1
|
Adams-Ward X, Chapalain A, Ginevra C, Jarraud S, Doublet P, Gilbert C. Bacterial persistence in Legionella pneumophila clinical isolates from patients with recurring legionellosis. Front Cell Infect Microbiol 2023; 13:1219233. [PMID: 37600942 PMCID: PMC10434508 DOI: 10.3389/fcimb.2023.1219233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Bacterial persisters are a transient subpopulation of non-growing, antibiotic-tolerant cells. There is increasing evidence that bacterial persisters play an important role in treatment failure leading to recurring infections and promoting the development of antibiotic resistance. Current research reveals that recurring legionellosis is often the result of relapse rather than reinfection and suggests that the mechanism of bacterial persistence may play a role. The development of single-cell techniques such as the Timerbac system allows us to identify potential persister cells and investigate their physiology. Here, we tested the persister forming capacity of 7 pairs of Legionella pneumophila (Lp) clinical isolates, with isolate pairs corresponding to two episodes of legionellosis in the same patient. We distinguished non-growing subpopulations from their replicating counterparts during infection in an amoeba model. Imaging flow cytometry allowed us to identify single non-growing bacteria within amoeba cells 17 h post-infection, thus corresponding to this subpopulation of potential persister cells. Interestingly the magnitude of this subpopulation varies between the 7 pairs of Lp clinical isolates. Biphasic killing kinetics using ofloxacin stress confirmed the persister development capacity of ST1 clinical isolates, highlighting enhanced persister formation during the host cell infection. Thus, persister formation appears to be strain or ST (sequence type) dependent. Genome sequence analysis was carried out between ST1 clinical isolates and ST1 Paris. No genetic microevolution (SNP) linked to possible increase of persistence capacity was revealed among all the clones tested, even in clones issued from two persistence cycle experiments, confirming the transient reversible phenotypic status of persistence. Treatment failure in legionellosis is a serious issue as infections have a 5-10% mortality rate, and investigations into persistence in a clinical context and the mechanisms involved may allow us to combat this issue.
Collapse
Affiliation(s)
- Xanthe Adams-Ward
- Centre International De Recherche En Infectiologie (CIRI), Institut national de la santé et de la recherche médicale (INSERM) U1111, École normale supérieure (ENS) Lyon, Centre national de la recherche scientifique (CNRS) UMR5308, Université Lyon 1, Université De Lyon, Lyon, France
| | - Annelise Chapalain
- Centre International De Recherche En Infectiologie (CIRI), Institut national de la santé et de la recherche médicale (INSERM) U1111, École normale supérieure (ENS) Lyon, Centre national de la recherche scientifique (CNRS) UMR5308, Université Lyon 1, Université De Lyon, Lyon, France
| | - Christophe Ginevra
- Centre International De Recherche En Infectiologie (CIRI), Institut national de la santé et de la recherche médicale (INSERM) U1111, École normale supérieure (ENS) Lyon, Centre national de la recherche scientifique (CNRS) UMR5308, Université Lyon 1, Université De Lyon, Lyon, France
- Hospices Civils De Lyon, Institut Des Agents Infectieux, Centre National De Référence Des Légionelles, Lyon, France
| | - Sophie Jarraud
- Centre International De Recherche En Infectiologie (CIRI), Institut national de la santé et de la recherche médicale (INSERM) U1111, École normale supérieure (ENS) Lyon, Centre national de la recherche scientifique (CNRS) UMR5308, Université Lyon 1, Université De Lyon, Lyon, France
- Hospices Civils De Lyon, Institut Des Agents Infectieux, Centre National De Référence Des Légionelles, Lyon, France
| | - Patricia Doublet
- Centre International De Recherche En Infectiologie (CIRI), Institut national de la santé et de la recherche médicale (INSERM) U1111, École normale supérieure (ENS) Lyon, Centre national de la recherche scientifique (CNRS) UMR5308, Université Lyon 1, Université De Lyon, Lyon, France
| | - Christophe Gilbert
- Centre International De Recherche En Infectiologie (CIRI), Institut national de la santé et de la recherche médicale (INSERM) U1111, École normale supérieure (ENS) Lyon, Centre national de la recherche scientifique (CNRS) UMR5308, Université Lyon 1, Université De Lyon, Lyon, France
| |
Collapse
|
2
|
A Tale of Four Danish Cities: Legionella pneumophila Diversity in Domestic Hot Water and Spatial Variations in Disease Incidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052530. [PMID: 35270223 PMCID: PMC8909801 DOI: 10.3390/ijerph19052530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023]
Abstract
Denmark has one of the highest Legionnaires' disease notification rates within Europe, averaging 4.7 cases per 100,000 population annually (2017 to 2020). The relatively high incidence of disease is not uniform across the country, and approximately 70% of all domestically acquired cases in Denmark are caused by Legionella pneumophila (LP) strains that are considered less virulent. The aim of this study was to investigate if colonization rates, levels of colonization, and/or types of LP present in hot water systems were associated with geographic differences in Legionnaires' disease incidence. Domestic water systems from four cities in Denmark were analyzed via culture and qPCR. Serogrouping and sequence typing was performed on randomly selected isolates. Single nucleotide polymorphism was used to identify clonal relationship among isolates from the four cities. The results revealed a high LP colonization rate from 68% to 87.5% among systems, composed primarily of non-serogroup 1. LP serogroup 1 reacting with the monoclonal antibody (MAb) 3/1 was not identified in any of the systems tested, while MAb 3/1 negative serogroup 1 strains were isolated from 10 systems (9.6%). We hypothesize that a combination of factors influences the incidence rate of LD in each city, including sequence type and serogroup distribution, colonization rate, concentration of Legionella in Pre-flush and Flush samples, and potentially building characteristics such as water temperature measured at the point of use.
