1
|
Marriott H, Spargo TP, Al Khleifat A, Andersen PM, Başak NA, Cooper‐Knock J, Corcia P, Couratier P, de Carvalho M, Drory V, Gotkine M, Landers JE, McLaughlin R, Pardina JSM, Morrison KE, Pinto S, Shaw CE, Shaw PJ, Silani V, Ticozzi N, van Damme P, van den Berg LH, Vourc'h P, Weber M, Veldink JH, Dobson RJ, Schwab P, Al‐Chalabi A, Iacoangeli A. Mutations in the tail and rod domains of the neurofilament heavy-chain gene increase the risk of ALS. Ann Clin Transl Neurol 2024; 11:1775-1786. [PMID: 38775181 PMCID: PMC11251467 DOI: 10.1002/acn3.52083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE Neurofilament heavy-chain gene (NEFH) variants are associated with multiple neurodegenerative diseases, however, their relationship with ALS has not been robustly explored. Still, NEFH is commonly included in genetic screening panels worldwide. We therefore aimed to determine if NEFH variants modify ALS risk. METHODS Genetic data of 11,130 people with ALS and 7,416 controls from the literature and Project MinE were analysed. We performed meta-analyses of published case-control studies reporting NEFH variants, and variant analysis of NEFH in Project MinE whole-genome sequencing data. RESULTS Fixed-effects meta-analysis found that rare (MAF <1%) missense variants in the tail domain of NEFH increase ALS risk (OR 4.55, 95% CI 2.13-9.71, p < 0.0001). In Project MinE, ultrarare NEFH variants increased ALS risk (OR 1.37 95% CI 1.14-1.63, p = 0.0007), with rod domain variants (mostly intronic) appearing to drive the association (OR 1.45 95% CI 1.18-1.77, pMadsen-Browning = 0.0007, pSKAT-O = 0.003). While in the tail domain, ultrarare (MAF <0.1%) pathogenic missense variants were also associated with higher risk of ALS (OR 1.94, 95% CI 0.86-4.37, pMadsen-Browning = 0.039), supporting the meta-analysis results. Finally, several tail in-frame deletions were also found to affect disease risk, however, both protective and pathogenic deletions were found in this domain, highlighting an intricate architecture that requires further investigation. INTERPRETATION We showed that NEFH tail missense and in-frame deletion variants, and intronic rod variants are risk factors for ALS. However, they are not variants of large effect, and their functional impact needs to be clarified in further studies. Therefore, their inclusion in routine genetic screening panels should be reconsidered.
Collapse
Affiliation(s)
- Heather Marriott
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonSE5 8AFUK
- Department of Biostatistics and Health InformaticsInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonSE5 8AFUK
| | - Thomas P. Spargo
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonSE5 8AFUK
- Department of Biostatistics and Health InformaticsInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonSE5 8AFUK
| | - Ahmad Al Khleifat
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonSE5 8AFUK
| | - Peter M Andersen
- Department of Clinical ScienceUmeå UniversityUmeåSE‐901 85Sweden
| | - Nazli A. Başak
- Translational Medicine Research Center, NDAL, School of MedicineKoc UniversityIstanbul34450Turkey
| | - Johnathan Cooper‐Knock
- Sheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldS10 2HQUK
| | - Philippe Corcia
- UMR 1253, Université de Tours, InsermTours37044France
- Centre de référence sur la SLA, CHU de ToursTours37044France
| | - Philippe Couratier
- Centre de référence sur la SLA, CHRU de LimogesLimogesFrance
- UMR 1094, Université de Limoges, InsermLimoges87025France
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de MedicinaUniversidade de LisboaLisbon1649‐028Portugal
| | - Vivian Drory
- Department of NeurologyTel‐Aviv Sourasky Medical CentreTel‐Aviv64239Israel
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐Aviv6997801Israel
| | - Marc Gotkine
- Faculty of MedicineHebrew University of JerusalemJerusalem91904Israel
- Agnes Ginges Center for Human Neurogenetics, Department of NeurologyHadassah Medical CenterJerusalem91120Israel
| | - John E. Landers
- Department of NeurologyUniversity of Massachusetts Medical SchoolWorcesterMassachusetts01655USA
| | - Russell McLaughlin
- Complex Trait Genomics LaboratorySmurfit Institute of Genetics, Trinity College DublinDublinD02 PN40Ireland
| | | | - Karen E. Morrison
- School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastBT9 7BLUK
| | - Susana Pinto
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de MedicinaUniversidade de LisboaLisbon1649‐028Portugal
| | - Christopher E. Shaw
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonSE5 8AFUK
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldS10 2HQUK
| | - Vincenzo Silani
