1
|
Bouman K, Dittrich AT, Groothuis JT, van Engelen BG, Janssen MC, Voermans NC, Draaisma JM, Erasmus CE. Bone Quality in Patients with a Congenital Myopathy: A Scoping Review. J Neuromuscul Dis 2023; 10:1-13. [PMID: 36314217 PMCID: PMC9881028 DOI: 10.3233/jnd-221543] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Congenital myopathies are rare neuromuscular disorders presenting with a wide spectrum of clinical features, including long bone fractures (LBFs) that negatively influence functional prognosis, quality of life and survival. Systematic research on bone quality in these patients is lacking. OBJECTIVE This scoping review aims to summarize all evidence on bone quality and to deduce recommendations for bone quality management in congenital myopathies. METHODS Five electronic databases (Pubmed, Embase, Cochrane, Web of Science, CINAHL) were searched. All studies on bone quality in congenital myopathies were included. Decreased bone quality was defined as low bone mineral density and/or (fragility) LBFs. Study selection and data extraction were performed by three independent reviewers. RESULTS We included 244 single cases (mean: 4.1±7.6 years; median: 0 years) diagnosed with a congenital myopathy from 35 articles. Bone quality was decreased in 93 patients (37%) (mean: 2.6±6.8 years; median: 0 years). Low bone mineral density was reported in 11 patients (4.5%) (mean: 10.9±9.7; median: 11 years). Congenital LBFs were reported in 64 patients (26%). (Fragility) LBFs later at life were described in 24 patients (9.8%) (mean: 14.9±11.0; median: 14 years). Four cases (1.6%) were reported to receive vitamin D and/or calcium supplementation or diphosphonate administration. CONCLUSION LBFs are thus frequently reported in congenital myopathies. We therefore recommend optimal bone quality management through bone mineral density assessment, vitamin D and calcium suppletion, and referral to internal medicine or pediatrics for consideration of additional therapies in order to prevent complications of low bone mineral density.
Collapse
Affiliation(s)
- Karlijn Bouman
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands,
Department of Pediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands,Correspondence to: Karlijn Bouman, Department of Neurology and Pediatric Neurology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands. Tel.: +31 650193738; Fax: +31 243635135; E-mail:
| | - Anne T.M. Dittrich
- Department of Pediatrics, Radboud Institute for Health Sciences, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan T. Groothuis
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Baziel G.M. van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mirian C.H. Janssen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicol C. Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jos M.T. Draaisma
- Department of Pediatrics, Radboud Institute for Health Sciences, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Corrie E. Erasmus
- Department of Pediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
2
|
ASC1 complex related conditions: Two novel paediatric patients with TRIP4 pathogenic variants and review of literature. Eur J Med Genet 2022; 65:104469. [PMID: 35276412 DOI: 10.1016/j.ejmg.2022.104469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/11/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Pathogenic variants in the genes encoding for the ASC1 complex were recently reported in patients with congenital fractures, joint contractures, neonatal hypotonia and respiratory distress. Here we report two male children with biallelic TRIP4 pathogenic loss of function variants. The first child presented with foetal bradykinesia, neonatal respiratory distress, central and peripheral hypotonia, constipation, hyperlaxity, left uretero-hydronephrosis and post-obstructive kidney dysplasia. The second had severe central and peripheral neonatal hypotonia, feeding difficulties, kyphosis, developmental delay and hyperlaxity. Detailed review of all reported cases with ASCC1 (12 patients) and TRIP4 (18 patients) variants highlights striking genotype-phenotype correlations. This is the fourth report of patients with TRIP4 variants and the first description of post-obstructive kidney dysplasia in this condition.
Collapse
|
3
|
Meunier J, Villar-Quiles RN, Duband-Goulet I, Ferreiro A. Inherited Defects of the ASC-1 Complex in Congenital Neuromuscular Diseases. Int J Mol Sci 2021; 22:ijms22116039. [PMID: 34204919 PMCID: PMC8199739 DOI: 10.3390/ijms22116039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Defects in transcriptional and cell cycle regulation have emerged as novel pathophysiological mechanisms in congenital neuromuscular disease with the recent identification of mutations in the TRIP4 and ASCC1 genes, encoding, respectively, ASC-1 and ASCC1, two subunits of the ASC-1 (Activating Signal Cointegrator-1) complex. This complex is a poorly known transcriptional coregulator involved in transcriptional, post-transcriptional or translational activities. Inherited defects in components of the ASC-1 complex have been associated with several autosomal recessive phenotypes, including severe and mild forms of striated muscle disease (congenital myopathy with or without myocardial involvement), but also cases diagnosed of motor neuron disease (spinal muscular atrophy). Additionally, antenatal bone fractures were present in the reported patients with ASCC1 mutations. Functional studies revealed that the ASC-1 subunit is a novel regulator of cell cycle, proliferation and growth in muscle and non-muscular cells. In this review, we summarize and discuss the available data on the clinical and histopathological phenotypes associated with inherited defects of the ASC-1 complex proteins, the known genotype–phenotype correlations, the ASC-1 pathophysiological role, the puzzling question of motoneuron versus primary muscle involvement and potential future research avenues, illustrating the study of rare monogenic disorders as an interesting model paradigm to understand major physiological processes.
