1
|
Emotional and Social Impact of Halitosis on Adolescents and Young Adults: A Systematic Review. Medicina (B Aires) 2023; 59:medicina59030564. [PMID: 36984565 PMCID: PMC10057342 DOI: 10.3390/medicina59030564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Background and Objectives: Halitosis is a condition characterized by unpleasant breath smell that is starting to receive serious scientific attention, considering it reflects on people’s social and personal life. While most studies focus on the prevalence of halitosis, its medical etiology, and the psychological impact on adults, there is a lack of evidence regarding the social impact of halitosis on the younger population. Therefore, this systematic review aimed to observe the social and emotional impact that halitosis has on adolescents and young adults. Materials and Methods: The review followed the PRISMA protocol, and four electronic databases (Scopus, Scholar, Web of Science, and ProQuest) were searched. From a total of 593 studies retrieved, only 6 were included in the study after assessing the eligibility criteria. Results: The main results showed that the levels of self-reported halitosis ranged from 23.1% to 77.5%, with an average of 44.7%, indicating a significant heterogeneity among the studies reporting this issue. Adolescents and young adults who experienced bad breath were feeling more anxious and depressed according to the non-standardized questionnaires and the standardized questionnaires (OHIP-14 and SCL-9-R). The respondents were isolated from social interactions and consequently had lower self-esteem and impaired quality of life. Conclusions: The conclusions drawn indicate the need for action on a medical level, as well as on a psychological level, in order to improve people’s oral health and help them navigate through the difficulties of maintaining social interactions as they live with halitosis.
Collapse
|
2
|
Abstract
Reportedly, Western-type diets may induce the loss of key microbial taxa within the gastrointestinal microbiota, promoting the onset of noncommunicable diseases. It was hypothesized that the consumption of raw vegetables could contribute to the maintenance of the intestinal microbial community structure. In this context, we explored bacteria associated with commercial rocket salads produced through different farming practices: traditional (conventional, organic, and integrated) and vertical farming. Viable counts of mesophilic bacteria and lactic acid bacteria (LAB) were performed on plate count agar (PCA) and de Man-Rogosa-Sharpe (MRS) agar at pH 5.7, whereas metataxonomics through 16S rRNA gene sequencing was used to profile total bacteria associated with rocket salads. We found that rocket salads from vertical farming had much fewer viable bacteria and had a bacterial community structure markedly different from that of rocket salads from traditional farming. Furthermore, although α- and β-diversity analyses did not differentiate rocket samples according to farming techniques, several bacterial taxa distinguished organic and integrated from conventional farming salads, suggesting that farming practices could affect the taxonomic composition of rocket bacterial communities. LAB were isolated from only traditional farming samples and belonged to different species, which were variably distributed among samples and could be partly associated with farming practices. Finally, the INFOGEST protocol for in vitro simulation of gastrointestinal digestion revealed that several taxonomically different rocket-associated bacteria (particularly LAB) could survive gastrointestinal transit. This study suggests that commercial ready-to-eat rocket salads harbor live bacteria that possess the ability to survive gastrointestinal transit, potentially contributing to the taxonomic structure of the human gut microbiota. IMPORTANCE Western-type diets are composed of foods with a reduced amount of naturally occurring microorganisms. It was hypothesized that a microbe-depleted diet can favor the alteration of the human intestinal microbial ecosystem, therefore contributing to the onset of chronic metabolic and immune diseases currently recognized as the most significant causes of death in the developed world. Here, we studied the microorganisms that are associated with commercial ready-to-eat rocket salads produced through different farming practices. We showed that rocket salad (a widely consumed vegetal food frequently eaten raw) may be a source of lactic acid bacteria and other microbes that can survive gastrointestinal transit, potentially increasing the biodiversity of the intestinal microbiota. This deduction may be valid for virtually all vegetal foods that are consumed raw.