Collapse
|
3
|
Guillemot J, Ginevra C, Allam C, Kay E, Gilbert C, Doublet P, Jarraud S, Chapalain A. TNF-α response in macrophages depends on clinical Legionella pneumophila isolates genotypes. Virulence 2022; 13:160-173. [PMID: 35030980 PMCID: PMC8765069 DOI: 10.1080/21505594.2021.2022861] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Legionnaires' Disease (LD) is a severe pneumonia mainly caused in Europe by Legionella pneumophila serogroup 1 (Lp1). Sequence-based typing methods reveal that some sequence types (ST) are overrepresented in clinical samples such as ST1 and ST47, suggesting that some strains are more fit for infection than others. In the present study, a collection of 108 Lp1 clinical isolates were used to evaluate the strain-dependent immune responses from human macrophages. Clinical Lp1 isolates induced differential TNFα secretion from macrophages. ST1 isolates induced a significantly higher TNF-α secretion than non-ST1, whereas ST47 isolates induced a significantly lower TNF-α secretion than non-ST47 isolates. ST1 isolates induced a significantly higher cell death than ST47 isolates evaluated by lactate dehydrogenase activity (cytotoxicity) and caspase-3 activity (apoptosis). Treatment of macrophages with anti-TNF-α antibodies significantly reduced the cell death in macrophages infected with ST1 or ST47 strains. The TNF-α secretion was neither explained by a differential bacterial replication nor by the number or type (bystander or infected) of TNF-α producing cells following infection but by a differential response from macrophages. The Paris ST1 reference strain elicited a significantly higher TNF-α gene transcription and a higher induction of NF-κB signaling pathway than the Lorraine ST47 reference strain.Clinical Lp1 isolates induce a diverse immune response and cell death, which could be related to the genotype. The two predominant sequence-types ST1 and ST47 trigger opposite inflammatory response that could be related to the host susceptibility.
Collapse
Affiliation(s)
- Johann Guillemot
- Ciri, Centre International de Recherche En Infectiologie, Équipe Pathogenèse Des Légionelles, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Christophe Ginevra
- Ciri, Centre International de Recherche En Infectiologie, Équipe Pathogenèse Des Légionelles, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Hospices Civils de Lyon, Institut Des Agents Infectieux, Centre National de Référence Des Légionelles, Lyon, France
| | - Camille Allam
- Ciri, Centre International de Recherche En Infectiologie, Équipe Pathogenèse Des Légionelles, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Hospices Civils de Lyon, Institut Des Agents Infectieux, Centre National de Référence Des Légionelles, Lyon, France
| | - Elisabeth Kay
- Ciri, Centre International de Recherche En Infectiologie, Équipe Pathogenèse Des Légionelles, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Christophe Gilbert
- Ciri, Centre International de Recherche En Infectiologie, Équipe Pathogenèse Des Légionelles, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Patricia Doublet
- Ciri, Centre International de Recherche En Infectiologie, Équipe Pathogenèse Des Légionelles, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Sophie Jarraud
- Ciri, Centre International de Recherche En Infectiologie, Équipe Pathogenèse Des Légionelles, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Hospices Civils de Lyon, Institut Des Agents Infectieux, Centre National de Référence Des Légionelles, Lyon, France
| | - Annelise Chapalain
- Ciri, Centre International de Recherche En Infectiologie, Équipe Pathogenèse Des Légionelles, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| |
Collapse
|
4
|
Ginevra C, Chastang J, David S, Mentasti M, Yakunin E, Chalker VJ, Chalifa-Caspi V, Valinsky L, Jarraud S, Moran-Gilad J. A real-time PCR for specific detection of the Legionella pneumophila serogroup 1 ST1 complex. Clin Microbiol Infect 2019; 26:514.e1-514.e6. [PMID: 31525518 DOI: 10.1016/j.cmi.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Legionella pneumophila serogroup 1 (Lp1) sequence type (ST) 1 is globally widespread in the environment and accounts for a significant proportion of Legionella infections, including nosocomial Legionnaires' disease (LD). This study aimed to design a sensitive and specific detection method for Lp ST1 that will underpin epidemiological investigations and risk assessment. METHODS A total of 628 Lp genomes (126 ST1s) were analyzed by comparative genomics. Interrogation of more than 900 accessory genes revealed seven candidate targets for specific ST1 detection and specific primers and hydrolysis probes were designed and evaluated. The analytical sensitivity and specificity of the seven primer and probe sets were evaluated on serially diluted DNA extracted from the reference strain CIP107629 and via qPCR applied on 200 characterized isolates. The diagnostic performance of the assay was evaluated on 142 culture-proven clinical samples from LD cases and a real-life investigation of a case cluster. RESULTS Of seven qPCR assays that underwent analytical validation, one PCR target (lpp1868) showed higher sensitivity and specificity for ST1 and ST1-like strains. The diagnostic performance of the assay using respiratory samples corresponded to a sensitivity of 95% (19/20) (95% CI (75.1-99.9)) and specificity of 100% (122/122) (95% CI (97-100)). The ST1 PCR assay could link two out of three culture-negative hospitalized LD cases to ST1 during a real-time investigation. CONCLUSION Using whole genome sequencing (WGS) data, we developed and validated a sensitive and specific qPCR assay for the detection of Lp1 belonging to the ST1 clonal complex by amplification of the lpp1868 gene. The ST1 qPCR is expected to deliver an added value for Lp control and prevention, in conjunction with other recently developed molecular assays.