- Department of Neurology‐Stroke Unit and Laboratory of NeuroscienceIstituto Auxologico Italiano, IRCCSMilan20149Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” CenterUniversità degli Studi di MilanoMilan20122Italy
| | - Nicola Ticozzi
- Department of Neurology‐Stroke Unit and Laboratory of NeuroscienceIstituto Auxologico Italiano, IRCCSMilan20149Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” CenterUniversità degli Studi di MilanoMilan20122Italy
| | - Philip van Damme
- Experimental Neurology and Leuven Brain Institute (LBI)Leuven3000Belgium
- VIB, Center for Brain and Disease ResearchLeuven3000Belgium
- Department of NeurologyUniversity Hospitals LeuvenLeuven3000Belgium
| | - Leonard H. van den Berg
- Department of Neurology, UMC Utrecht Brain CenterUniversity Medical CenterUtrecht3584 CXNetherlands
| | - Patrick Vourc'h
- UMR 1253, Université de Tours, InsermTours37044France
- Service de Biochimie et Biologie molécularie, CHU de ToursTours37044France
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS ClinicKantonsspital St. GallenSt. Gallen9007Switzerland
| | - Jan H. Veldink
- Department of Neurology, UMC Utrecht Brain CenterUniversity Medical CenterUtrecht3584 CXNetherlands
| | - Richard J. Dobson
- Department of Biostatistics and Health InformaticsInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonSE5 8AFUK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College LondonLondonUK
- Institute of Health Informatics, University College LondonLondonNW1 2DAUK
- NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation TrustLondonUK
| | - Patrick Schwab
- GlaxoSmithKline, Artificial Intelligence and Machine LearningLondonUK
| | - Ammar Al‐Chalabi
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonSE5 8AFUK
- King's College HospitalLondonSE5 9RSUK
| | - Alfredo Iacoangeli
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonSE5 8AFUK
- Department of Biostatistics and Health InformaticsInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonSE5 8AFUK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College LondonLondonUK
| |
Collapse
|
2
|
Kotaich F, Caillol D, Bomont P. Neurofilaments in health and Charcot-Marie-Tooth disease. Front Cell Dev Biol 2023; 11:1275155. [PMID: 38164457 PMCID: PMC10758125 DOI: 10.3389/fcell.2023.1275155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024] Open
Abstract
Neurofilaments (NFs) are the most abundant component of mature neurons, that interconnect with actin and microtubules to form the cytoskeleton. Specifically expressed in the nervous system, NFs present the particularity within the Intermediate Filament family of being formed by four subunits, the neurofilament light (NF-L), medium (NF-M), heavy (NF-H) proteins and α-internexin or peripherin. Here, we review the current knowledge on NF proteins and neurofilaments, from their domain structures and their model of assembly to the dynamics of their transport and degradation along the axon. The formation of the filament and its behaviour are regulated by various determinants, including post-transcriptional (miRNA and RBP proteins) and post-translational (phosphorylation and ubiquitination) modifiers. Altogether, the complex set of modifications enable the neuron to establish a stable but elastic NF array constituting the structural scaffold of the axon, while permitting the local expression of NF proteins and providing the dynamics necessary to fulfil local demands and respond to stimuli and injury. Thus, in addition to their roles in mechano-resistance, radial axonal outgrowth and nerve conduction, NFs control microtubule dynamics, organelle distribution and neurotransmission at the synapse. We discuss how the studies of neurodegenerative diseases with NF aggregation shed light on the biology of NFs. In particular, the NEFL and NEFH genes are mutated in Charcot-Marie-Tooth (CMT) disease, the most common inherited neurological disorder of the peripheral nervous system. The clinical features of the CMT forms (axonal CMT2E, CMT2CC; demyelinating CMT1F; intermediate I-CMT) with symptoms affecting the central nervous system (CNS) will allow us to further investigate the physiological roles of NFs in the brain. Thus, NF-CMT mouse models exhibit various degrees of sensory-motor deficits associated with CNS symptoms. Cellular systems brought findings regarding the dominant effect of NF-L mutants on NF aggregation and transport, although these have been recently challenged. Neurofilament detection without NF-L in recessive CMT is puzzling, calling for a re-examination of the current model in which NF-L is indispensable for NF assembly. Overall, we discuss how the fundamental and translational fields are feeding each-other to increase but also challenge our knowledge of NF biology, and to develop therapeutic avenues for CMT and neurodegenerative diseases with NF aggregation.
