintana
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Serrano-Lorenzo
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Inés García Consuegra
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
| | - Sara Asensio
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonsina Ballester-Lopez
- Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Camí de les Escoles, s/n 08916, (Barcelona), Badalona, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Guillem Pintos-Morell
- Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Camí de les Escoles, s/n 08916, (Barcelona), Badalona, Spain.,Servicio de Pediatría, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaume Coll-Cantí
- Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Camí de les Escoles, s/n 08916, (Barcelona), Badalona, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Neurología, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Helios Pareja-Galeano
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| | - Jorge Díez-Bermejo
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| | | | - Antoni L Andreu
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Tomàs Pinós
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Joaquín Arenas
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel A Martín
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
| | - Alejandro Lucia
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|