Collapse
Affiliation(s)
- C Ginevra
- CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France; ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| | - J Chastang
- National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France
| | - S David
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; Pathogen Genomics, Welcome Trust Sanger Institute, Cambridge, UK; Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - M Mentasti
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - E Yakunin
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; Central Laboratories, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - V J Chalker
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - V Chalifa-Caspi
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - L Valinsky
- Central Laboratories, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - S Jarraud
- CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France; ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| | - J Moran-Gilad
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev. Beer-Sheva, Israel; Public Health Services, Ministry of Health, Jerusalem, Israel.
| | | |
Collapse
|
5
|
Abdel-Nour M, Su H, Duncan C, Li S, Raju D, Shamoun F, Valton M, Ginevra C, Jarraud S, Guyard C, Kerman K, Terebiznik MR. Polymorphisms of a Collagen-Like Adhesin Contributes to Legionella pneumophila Adhesion, Biofilm Formation Capacity and Clinical Prevalence. Front Microbiol 2019; 10:604. [PMID: 31024468 PMCID: PMC6460258 DOI: 10.3389/fmicb.2019.00604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/11/2019] [Indexed: 11/22/2022] Open
Abstract
Legionellosis is a severe respiratory illness caused by the inhalation of aerosolized water droplets contaminated with the opportunistic pathogen Legionella pneumophila. The ability of L. pneumophila to produce biofilms has been associated with its capacity to colonize and persist in human-made water reservoirs and distribution systems, which are the source of legionellosis outbreaks. Nevertheless, the factors that mediate L. pneumophila biofilm formation are largely unknown. In previous studies we reported that the adhesin Legionella collagen-like protein (Lcl), is required for auto-aggregation, attachment to multiple surfaces and the formation of biofilms. Lcl structure contains three distinguishable regions: An N-terminal region with a predicted signal sequence, a central region containing tandem collagen-like repeats (R-domain) and a C-terminal region (C-domain) with no significant homology to other known proteins. Lcl R-domain encodes tandem repeats of the collagenous tripeptide Gly-Xaa-Yaa (GXY), a motif that is key for the molecular organization of mammalian collagen and mediates the binding of collagenous proteins to different cellular and environmental ligands. Interestingly, Lcl is polymorphic in the number of GXY tandem repeats. In this study, we combined diverse biochemical, genetic, and cellular approaches to determine the role of Lcl domains and GXY repeats polymorphisms on the structural and functional properties of Lcl, as well as on bacterial attachment, aggregation and biofilm formation. Our results indicate that the R-domain is key for assembling Lcl collagenous triple-helices and has a more preponderate role over the C-domain in Lcl adhesin binding properties. We show that Lcl molecules oligomerize to form large supramolecular complexes to which both, R and C-domains are required. Furthermore, we found that the number of GXY tandem repeats encoded in Lcl R-domain correlates positively with the binding capabilities of Lcl and with the attachment and biofilm production capacity of L. pneumophila strains. Accordingly, the number of GXY tandem repeats in Lcl influences the clinical prevalence of L. pneumophila strains. Therefore, the number of Lcl tandem repeats could be considered as a potential predictor for virulence in L. pneumophila isolates.