Collapse
Affiliation(s)
| | | | - Pascale Bomont
- ERC team, NeuroMyoGene Institute-Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| |
Collapse
|
3
|
Truong AT, Luong ATL, Nguyen LH, Nguyen HV, Nguyen DN, Nguyen NTM. A novel single-point mutation of NEFH and biallelic SACS mutation presenting as intermediate form Charcot-Marie-Tooth: A case report in Vietnam. Surg Neurol Int 2022; 13:553. [PMID: 36600740 PMCID: PMC9805609 DOI: 10.25259/sni_803_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Background Charcot-Marie-Tooth disease (CMT) is among the most common group of inherited neuromuscular diseases. SACS mutations were demonstrated to cause autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). However, there have been few case reports regarding to NEFH and SACS gene mutation to CMT in Vietnamese patients, and the diagnosis of CMT and ARSACS in the clinical setting still overlapped. Case Description We report two patients presenting with sensorimotor neuropathy without cerebellar ataxia, spasticity and other neurological features, being diagnosed with intermediate form CMT by electrophysiological and clinical examination and neuroimaging. By whole-exome sequencing panel of two affected members, and PCR Sanger on NEFH and SACS genes to confirm the presence of selected variants on their parents, we identified a novel missense variant NEFH c.1925C>T (inherited from the mother) in an autosomal dominant heterozygous state, and two recessive SACS variants (SACS c.13174C>T, causing missense variant, and SACS c.11343del, causing frameshift variant) (inherited one from the mother and another from the father) in these two patients. Clinical and electrophysiological findings on these patients did not match classical ARSACS. To the best of our knowledge, this is the first case report of two affected siblings diagnosed with CMT carrying both a novel NEFH variant and biallelic SACS variants. Conclusion We concluded that this novel NEFH variant is likely benign, and biallelic SACS mutation (c.13174C>T and c.11343del) is likely pathogenic for intermediate form CMT. This study is also expected to emphasize the current knowledge of intermediate form CMT, ARSACS, and the phenotypic spectrum of NEFH-related and SACS-related disorders. We expect to give a new understanding of CMT; however, further research should be conducted to provide a more thorough knowledge of the pathogenesis of CMT in the future.
Collapse
Affiliation(s)
- Anh Tuan Truong
- Department of Clinical Medicine, Nam Dinh University of Nursing, Nam Dinh, Vietnam
| | - Anh Thi Lan Luong
- Department of Medical Biology and Genetics, Hanoi Medical University, Hanoi, Vietnam
| | - Linh Hai Nguyen
- Department of Neurology, Hanoi Medical University, Hanoi, Vietnam.,Corresponding author: Linh Hai Nguyen, Department of Neurology, Hanoi Medical University, Hanoi, Vietnam.