Collapse
Affiliation(s)
- Justine Meunier
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, 75013 Paris, France; (J.M.); (R.-N.V.-Q.)
| | - Rocio-Nur Villar-Quiles
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, 75013 Paris, France; (J.M.); (R.-N.V.-Q.)
- Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, APHP, Institute of Myology, 75013 Paris, France
| | - Isabelle Duband-Goulet
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, 75013 Paris, France; (J.M.); (R.-N.V.-Q.)
- Correspondence: (I.D.-G.); (A.F.); Tel.: +33-1-5727-7965 (I.D.-G.); +33-1-5727-7959 (A.F.)
| | - Ana Ferreiro
- Basic and Translational Myology Laboratory, UMR8251, University of Paris/National Center for Scientific Research, 75013 Paris, France; (J.M.); (R.-N.V.-Q.)
- Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, APHP, Institute of Myology, 75013 Paris, France
- Correspondence: (I.D.-G.); (A.F.); Tel.: +33-1-5727-7965 (I.D.-G.); +33-1-5727-7959 (A.F.)
| |
Collapse
|
4
|
Kapell S, Jakobsson ME. Large-scale identification of protein histidine methylation in human cells. NAR Genom Bioinform 2021; 3:lqab045. [PMID: 34046594 PMCID: PMC8140740 DOI: 10.1093/nargab/lqab045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Methylation can occur on histidine, lysine and arginine residues in proteins and often serves a regulatory function. Histidine methylation has recently attracted attention through the discovery of the human histidine methyltransferase enzymes SETD3 and METTL9. There are currently no methods to enrich histidine methylated peptides for mass spectrometry analysis and large-scale studies of the modification are hitherto absent. Here, we query ultra-comprehensive human proteome datasets to generate a resource of histidine methylation sites. In HeLa cells alone, we report 299 histidine methylation sites as well as 895 lysine methylation events. We use this resource to explore the frequency, localization, targeted domains, protein types and sequence requirements of histidine methylation and benchmark all analyses to methylation events on lysine and arginine. Our results demonstrate that histidine methylation is widespread in human cells and tissues and that the modification is over-represented in regions of mono-spaced histidine repeats. We also report colocalization of the modification with functionally important phosphorylation sites and disease associated mutations to identify regions of likely regulatory and functional importance. Taken together, we here report a system level analysis of human histidine methylation and our results represent a comprehensive resource enabling targeted studies of individual histidine methylation events.
Collapse
Affiliation(s)
- Sebastian Kapell
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | | |
Collapse
|
5
|
Akuamoah-Boateng G, Stetson RC, Kaemingk BD, Bieber DA, Brumbaugh JE. Profound Hypotonia and Respiratory Failure due to Suspected Nemaline Myopathy in a Preterm Infant. AJP Rep 2021; 11:e91-e94. [PMID: 34178423 PMCID: PMC8221836 DOI: 10.1055/s-0041-1728782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/23/2021] [Indexed: 02/04/2023] Open
Abstract
Congenital myopathies, such as nemaline myopathy, may present with hypotonia and respiratory failure in the neonatal period. Respiratory function can be further compromised in affected infants by the development of chylous effusions. We present the case of a preterm male infant born at 32 6/7 weeks' gestation, who was profoundly hypotonic and required intubation at birth. His clinical course progressed from acute to chronic respiratory failure with mechanical ventilation dependence. He developed bilateral chylous pleural effusions during the newborn period. Whole exome sequencing identified an ACTA1 gene mutation leading to the presumed diagnosis of nemaline myopathy. This case highlights the need to include congenital myopathies in the differential for a preterm newborn with hypotonia and respiratory failure.