Collapse
Affiliation(s)
- Mena Abdel-Nour
- Ontario Agency for Health Protection and Promotion, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,The Mount Sinai Hospital, Toronto, ON, Canada
| | - Han Su
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Carla Duncan
- Ontario Agency for Health Protection and Promotion, Toronto, ON, Canada
| | - Shaopei Li
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Deepa Raju
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Feras Shamoun
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Marine Valton
- Ontario Agency for Health Protection and Promotion, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Polytech Clermont-Ferrand, Aubière, France
| | - Christophe Ginevra
- CIRI-International Center for Infectiology Research, Legionella Pathogenesis Team, Université de Lyon, Lyon, France.,INSERM U1111, Lyon, France.,Centre International de Recherche en Infectiologie, Claude Bernard University Lyon 1, Lyon, France.,National Center for Legionella, Hospices Civils de Lyon, Lyon, France
| | - Sophie Jarraud
- CIRI-International Center for Infectiology Research, Legionella Pathogenesis Team, Université de Lyon, Lyon, France.,INSERM U1111, Lyon, France.,Centre International de Recherche en Infectiologie, Claude Bernard University Lyon 1, Lyon, France.,National Center for Legionella, Hospices Civils de Lyon, Lyon, France
| | - Cyril Guyard
- Ontario Agency for Health Protection and Promotion, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,The Mount Sinai Hospital, Toronto, ON, Canada.,BIOASTER Microbiology Technology Institute, Lyon, France
| | - Kagan Kerman
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| |
Collapse
|
6
|
Legionella pneumophila and Other Legionella Species Isolated from Legionellosis Patients in Japan between 2008 and 2016. Appl Environ Microbiol 2018; 84:AEM.00721-18. [PMID: 29980559 DOI: 10.1128/aem.00721-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
The Legionella Reference Center in Japan collected 427 Legionella clinical isolates between 2008 and 2016, including 7 representative isolates from corresponding outbreaks. The collection included 419 Legionella pneumophila isolates, of which 372 belonged to serogroup 1 (SG1) (87%) and the others belonged to SG2 to SG15 except for SG7 and SG11, and 8 isolates of other Legionella species (Legionella bozemanae, Legionella dumoffii, Legionella feeleii, Legionella longbeachae, Legionella londiniensis, and Legionella rubrilucens). L. pneumophila isolates were genotyped by sequence-based typing (SBT) and represented 187 sequence types (STs), of which 126 occurred in a single isolate (index of discrimination of 0.984). These STs were analyzed using minimum spanning tree analysis, resulting in the formation of 18 groups. The pattern of overall ST distribution among L. pneumophila isolates was diverse. In particular, some STs were frequently isolated and were suggested to be related to the infection sources. The major STs were ST23 (35 isolates), ST120 (20 isolates), and ST138 (16 isolates). ST23 was the most prevalent and most causative ST for outbreaks in Japan and Europe. ST138 has been observed only in Japan, where it has caused small-scale outbreaks; 81% of those strains (13 isolates) were suspected or confirmed to infect humans through bath water sources. On the other hand, 11 ST23 strains (31%) and 5 ST120 strains (25%) were suspected or confirmed to infect humans through bath water. These findings suggest that some ST strains frequently cause legionellosis in Japan and are found under different environmental conditions.IMPORTANCELegionella pneumophila serogroup 1 (SG1) is the most frequent cause of legionellosis. Our previous genetic analysis indicated that SG1 environmental isolates represented 8 major clonal complexes, consisting of 3 B groups, 2 C groups, and 3 S groups, which included major environmental isolates derived from bath water, cooling towers, and soil and puddles, respectively. Here, we surveyed clinical isolates collected from patients with legionellosis in Japan between 2008 and 2016. Most strains belonging to the B group were isolated from patients for whom bath water was the suspected or confirmed source of infection. Among the isolates derived from patients whose suspected infection source was soil or dust, most belonged to the S1 group and none belonged to the B or C groups. Additionally, the U group was discovered as a new group, which mainly included clinical isolates with unknown infection sources.
Collapse
|
7
|
Population structure of Environmental and Clinical Legionella pneumophila isolates in Catalonia. Sci Rep 2018; 8:6241. [PMID: 29674708 PMCID: PMC5908911 DOI: 10.1038/s41598-018-24708-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Legionella is the causative agent of Legionnaires’ disease (LD). In Spain, Catalonia is the region with the highest incidence of LD cases. The characterisation of clinical and environmental isolates using molecular epidemiology techniques provides epidemiological data for a specific geographic region and makes it possible to carry out phylogenetic and population-based analyses. The aim of this study was to describe and compare environmental and clinical isolates of Legionella pneumophila in Catalonia using sequence-based typing and monoclonal antibody subgrouping. A total of 528 isolates were characterised. For data analysis, the isolates were filtered to reduce redundancies, and 266 isolates (109 clinical and 157 environmental) were finally included. Thirty-two per cent of the clinical isolates were ST23, ST37 and ST1 while 40% of the environmental isolates were ST284 and ST1. Although the index of diversity was higher in clinical than in environmental ST isolates, we observed that clinical STs were similar to those recorded in other regions but that environmental STs were more confined to particular study areas. This observation supports the idea that only certain STs trigger cases or outbreaks in humans. Therefore, comparison of the genomes of clinical and environmental isolates could provide important information about the traits that favour infection or environmental persistence.