| | - Huong Van Nguyen
- Department of Neurology, Hanoi Medical University, Hanoi, Vietnam
| | - Diep Ngoc Nguyen
- Institute of Theoretical and Applied Research (ITAR), School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Ngoc Thi Minh Nguyen
- Department of Medical Biology and Genetics, Hanoi Medical University, Hanoi, Vietnam
| |
Collapse
|
4
|
Ando M, Higuchi Y, Okamoto Y, Yuan J, Yoshimura A, Takei J, Taniguchi T, Hiramatsu Y, Sakiyama Y, Hashiguchi A, Matsuura E, Nakagawa H, Sonoda K, Yamashita T, Tamura A, Terasawa H, Mitsui J, Ishiura H, Tsuji S, Takashima H. An NEFH founder mutation causes broad phenotypic spectrum in multiple Japanese families. J Hum Genet 2022; 67:399-403. [DOI: 10.1038/s10038-022-01019-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/28/2021] [Accepted: 01/16/2022] [Indexed: 12/28/2022]
|
5
|
Pipis M, Cortese A, Polke JM, Poh R, Vandrovcova J, Laura M, Skorupinska M, Jacquier A, Juntas-Morales R, Latour P, Petiot P, Sole G, Fromes Y, Shah S, Blake J, Choi BO, Chung KW, Stojkovic T, Rossor AM, Reilly MM. Charcot-Marie-Tooth disease type 2CC due to NEFH variants causes a progressive, non-length-dependent, motor-predominant phenotype. J Neurol Neurosurg Psychiatry 2022; 93:48-56. [PMID: 34518334 PMCID: PMC8685631 DOI: 10.1136/jnnp-2021-327186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/08/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Neurofilaments are the major scaffolding proteins for the neuronal cytoskeleton, and variants in NEFH have recently been described to cause axonal Charcot-Marie-Tooth disease type 2CC (CMT2CC). METHODS In this large observational study, we present phenotype-genotype correlations on 30 affected and 3 asymptomatic mutation carriers from eight families. RESULTS The majority of patients presented in adulthood with motor-predominant and lower limb-predominant symptoms and the average age of onset was 31.0±15.1 years. A prominent feature was the development of proximal weakness early in the course of the disease. The disease progressed rapidly, unlike other Charcot-Marie-Tooth disease (CMT) subtypes, and half of the patients (53%) needed to use a wheelchair on average 24.1 years after symptom onset. Furthermore, 40% of patients had evidence of early ankle plantarflexion weakness, a feature which is observed in only a handful of CMT subtypes. Neurophysiological studies and MRI of the lower limbs confirmed the presence of a non-length-dependent neuropathy in the majority of patients.All families harboured heterozygous frameshift variants in the last exon of NEFH, resulting in a reading frameshift to an alternate open reading frame and the translation of approximately 42 additional amino acids from the 3' untranslated region (3'-UTR). CONCLUSIONS This phenotype-genotype study highlights the unusual phenotype of CMT2CC, which is more akin to spinal muscular atrophy rather than classic CMT. Furthermore, the study will enable more informative discussions on the natural history of the disease and will aid in NEFH variant interpretation in the context of the disease's unique molecular genetics.
Collapse
Affiliation(s)
- Menelaos Pipis
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Cortese
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - James M Polke
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Roy Poh
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jana Vandrovcova
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Matilde Laura
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Mariola Skorupinska
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Arnaud Jacquier
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Universite de Lyon, Lyon, France
| | - Raul Juntas-Morales
- Clinique du Motoneurone et Pathologies Neuromusculaires, CHRU de Montpellier, Montpellier, France
| | - Philippe Latour
- Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Philippe Petiot
- Neurologie et Explorations Fonctionnelles Neurologiques, Centre de Référence Maladies Neuromusculaires, Hospices Civils de Lyon, Lyon, France
| | - Guilhem Sole
- Centre de Référence des Maladies Neuromusculaires, CHU Bordeaux GH Pellegrin, Bordeaux, France
| | - Yves Fromes
- Institut de Myologie, Laboratoire RMN, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sachit Shah
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Julian Blake
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norfolk, UK
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Tanya Stojkovic
- AP-HP, Reference Center for Neuromuscular Disorders, University Hospital Pitié Salpêtrière, Paris, France
- Centre de Recherche en Myologie, Inserm UMRS974, Sorbonne Universite, Paris, France
| | - Alexander M Rossor
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
6
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|
7
|
First case report of Charcot-Marie-Tooth disease type 2CC with a frameshift mutation of NEFH gene in Greece. Neurol Sci 2021; 42:4377-4379. [PMID: 34275023 DOI: 10.1007/s10072-021-05402-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/09/2021] [Indexed: 10/20/2022]
|
8
|
Aruta F, Severi D, Iovino A, Spina E, Barghigiani M, Ruggiero L, Iodice R, Santorelli FM, Manganelli F, Tozza S. Proximal weakness involvement in the first Italian case of Charcot-Marie-Tooth 2CC harboring a novel frameshift variant in NEFH. J Peripher Nerv Syst 2021; 26:231-234. [PMID: 33987933 DOI: 10.1111/jns.12454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
Charcot-Marie-Tooth (CMT) diseases are a clinically and genetically heterogeneous group of disorders. Different variants in the neurofilament heavy chain (NEFH) gene have been described to cause the CMT2CC subtype. Here we report the first Italian patient affected by CMT2CC, harboring a novel variant in NEFH. In describing our patient, we also reviewed previously CMT2CC individuals, and suggested to consider NEFH variant if patients have an axonal sensory-motor neuropathy with a prominent proximal muscles involvement with early requirement of walking aids or wheelchair, remembering a motor neuron disorder.