Collapse
Affiliation(s)
| | - Raymond C Stetson
- Division of Neonatal Medicine, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bethany D Kaemingk
- Division of Neonatal Medicine, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - David A Bieber
- Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Jane E Brumbaugh
- Division of Neonatal Medicine, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Vogt J, Al-Saedi A, Willis T, Male A, McKie A, Kiely N, Maher ER. A recurrent pathogenic variant in TPM2 reveals further phenotypic and genetic heterogeneity in multiple pterygium syndrome-related disorders. Clin Genet 2020; 97:908-914. [PMID: 32092148 DOI: 10.1111/cge.13728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/28/2020] [Accepted: 02/16/2020] [Indexed: 12/24/2022]
Abstract
Multiple pterygium syndrome (MPS) disorders are a phenotypically and genetically heterogeneous group of conditions characterized by multiple joint contractures (arthrogryposis), pterygia (joint webbing) and other developmental defects. MPS is most frequently inherited in an autosomal recessive fashion but X-linked and autosomal dominant forms also occur. Advances in genomic technologies have identified many genetic causes of MPS-related disorders and genetic diagnosis requires large targeted next generation sequencing gene panels or genome-wide sequencing approaches. Using the Illumina TruSightOne clinical exome assay, we identified a recurrent heterozygous missense substitution in TPM2 (encoding beta tropomyosin) in three unrelated individuals. This was confirmed to have arisen as a de novo event in the two patients with parental samples. TPM2 mutations have previously been described in association with a variety of dominantly inherited neuromuscular phenotypes including nemaline myopathy, congenital fibre-type disproportion, distal arthrogryposis and trismus pseudocamptodactyly, and in a patient with autosomal recessive Escobar syndrome and a nemaline myopathy. The three cases reported here had overlapping but variable features. Our findings expand the range of TMP2-related phenotypes and indicate that de novo TMP2 mutations should be considered in isolated cases of MPS-related conditions.
Collapse
Affiliation(s)
- Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Atif Al-Saedi
- Centre for Rare Diseases and Personalised Medicine, University of Birmingham, Birmingham, UK
| | - Tracey Willis
- Neuromuscular Service, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Alison Male
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Arthur McKie
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Nigel Kiely
- Neuromuscular Service, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Eamonn R Maher
- Centre for Rare Diseases and Personalised Medicine, University of Birmingham, Birmingham, UK.,Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| |
Collapse
|
7
|
Böhm J, Malfatti E, Oates E, Jones K, Brochier G, Boland A, Deleuze JF, Romero NB, Laporte J. Novel ASCC1 mutations causing prenatal-onset muscle weakness with arthrogryposis and congenital bone fractures. J Med Genet 2018; 56:617-621. [PMID: 30327447 DOI: 10.1136/jmedgenet-2018-105390] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/03/2018] [Accepted: 09/22/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND The activating signal cointegrator 1 (ASC-1) complex acts as a transcriptional coactivator for a variety of transcription factors and consists of four subunits: ASCC1, ASCC2, ASCC3 and TRIP4. A single homozygous mutation in ASCC1 has recently been reported in two families with a severe muscle and bone disorder. OBJECTIVE We aim to contribute to a better understanding of the ASCC1-related disorder. METHODS Here, we provide a clinical, histological and genetic description of three additional ASCC1 families. RESULTS All patients presented with severe prenatal-onset muscle weakness, neonatal hypotonia and arthrogryposis, and congenital bone fractures. The muscle biopsies from the affected infants revealed intense oxidative rims beneath the sarcolemma and scattered remnants of sarcomeres with enlarged Z-bands, potentially representing a histopathological hallmark of the disorder. Sequencing identified recessive nonsense or frameshift mutations in ASCC1, including two novel mutations. CONCLUSION Overall, this work expands the ASCC1 mutation spectrum, sheds light on the muscle histology of the disorder and emphasises the physiological importance of the ASC-1 complex in fetal muscle and bone development.
Collapse
Affiliation(s)
- Johann Böhm
- Departement of Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Edoardo Malfatti
- Morphological Unit, Institut de Myologie, GHU La Pitié-Salpêtrière, Paris, France.,Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Emily Oates
- Institute for Neuroscience and Muscle Research, Kid's Research Institute, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Kristi Jones
- Institute for Neuroscience and Muscle Research, Kid's Research Institute, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Guy Brochier
- Morphological Unit, Institut de Myologie, GHU La Pitié-Salpêtrière, Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de biologie François Jacob, CEA, Évry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de biologie François Jacob, CEA, Évry, France
| | - Norma Beatriz Romero
- Morphological Unit, Institut de Myologie, GHU La Pitié-Salpêtrière, Paris, France.,Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Jocelyn Laporte
- Departement of Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| |
Collapse
|
8
|
Knierim E, Hirata H, Wolf NI, Morales-Gonzalez S, Schottmann G, Tanaka Y, Rudnik-Schöneborn S, Orgeur M, Zerres K, Vogt S, van Riesen A, Gill E, Seifert F, Zwirner A, Kirschner J, Goebel HH, Hübner C, Stricker S, Meierhofer D, Stenzel W, Schuelke M. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures. Am J Hum Genet 2016; 98:473-489. [PMID: 26924529 DOI: 10.1016/j.ajhg.2016.01.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system.