Collapse
|
8
|
Prevalence of Infection-Competent Serogroup 6 Legionella pneumophila within Premise Plumbing in Southeast Michigan. mBio 2018; 9:mBio.00016-18. [PMID: 29437918 PMCID: PMC5801461 DOI: 10.1128/mbio.00016-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Coinciding with major changes to its municipal water system, Flint, MI, endured Legionnaires’ disease outbreaks in 2014 and 2015. By sampling premise plumbing in Flint in the fall of 2016, we found that 12% of homes harbored legionellae, a frequency similar to that in residences in neighboring areas. To evaluate the genetic diversity of Legionella pneumophila in Southeast Michigan, we determined the sequence type (ST) and serogroup (SG) of the 18 residential isolates from Flint and Detroit, MI, and the 33 clinical isolates submitted by hospitals in three area counties in 2013 to 2016. Common to one environmental and four clinical samples were strains of L. pneumophila SG1 and ST1, the most prevalent ST worldwide. Among the Flint premise plumbing isolates, 14 of 16 strains were of ST367 and ST461, two closely related SG6 strain types isolated previously from patients and corresponding environmental samples. Each of the representative SG1 clinical strains and SG6 environmental isolates from Southeast Michigan infected and survived within macrophage cultures at least as well as a virulent laboratory strain, as judged by microscopy and by enumerating CFU. Likewise, 72 h after infection, the yield of viable-cell counts increased >100-fold for each of the representative SG1 clinical isolates, Flint premise plumbing SG6 ST367 and -461 isolates, and two Detroit residential isolates. We verified by immunostaining that SG1-specific antibody does not cross-react with the SG6 L. pneumophila environmental strains. Because the widely used urinary antigen diagnostic test does not readily detect non-SG1 L. pneumophila, Legionnaires’ disease caused by SG6 L. pneumophila is likely underreported worldwide. L. pneumophila is the leading cause of disease outbreaks associated with drinking water in the United States. Compared to what is known of the established risks of colonization within hospitals and hotels, relatively little is known about residential exposure to L. pneumophila. One year after two outbreaks of Legionnaires’ disease in Genesee County, MI, that coincided with damage to the Flint municipal water system, our multidisciplinary team launched an environmental surveillance and laboratory research campaign aimed at informing risk management strategies to provide safe public water supplies. The most prevalent L. pneumophila strains isolated from residential plumbing were closely related strains of SG6. In laboratory tests of virulence, the SG6 environmental isolates resembled SG1 clinical strains, yet they are not readily detected by the common diagnostic urinary antigen test, which is specific for SG1. Therefore, our study complements the existing epidemiological literature indicating that Legionnaires’ disease due to non-SG1 strains is underreported around the globe.
Collapse
|
9
|
Massip C, Descours G, Ginevra C, Doublet P, Jarraud S, Gilbert C. Macrolide resistance in Legionella pneumophila: the role of LpeAB efflux pump. J Antimicrob Chemother 2018; 72:1327-1333. [PMID: 28137939 DOI: 10.1093/jac/dkw594] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022] Open
Abstract
Objectives A previous study on 12 in vitro -selected azithromycin-resistant Legionella pneumophila lineages showed that ribosomal mutations were major macrolide resistance determinants. In addition to these mechanisms that have been well described in many species, mutations upstream of lpeAB operon, homologous to acrAB in Escherichia coli , were identified in two lineages. In this study, we investigated the role of LpeAB and of these mutations in macrolide resistance of L. pneumophila . Methods The role of LpeAB was studied by testing the antibiotic susceptibility of WT, deleted and complemented L. pneumophila Paris strains. Translational fusion experiments using GFP as a reporter were conducted to investigate the consequences of the mutations observed in the upstream sequence of lpeAB operon. Results We demonstrated the involvement of LpeAB in an efflux pump responsible for a macrolide-specific reduced susceptibility of L. pneumophila Paris strain. Mutations in the upstream sequence of lpeAB operon were associated with an increased protein expression. Increased expression was also observed under sub-inhibitory macrolide concentrations in strains with both mutated and WT promoting regions. Conclusions LpeAB are components of an efflux pump, which is a macrolide resistance determinant in L. pneumophila Paris strain. Mutations observed in the upstream sequence of lpeAB operon in resistant lineages led to an overexpression of this efflux pump. Sub-inhibitory concentrations of macrolides themselves participated in upregulating this efflux and could constitute a first step in the acquisition of a high macrolide resistance level.