Collapse
Affiliation(s)
- Francesco Aruta
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | - Daniele Severi
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | - Aniello Iovino
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | - Emanuele Spina
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | | | - Lucia Ruggiero
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | - Rosa Iodice
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | | | - Fiore Manganelli
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | - Stefano Tozza
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
9
|
A novel missense pathogenic variant in NEFH causing rare Charcot-Marie-Tooth neuropathy type 2CC. Neurol Sci 2020; 42:757-763. [PMID: 32780247 DOI: 10.1007/s10072-020-04595-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
The purpose of this research is to explore the underlying genes of Charcot-Marie-Tooth (CMT). Technologies such as electrophysiological testing and gene sequencing have been applied. We identified a novel variant NEFH c.2215C>T(p.P739S)(HGNC:7737) in a heterozygous state, which was considered to be pathogenic for CMT2CC(OMIM:616924).The proband and his brothers presented with muscle atrophy of hand and calf and moderately decreased conduction velocities. By whole exome sequencing analysis, we found the novel missense pathogenic variant in the proband, his brother and mother. This report broadened current knowledge about intermediate CMT and the phenotypic spectrum of defects associated with NEFH. In addition, the proband carried other five variants {HSPD1c.695C>A (p.S232X), FLNCc.1073A>G (p.N358S), GUSBc.323C>A (p.P108Q), ACY1 c.1063-1G>A and APTX c.484-2A>T}, which have not been reported until now. The NEFH c.2215C>T (p.P739S) give us a new understanding of CMT, which might provide new therapeutic targets in the future.
Collapse
|
10
|
Wang P, Fan J, Yuan L, Nan Y, Nan S. Serum Neurofilament Light Predicts Severity and Prognosis in Patients with Ischemic Stroke. Neurotox Res 2020; 37:987-995. [PMID: 31898161 DOI: 10.1007/s12640-019-00159-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
Serum neurofilaments are markers of axonal injury. We investigated whether serum neurofilament light (sNfL) is a potential prognostic marker of functional outcome in Chinese patients with acute ischemic stroke (AIS). From May 2015 to December 2018, consecutive patients with AIS from the Department of Neurology of the Second Hospital of Jilin University were included. sNfL concentration was tested at baseline, and stroke severity was analyzed at admission using the NIHSS score. Functional outcome was assessed at discharge by the modified Rankin scale (mRS). The sNfL concentration was tested in 343 patients with a median value of 17.8 (IQR, 13.4-25.2) pg/ml. sNfL concentration paralleled lesion size (P = 0.035). At admission, 174 patients were defined as moderate-to-high stroke (NIHSS ≥ 5); the sNfL concentration in those patients were higher than that observed in patients with minor clinical severity [21.2 (IQR, 15.1-31.7) vs. 14.9 (11.8-19.4) pg/ml, P < 0.001]. For each 1 quartile increase of sNfL concentration, the unadjusted and adjusted risk of moderate-to-high stroke increased by 202% (with the OR of 3.04 (95% CI 2.15-4.32), P < 0.001) and 102% [2.02 (1.10-3.16), P = 0.001), respectively. At discharge, 85 patients (24.8%) had poor functional outcome (mRS, 3-6); the sNfL concentration in those patients were higher than that observed in patients with good outcome [24.1 (IQR, 18.8-33.9) vs. 15.7 (11.9-21.8) pg/ml, P < 0.001]. For each 1 quartile increase of sNfL concentration, the unadjusted and adjusted risk of poor outcome increased by 236% [with the OR of 3.36 (95% CI 2.23-5.06), P < 0.001] and 102% [2.29 (1.37-3.82), P < 0.001], respectively. The results show sNfL is meaningful blood biomarker to monitor stroke severity and functional outcome in ischemic stroke, suggesting that sNfL may play a role in stroke progression.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurology, The Second Hospital of Jilin University, No.218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Jia Fan
- Department of Neurology, The Second Hospital of Jilin University, No.218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Ling Yuan
- Pharmacy College of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Yi Nan
- Traditional Chinese Medicine College of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Shanji Nan
- Department of Neurology, The Second Hospital of Jilin University, No.218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China.
| |
Collapse
|