1
|
Akyürek EE, Busato F, Murgiano L, Bianchini E, Carotti M, Sandonà D, Drögemüller C, Gentile A, Sacchetto R. Differential Analysis of Gly211Val and Gly286Val Mutations Affecting Sarco(endo)plasmic Reticulum Ca 2+-ATPase (SERCA1) in Congenital Pseudomyotonia Romagnola Cattle. Int J Mol Sci 2022; 23:ijms232012364. [PMID: 36293223 PMCID: PMC9604440 DOI: 10.3390/ijms232012364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Congenital pseudomyotonia in cattle (PMT) is a rare skeletal muscle disorder, clinically characterized by stiffness and by delayed muscle relaxation after exercise. Muscle relaxation impairment is due to defective content of the Sarco(endo)plasmic Reticulum Ca2+ ATPase isoform 1 (SERCA1) protein, caused by missense mutations in the ATP2A1 gene. PMT represents the only mammalian model of human Brody myopathy. In the Romagnola breed, two missense variants occurring in the same allele were described, leading to Gly211Val and Gly286Val (G211V/G286V) substitutions. In this study, we analyzed the consequences of G211V and G286V mutations. Results support that the reduced amount of SERCA1 is a consequence of the G211V mutation, the G286V mutation almost being benign and the ubiquitin–proteasome system (UPS) being involved. After blocking the proteasome using a proteasome inhibitor, we found that the G211V mutant accumulates in cells at levels comparable to those of WT SERCA1. Our conclusion is that G211/286V mutations presumably originate in a folding-defective SERCA1 protein, recognized and diverted to degradation by UPS, although still catalytically functional, and that the main role is played by G211V mutation. Rescue of mutated SERCA1 to the sarcoplasmic reticulum membrane can re-establish resting cytosolic Ca2+ concentration and prevent the appearance of pathological signs, paving the way for a possible therapeutic approach against Brody disease.
Collapse
Affiliation(s)
- Eylem Emek Akyürek
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy
| | - Francesca Busato
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy
- Veterinary Clinic San Marco, Viale dell’Industria 3, Veggiano, 35030 Padova, Italy
| | - Leonardo Murgiano
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA 19104, USA
| | - Elisa Bianchini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
- Aptuit, Via A. Fleming 4, 37135 Verona, Italy
| | - Marcello Carotti
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland
| | - Arcangelo Gentile
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy
- Correspondence: ; Tel.: +39-049-827-2653
| |
Collapse
|
2
|
Cortés A, Coral J, McLachlan C, Corredor JAG, Benítez R. Molecular transduction in receptor-ligand systems by planar electromagnetic fields. BRAZ J BIOL 2021; 82:e232525. [PMID: 34076160 DOI: 10.1590/1519-6984.232525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 09/26/2020] [Indexed: 11/22/2022] Open
Abstract
The coupling of a ligand with a molecular receptor induces a signal that travels through the receptor, reaching the internal domain and triggering a response cascade. In previous work on T-cell receptors and their coupling with foreign antigens, we observed the presence of planar molecular patterns able to generate electromagnetic fields within the proteins. These planes showed a coherent (synchronized) behavior, replicating immediately in the intracellular domain that which occurred in the extracellular domain as the ligand was coupled. In the present study, we examined this molecular transduction - the capacity of the coupling signal to penetrate deep inside the receptor molecule and induce a response. We verified the presence of synchronized behavior in diverse receptor-ligand systems. To appreciate this diversity, we present four biochemically different systems - TCR-peptide, calcium pump-ADP, haemoglobin-oxygen, and gp120-CD4 viral coupling. The confirmation of synchronized molecular transduction in each of these systems suggests that the proposed mechanism would occur in all biochemical receptor-ligand systems.
Collapse
Affiliation(s)
- A Cortés
- Department of Molecular Physics, Synthetic Vaccine and New Drug Research Institute - IVSI, Popayán, Colombia
| | - J Coral
- Department of Molecular Physics, Synthetic Vaccine and New Drug Research Institute - IVSI, Popayán, Colombia
| | - C McLachlan
- Department of Molecular Physics, Synthetic Vaccine and New Drug Research Institute - IVSI, Popayán, Colombia
| | - J A G Corredor
- Chemistry Department, Universidad del Cauca, Popayán, Colombia
| | - R Benítez
- Chemistry Department, Chemical of Natural Products group, Universidad del Cauca, Popayán, Colombia
| |
Collapse
|
3
|
Molenaar JP, Verhoeven JI, Rodenburg RJ, Kamsteeg EJ, Erasmus CE, Vicart S, Behin A, Bassez G, Magot A, Péréon Y, Brandom BW, Guglielmi V, Vattemi G, Chevessier F, Mathieu J, Franques J, Suetterlin K, Hanna MG, Guyant-Marechal L, Snoeck MM, Roberts ME, Kuntzer T, Fernandez-Torron R, Martínez-Arroyo A, Seeger J, Kusters B, Treves S, van Engelen BG, Eymard B, Voermans NC, Sternberg D. Clinical, morphological and genetic characterization of Brody disease: an international study of 40 patients. Brain 2020; 143:452-466. [PMID: 32040565 PMCID: PMC7009512 DOI: 10.1093/brain/awz410] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/30/2019] [Accepted: 11/16/2019] [Indexed: 11/17/2022] Open
Abstract
Brody disease is an autosomal recessive myopathy characterized by exercise-induced muscle stiffness due to mutations in the ATP2A1 gene. Almost 50 years after the initial case presentation, only 18 patients have been reported and many questions regarding the clinical phenotype and results of ancillary investigations remain unanswered, likely leading to incomplete recognition and consequently under-diagnosis. Additionally, little is known about the natural history of the disorder, genotype-phenotype correlations, and the effects of symptomatic treatment. We studied the largest cohort of Brody disease patients to date (n = 40), consisting of 22 new patients (19 novel mutations) and all 18 previously published patients. This observational study shows that the main feature of Brody disease is an exercise-induced muscle stiffness of the limbs, and often of the eyelids. Onset begins in childhood and there was no or only mild progression of symptoms over time. Four patients had episodes resembling malignant hyperthermia. The key finding at physical examination was delayed relaxation after repetitive contractions. Additionally, no atrophy was seen, muscle strength was generally preserved, and some patients had a remarkable athletic build. Symptomatic treatment was mostly ineffective or produced unacceptable side effects. EMG showed silent contractures in approximately half of the patients and no myotonia. Creatine kinase was normal or mildly elevated, and muscle biopsy showed mild myopathic changes with selective type II atrophy. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) activity was reduced and western blot analysis showed decreased or absent SERCA1 protein. Based on this cohort, we conclude that Brody disease should be considered in cases of exercise-induced muscle stiffness. When physical examination shows delayed relaxation, and there are no myotonic discharges at electromyography, we recommend direct sequencing of the ATP2A1 gene or next generation sequencing with a myopathy panel. Aside from clinical features, SERCA activity measurement and SERCA1 western blot can assist in proving the pathogenicity of novel ATP2A1 mutations. Finally, patients with Brody disease may be at risk for malignant hyperthermia-like episodes, and therefore appropriate perioperative measures are recommended. This study will help improve understanding and recognition of Brody disease as a distinct myopathy in the broader field of calcium-related myopathies.