Collapse
Affiliation(s)
- Clémence Massip
- CIRI, Centre International de Recherche en Infectiologie, "Legionella pathogenesis" team, Inserm, U1111, Université Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon F-69007, France.,Hospices Civils de Lyon, Groupement Hospitalier Nord, National Reference Centre of Legionella, Institute for Infectious Agents, 103 Grande rue de la Croix rousse, Lyon 69004, France
| | - Ghislaine Descours
- CIRI, Centre International de Recherche en Infectiologie, "Legionella pathogenesis" team, Inserm, U1111, Université Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon F-69007, France.,Hospices Civils de Lyon, Groupement Hospitalier Nord, National Reference Centre of Legionella, Institute for Infectious Agents, 103 Grande rue de la Croix rousse, Lyon 69004, France
| | - Christophe Ginevra
- CIRI, Centre International de Recherche en Infectiologie, "Legionella pathogenesis" team, Inserm, U1111, Université Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon F-69007, France.,Hospices Civils de Lyon, Groupement Hospitalier Nord, National Reference Centre of Legionella, Institute for Infectious Agents, 103 Grande rue de la Croix rousse, Lyon 69004, France
| | - Patricia Doublet
- CIRI, Centre International de Recherche en Infectiologie, "Legionella pathogenesis" team, Inserm, U1111, Université Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon F-69007, France
| | - Sophie Jarraud
- CIRI, Centre International de Recherche en Infectiologie, "Legionella pathogenesis" team, Inserm, U1111, Université Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon F-69007, France.,Hospices Civils de Lyon, Groupement Hospitalier Nord, National Reference Centre of Legionella, Institute for Infectious Agents, 103 Grande rue de la Croix rousse, Lyon 69004, France
| | - Christophe Gilbert
- CIRI, Centre International de Recherche en Infectiologie, "Legionella pathogenesis" team, Inserm, U1111, Université Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon F-69007, France
| |
Collapse
|
10
|
David S, Afshar B, Mentasti M, Ginevra C, Podglajen I, Harris SR, Chalker VJ, Jarraud S, Harrison TG, Parkhill J. Seeding and Establishment of Legionella pneumophila in Hospitals: Implications for Genomic Investigations of Nosocomial Legionnaires' Disease. Clin Infect Dis 2018; 64:1251-1259. [PMID: 28203790 PMCID: PMC5399934 DOI: 10.1093/cid/cix153] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/14/2017] [Indexed: 01/21/2023] Open
Abstract
Background. Legionnaires’ disease is an important cause of hospital-acquired pneumonia and is caused by infection with the bacterium Legionella. Because current typing methods often fail to resolve the infection source in possible nosocomial cases, we aimed to determine whether whole-genome sequencing (WGS) could be used to support or refute suspected links between cases and hospitals. We focused on cases involving a major nosocomial-associated strain, L. pneumophila sequence type (ST) 1. Methods. WGS data from 229 L. pneumophila ST1 isolates were analyzed, including 99 isolates from the water systems of 17 hospitals and 42 clinical isolates from patients with confirmed or suspected hospital-acquired infections, as well as isolates obtained from or associated with community-acquired sources of Legionnaires’ disease. Results. Phylogenetic analysis demonstrated that all hospitals from which multiple isolates were obtained have been colonized by 1 or more distinct ST1 populations. However, deep sampling of 1 hospital also revealed the existence of substantial diversity and ward-specific microevolution within the population. Across all hospitals, suspected links with cases were supported with WGS, although the degree of support was dependent on the depth of environmental sampling and available contextual information. Finally, phylogeographic analysis revealed that hospitals have been seeded with L. pneumophila via both local and international spread of ST1. Conclusions. WGS can be used to support or refute suspected links between hospitals and Legionnaires’ disease cases. However, deep hospital sampling is frequently required due to the potential coexistence of multiple populations, existence of substantial diversity, and similarity of hospital isolates to local populations.
Collapse
Affiliation(s)
- Sophia David
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, UK.,Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - Baharak Afshar
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK.,European Programme for Public Health Microbiology Training, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Massimo Mentasti
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - Christophe Ginevra
- French National Reference Center of Legionella, Hospices Civils de Lyon, France.,International Center of Infectiology Research, INSERM, U1111, CNRS, UMR5308, Université Lyon 1, École Normale Supérieure de Lyon, France
| | - Isabelle Podglajen
- Microbiology, Assistance publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Simon R Harris
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Victoria J Chalker
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - Sophie Jarraud
- French National Reference Center of Legionella, Hospices Civils de Lyon, France.,International Center of Infectiology Research, INSERM, U1111, CNRS, UMR5308, Université Lyon 1, École Normale Supérieure de Lyon, France
| | - Timothy G Harrison
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, UK
| |
Collapse
|
11
|
Mentasti M, Cassier P, David S, Ginevra C, Gomez-Valero L, Underwood A, Afshar B, Etienne J, Parkhill J, Chalker V, Buchrieser C, Harrison T, Jarraud S. Rapid detection and evolutionary analysis of Legionella pneumophila serogroup 1 sequence type 47. Clin Microbiol Infect 2017; 23:264.e1-264.e9. [DOI: 10.1016/j.cmi.2016.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
|
12
|
Multiple major disease-associated clones of Legionella pneumophila have emerged recently and independently. Genome Res 2016; 26:1555-1564. [PMID: 27662900 PMCID: PMC5088597 DOI: 10.1101/gr.209536.116] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022]
Abstract
Legionella pneumophila is an environmental bacterium and the leading cause of Legionnaires' disease. Just five sequence types (ST), from more than 2000 currently described, cause nearly half of disease cases in northwest Europe. Here, we report the sequence and analyses of 364 L. pneumophila genomes, including 337 from the five disease-associated STs and 27 representative of the species diversity. Phylogenetic analyses revealed that the five STs have independent origins within a highly diverse species. The number of de novo mutations is extremely low with maximum pairwise single-nucleotide polymorphisms (SNPs) ranging from 19 (ST47) to 127 (ST1), which suggests emergences within the last century. Isolates sampled geographically far apart differ by only a few SNPs, demonstrating rapid dissemination. These five STs have been recombining recently, leading to a shared pool of allelic variants potentially contributing to their increased disease propensity. The oldest clone, ST1, has spread globally; between 1940 and 2000, four new clones have emerged in Europe, which show long-distance, rapid dispersal. That a large proportion of clinical cases is caused by recently emerged and internationally dispersed clones, linked by convergent evolution, is surprising for an environmental bacterium traditionally considered to be an opportunistic pathogen. To simultaneously explain recent emergence, rapid spread and increased disease association, we hypothesize that these STs have adapted to new man-made environmental niches, which may be linked by human infection and transmission.