Collapse
Affiliation(s)
- Ellen Knierim
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan; Center for Frontier Research, National Institute of Genetics, Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Mishima 411-8540, Japan.
| | - Nicole I Wolf
- Department of Child Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB Amsterdam, the Netherlands
| | - Susanne Morales-Gonzalez
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Gudrun Schottmann
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Yu Tanaka
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Sabine Rudnik-Schöneborn
- Institute of Human Genetics and University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany; Division of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Mickael Orgeur
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Free University Berlin, Institute for Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Klaus Zerres
- Institute of Human Genetics and University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Stefanie Vogt
- Medizinisches Versorgungszentrum Dr. Eberhard & Partner, 44137 Dortmund, Germany
| | - Anne van Riesen
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Esther Gill
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Franziska Seifert
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Angelika Zwirner
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Hans Hilmar Goebel
- Department of Neuropathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christoph Hübner
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sigmar Stricker
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Free University Berlin, Institute for Chemistry and Biochemistry, 14195 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
9
|
Jędrzejowska M, Jakubowska-Pietkiewicz E, Kostera-Pruszczyk A. X-linked spinal muscular atrophy (SMAX2) caused by de novo c.1731C>T substitution in the UBA1 gene. Neuromuscul Disord 2015; 25:661-6. [PMID: 26028276 DOI: 10.1016/j.nmd.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 11/16/2022]
Abstract
Infantile X-linked spinal muscular atrophy (SMAX2) is a rare form of spinal muscular atrophy manifesting as severe hypotonia, areflexia, arthrogryposis, facial weakness and cryptorchidism, and frequently accompanied by bone fractures. We present a male patient with SMAX2 who presented with typical symptoms at birth, preceded by reduced fetal movements in the second and third trimesters of pregnancy. Clinical examination revealed a myopathic face with a characteristic tent-shaped open mouth, tongue fibrillations, profound muscle weakness, areflexia, multiple contractures, mild skeletal abnormalities and cryptorchidism. In the first days of the patient's life, fractures of the right femur and right humerus were found; however, calcium-phosphate metabolism and densitometric examination were normal. Molecular analysis revealed a de novo c.1731C>T substitution in the UBA1 gene, which was localized in exon 15, the specific hot spot for mutation.
Collapse
Affiliation(s)
- Maria Jędrzejowska
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
10
|
Waisayarat J, Suriyonplengsaeng C, Khongkhatithum C, Rochanawutanon M. Severe congenital nemaline myopathy with primary pulmonary lymphangiectasia: unusual clinical presentation and review of the literature. Diagn Pathol 2015; 10:27. [PMID: 25890230 PMCID: PMC4404293 DOI: 10.1186/s13000-015-0270-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/07/2015] [Indexed: 12/02/2022] Open
Abstract
Introduction Nemaline myopathy is a rare genetic muscle disorder defined by the presence of nemaline rods in the muscle fibre sarcoplasm. Congenital nemaline myopathy is the most serious form of the disease’s spectrum. Case presentation The affected newborn has no spontaneous movement, fractures at birth and respiratory insufficiency. The present case was a Thai male, floppy at birth with fractures of both humeri and femurs and ventilator-dependent respiration. The patient developed bilateral chylothorax two weeks later and died at the age of 6 weeks. Whole-body postmortem examination with informed consent and genetic analysis of ACTA1 mutation were performed. A skeletal muscle biopsy examined by light and transmission electron microscopy showed the features of nemaline myopathy. ACTA 1 heterozygous missense mutation (c.1127G > C) was identified. Histological examination of both lungs revealed primary pulmonary lymphangiectasia. Conclusion To the best of our knowledge, congenital nemaline myopathy with primary pulmonary lymphangiectasia causing bilateral chylothrax has never been previously reported. Considering chylothorax as a poor prognostic index and an unusual clinical presentation of severe congenital NM are proposed. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9710506431489501.
Collapse
Affiliation(s)
- Jariya Waisayarat
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| | - Chinnawut Suriyonplengsaeng
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand. .,Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Chaiyos Khongkhatithum
- Department of Pedriatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| | - Mana Rochanawutanon
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
11
|
Severe congenital nemaline myopathy with bilateral chylothorax caused by primary pulmonary lymphangiectasia. Pathology 2014. [DOI: 10.1097/01.pat.0000454536.84608.af] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Joly P, Lacan P, Garcia C, Desbrée A, Couprie N, Francina A. Two New δ-Globin Gene Variants: Hb A2-Saint-Etienne [δ14(A11)Leu→Pro (HBD: c.44T>C)] and Hb A2-Marseille [δ22(B4) Ala→Lys (HBD: c.67G>A;68C>A)]. Hemoglobin 2012; 37:80-4. [DOI: 10.3109/03630269.2012.749275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|