Collapse
Affiliation(s)
- Joery P Molenaar
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jamie I Verhoeven
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Richard J Rodenburg
- Department of Pediatrics, Translational Metabolic Laboratory, Radboud Center for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Erik J Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corrie E Erasmus
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Savine Vicart
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Anthony Behin
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Guillaume Bassez
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Armelle Magot
- CHU Nantes, Centre de Référence Maladies Neuromusculaires AOC, Nantes, France
| | - Yann Péréon
- CHU Nantes, Centre de Référence Maladies Neuromusculaires AOC, Nantes, France
| | - Barbara W Brandom
- Department of Anesthesiology, Children's Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Valeria Guglielmi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | | | - Jean Mathieu
- Neuromuscular Clinic, Centre de Réadaptation en Déficience Physique de Jonquière, Jonquière, Québec, Canada
| | - Jérôme Franques
- Centre de référence des maladies neuromusculaires et de la SLA, hôpital La Timone, AP-HM, Aix-Marseille université, avenue Jean-Moulin, Marseille, France
| | - Karen Suetterlin
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | | | - Marc M Snoeck
- Department of Anaesthesiology, Canisius-Wilhelmina Ziekenhuis, Nijmegen, The Netherlands
| | - Mark E Roberts
- Department of Neurology, Salford Royal NHS Foundation Trust, Greater Manchester, UK
| | - Thierry Kuntzer
- Nerve-Muscle Unit, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Roberto Fernandez-Torron
- Neuromuscular Area, Biodonostia Health Research Institute, Department of Neurology, University Hospital Donostia, CIBERNED, San Sebastián, Spain
| | | | - Juergen Seeger
- Sozialpädiatrisches Zentrum Frankfurt Mitte, Neuromuskulares Zentrum, Frankfurt, Germany
| | - Benno Kusters
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Susan Treves
- Departments of Anesthesia and Biomedicine, Basel University and Basel University Hospital, Basel, Switzerland.,Department of Life Sciences, University of Ferrara, Ferrara, Italy
| | - Baziel G van Engelen
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bruno Eymard
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Nicol C Voermans
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Damien Sternberg
- Assistance Publique-Hôpitaux de Paris, Centre de Référence des Canalopathies Musculaires, Centre de Référence des Maladies Neuromusculaires-Paris Est et Service de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
4
|
Mascarello F, Sacchetto R. Structural study of skeletal muscle fibres in healthy and pseudomyotonia affected cattle. Ann Anat 2016; 207:21-6. [PMID: 27210062 DOI: 10.1016/j.aanat.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 01/21/2023]
Abstract
Cattle congenital pseudomyotonia (PMT), recognized as naturally occurring animal model of human Brody disease, is an inherited recessive autosomal muscular disorder due to missense mutations in ATP2A1 gene, encoding sarco(endo)plasmic reticulum Ca(2+)-ATPase protein, isoform 1 (SERCA1). PMT has been described in the Chianina and Romagnola italian cattle breeds and as a single case in Dutch improved Red and White cross-breed. The genetic defect turned out to be heterogeneous in different cattle breeds, even though clinical symptoms were homogeneous. Skeletal muscles of affected animals are characterized by a selective deficiency of SERCA1 in sarcoplasmic reticulum (SR) membranes. Recently, we provided evidence that in Chianina breed, the ubiquitin proteasome system is responsible for SERCA1 mutant premature disposal, even when the mutation does not affect the catalytic properties of the pump. Results presented here show that all SERCA1 mutants described until now, although expressed at low level, are correctly targeted to SR membranes. Ultrastructural studies confirm that in pathological muscle fibres, structure, as well as triads, is well preserved. All together these results suggest that a possible therapeutical approach based on the rescue of the defective protein at SR membranes could be hypothesized. Only fully functionally active missense mutants, whem located at the SR membrane could restore the efficient control of Ca(2+) homeostasis and prevent the appearance of the pathological signs. Moreover, these data demonstrate the increasing importance of domestic animals as genetic models of human pathologies.
Collapse
Affiliation(s)
- Francesco Mascarello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, Padova, Italy
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, Padova, Italy.
| |
Collapse
|