Collapse
|
13
|
Kirschner AK. Determination of viable legionellae in engineered water systems: Do we find what we are looking for? WATER RESEARCH 2016; 93:276-288. [PMID: 26928563 PMCID: PMC4913838 DOI: 10.1016/j.watres.2016.02.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 05/06/2023]
Abstract
In developed countries, legionellae are one of the most important water-based bacterial pathogens caused by management failure of engineered water systems. For routine surveillance of legionellae in engineered water systems and outbreak investigations, cultivation-based standard techniques are currently applied. However, in many cases culture-negative results are obtained despite the presence of viable legionellae, and clinical cases of legionellosis cannot be traced back to their respective contaminated water source. Among the various explanations for these discrepancies, the presence of viable but non-culturable (VBNC) Legionella cells has received increased attention in recent discussions and scientific literature. Alternative culture-independent methods to detect and quantify legionellae have been proposed in order to complement or even substitute the culture method in the future. Such methods should detect VBNC Legionella cells and provide a more comprehensive picture of the presence of legionellae in engineered water systems. However, it is still unclear whether and to what extent these VBNC legionellae are hazardous to human health. Current risk assessment models to predict the risk of legionellosis from Legionella concentrations in the investigated water systems contain many uncertainties and are mainly based on culture-based enumeration. If VBNC legionellae should be considered in future standard analysis, quantitative risk assessment models including VBNC legionellae must be proven to result in better estimates of human health risk than models based on cultivation alone. This review critically evaluates current methods to determine legionellae in the VBNC state, their potential to complement the standard culture-based method in the near future, and summarizes current knowledge on the threat that VBNC legionellae may pose to human health.
Collapse
Affiliation(s)
- Alexander K.T. Kirschner
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090 Vienna, Austria
- Interuniversity Cooperation Centre for Water & Health, Austria
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene Kinderspitalgasse 16, A-1090 Vienna, Austria . URL: http://www.waterandhealth.at
| |
Collapse
|
14
|
Levcovich A, Lazarovitch T, Moran-Gilad J, Peretz C, Yakunin E, Valinsky L, Weinberger M. Complex clinical and microbiological effects on Legionnaires' disease outcone; A retrospective cohort study. BMC Infect Dis 2016; 16:75. [PMID: 26864322 PMCID: PMC4748635 DOI: 10.1186/s12879-016-1374-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/22/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Legionnaires' disease (LD) is associated with high mortality rates and poses a diagnostic and therapeutic challenge. Use of the rapid urinary antigen test (UAT) has been linked to improved outcome. We examined the association between the method of diagnosis (UAT or culture) and various clinical and microbiological characteristics and outcome of LD. METHODS Consecutive patients with pneumonia and confirmation of Legionella infection by a positive UAT and/or a positive culture admitted between the years 2006-2012 to a university hospital were retrospectively studied. Isolated L. pneumophila strains were subject to serogrouping, immunological subtyping and sequence-based typing. Variables associated with 30-day all-cause mortality were analyzed using logistic regression as well as cox regression. RESULTS Seventy-two patients were eligible for mortality analyses (LD study group), of whom 15.5 % have died. Diagnosis based on positive L. pneumophila UAT as compared to positive culture (OR = 0.18, 95 % CI 0.03-0.98, p = 0.05) and administration of appropriate antibiotic therapy within 2 hospitalization days as compared to delayed therapy (OR = 0.16, 95 % CI 0.03-0.90, p = 0.04) were independently associated with reduced mortality. When controlling for intensive care unit (ICU) admissions, the method of diagnosis became non-significant. Survival analyses showed a significantly increased death risk for patients admitted to ICU compared to others (HR 12.90, 95 % CI 2.78-59.86, p = 0.001) and reduced risk for patients receiving appropriate antibiotic therapy within the first two admissions days compared to delayed therapy (HR 0.13, 95 % CI 0.04-0.05, p = 0.001). Legionella cultures were positive in 35 patients (including 29 patients from the LD study group), of whom 65.7 % were intubated and 37.1 % have died. Sequence type (ST) ST1 accounted for 50.0 % of the typed cases and ST1, OLDA/Oxford was the leading phenon (53.8 %). Mortality rate among patients in the LD study group infected with ST1 was 18.2 % compared to 42.9 % for non-ST1 genotypes (OR = 0.30, 95 % CI 0.05-1.91, p = 0.23). CONCLUSIONS The study confirms the importance of early administration of appropriate antibiotic therapy and at the same time highlights the complex associations of different diagnostic approaches with LD outcome. Infection with ST1 was not associated with increased mortality. Genotype effects on outcome mandate examination in larger cohorts.
Collapse
Affiliation(s)
- Ariela Levcovich
- Infectious Diseases Unit, Assaf Harofeh Medical Center, Zerifin, 70300, Israel.
| | - Tsilia Lazarovitch
- Microbiology Laboratory, Assaf Harofeh Medical Center, Zerifin, 70300, Israel.
| | - Jacob Moran-Gilad
- National Program for Legionellosis Control and Public Health Services, Israeli Ministry of Health, 39 Yermiyahu St., 5th Floor, Jerusalem, Israel.
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland.
- Faculty of Health Sciences, Ben-Gurion University of the Negev. Ben-Gurion Boulevard, Beer-Sheva, Israel.
| | - Chava Peretz
- School of Public Health, Epidemiology, Sackler School of Medicine, Tel Aviv University, POB 39040, Tel Aviv, 69978, Israel.
| | - Eugenia Yakunin
- Molecular Laboratory, Central Laboratories, Israel Ministry of Health, POB 34410, Jerusalem, 94467, Israel.
| | - Lea Valinsky
- Molecular Laboratory, Central Laboratories, Israel Ministry of Health, POB 34410, Jerusalem, 94467, Israel.
| | - Miriam Weinberger
- Infectious Diseases Unit, Assaf Harofeh Medical Center, Zerifin, 70300, Israel.
- Sackler School of Medicine, Tel Aviv University, POB 39040, Tel Aviv, 69978, Israel.
| |
Collapse
|
15
|
Cassier P, Bénet T, Nicolle MC, Brunet M, Buron F, Morelon E, Béraud L, Descours G, Jarraud S, Vanhems P. Community-acquired Legionnaires' disease in a renal transplant recipient with unclear incubation period: the importance of molecular typing. Transpl Infect Dis 2015; 17:756-60. [PMID: 26256573 DOI: 10.1111/tid.12432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/13/2015] [Accepted: 07/26/2015] [Indexed: 11/29/2022]
Abstract
Transplant recipients are at risk of developing Legionnaires' disease (LD) because of impaired cellular immunity. Here, we describe a renal transplant recipient who developed LD at least 10 days after hospital admission and transplantation. The hospital water network was initially suspected, but further testing determined that the probable source was the patient's domestic water supply. Our report also suggests that the patient's immunosuppressed state may have switched potential colonization to pneumonia.
Collapse
Affiliation(s)
- P Cassier
- Hospices Civils de Lyon, Unité d'Hygiène et d'Epidémiologie, Groupement Hospitalier Edouard Herriot, Lyon, France.,Hospices Civils de Lyon, Centre National de Reference des Legionelles, Centre de Biologie Est Hospices Civils de Lyon, Bron, France.,CIRI, International Center for Infectiology Research, Legionella Pathogenesis Team, Université de Lyon, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Centre International de Recherche en Infectiologie, Université de Lyon 1, Lyon, France
| | - T Bénet
- Hospices Civils de Lyon, Unité d'Hygiène et d'Epidémiologie, Groupement Hospitalier Edouard Herriot, Lyon, France.,Laboratoire d'épidémiologie et de santé publique, CNRS, UMR5308, Université de Lyon 1, Lyon, France
| | - M C Nicolle
- Hospices Civils de Lyon, Unité d'Hygiène et d'Epidémiologie, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - M Brunet
- Hospices Civils de Lyon, Transplantation, Néphrologie et Immunologie Clinique, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - F Buron
- Hospices Civils de Lyon, Transplantation, Néphrologie et Immunologie Clinique, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - E Morelon
- Hospices Civils de Lyon, Transplantation, Néphrologie et Immunologie Clinique, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - L Béraud
- Hospices Civils de Lyon, Centre National de Reference des Legionelles, Centre de Biologie Est Hospices Civils de Lyon, Bron, France
| | - G Descours
- Hospices Civils de Lyon, Centre National de Reference des Legionelles, Centre de Biologie Est Hospices Civils de Lyon, Bron, France.,CIRI, International Center for Infectiology Research, Legionella Pathogenesis Team, Université de Lyon, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Centre International de Recherche en Infectiologie, Université de Lyon 1, Lyon, France
| | - S Jarraud
- Hospices Civils de Lyon, Centre National de Reference des Legionelles, Centre de Biologie Est Hospices Civils de Lyon, Bron, France.,CIRI, International Center for Infectiology Research, Legionella Pathogenesis Team, Université de Lyon, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Centre International de Recherche en Infectiologie, Université de Lyon 1, Lyon, France
| | - P Vanhems
- Hospices Civils de Lyon, Unité d'Hygiène et d'Epidémiologie, Groupement Hospitalier Edouard Herriot, Lyon, France.,Hospices Civils de Lyon, Centre National de Reference des Legionelles, Centre de Biologie Est Hospices Civils de Lyon, Bron, France.,CIRI, International Center for Infectiology Research, Legionella Pathogenesis Team, Université de Lyon, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Centre International de Recherche en Infectiologie, Université de Lyon 1, Lyon, France.,Laboratoire d'épidémiologie et de santé publique, CNRS, UMR5308, Université de Lyon 1, Lyon, France
| |
Collapse
|
16
|
Legionnaires’ disease in France. Med Mal Infect 2015; 45:65-71. [DOI: 10.1016/j.medmal.2015.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 12/31/2014] [Accepted: 01/29/2015] [Indexed: 11/30/2022]
|