Collapse
|
3
|
Lee YH, Kim H, Heo DW, Ahn IS, Auh QS. Volatile sulfide compounds and oral microorganisms on the inner surface of masks in individuals with halitosis during COVID-19 pandemic. Sci Rep 2023; 13:2487. [PMID: 36781937 PMCID: PMC9924882 DOI: 10.1038/s41598-023-29080-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Mask-wearing is still recommended owing to the continuing impact of the COVID-19 pandemic. Within the closed chamber created by the mask, people are increasingly self-aware of their oral malodor. In this prospective and cross-sectional study, we aimed to measure volatile sulfide compound (VSC) levels in patients with halitosis and investigate the oral microbiome profile on the inner surface of their KF94 masks. We also investigated which oral microbiota increases VSC levels and whether the oral microbiomes of oral saliva and mask are correlated. A total of 50 subjects (41 women, average age 38.12 ± 12.58 years old) were included in the study, 25 healthy subjects and 25 patients with halitosis who wore masks for more than 3 h. The dominant bacterial species, bacterial profile, and Shannon diversity index of whole unstimulated saliva and the inner surface of the mask were investigated. The bacterial 16S ribosomal RNA genes of the major oral bacterial species were analyzed using real-time PCR. Gas chromatography was used to measure hydrogen sulfide (H2S) and methyl mercaptan (CH3SH), which are representative VSCs. The total bacterial DNA copy number was significantly higher in the saliva sample than in the mask sample (p < 0.001), and the average value was 276 times greater. Shannon diversity index was also significantly higher in saliva than in the inner surface of the mask (2.62 ± 0.81 vs. 1.15 ± 1.52, p < 0.001). The most common Gram-negative and Gram-positive species in the masks were Porphyromonas gingivalis (Pg) and Lactobacillus casei (Lc), respectively. The bacterial species with significant positive correlations between saliva and mask samples were Prevotella intermedia (Pi) (r = 0.324, p = 0.022), Eikenella corrodens (r = 0.309, p = 0.029), Lc (r = 0.293, p = 0.039), and Parvimonas micra (Pm) (r = 0.366, p = 0.009). The mean value of CH3SH was significantly higher in the halitosis group than in the non-halitosis group (17.84 ± 29.00 vs. 3.84 ± 10.57 ppb, p = 0.031). In the halitosis group, the DNA copy numbers and VSC levels showed highly positive correlation coefficients in the order Pg, Treponema denticola (Td), Tannerella forsythia (Tf), Pi, and Prevotella nigrescens (Pn) (all p < 0.05). Regarding bacterial profiles of the mask, Td was strongly correlated with CH3SH (r = 0.414, p = 0.040) and total VSCs (r = 0.374, p = 0.033) only in halitosis group. Mask-wearing time was strongly correlated with total VSCs, H2S, and CH3SH (all r > 0.8, p < 0.001). Oral bacteria, whose association with halitosis has been identified, increased VSC levels in mask-wearing subjects during the COVID-19 pandemic, particularly the number of Gram-negative anaerobes such as Pg and Td. Mask-wearing time was a major factor in increasing VSC levels. The study results suggest that people with halitosis could control these Gram-negative bacteria by improving oral hygiene and regularly changing masks.
Collapse
Affiliation(s)
- Yeon-Hee Lee
- Department of Orofacial Pain and Oral Medicine, Kyung Hee University School of Dentistry, Kyung Hee University Medical Center, #613 Hoegi-Dong, Dongdaemun-Gu, Seoul, 02447, South Korea.
| | - Hyeongrok Kim
- Life Science Institute, Denomics Inc. 518, 5 Digital-Ro 26-Gil, Guro-Gu, Seoul, 08389, South Korea
| | - Dae Wook Heo
- Life Science Institute, Denomics Inc. 518, 5 Digital-Ro 26-Gil, Guro-Gu, Seoul, 08389, South Korea
| | - In-Suk Ahn
- Life Science Institute, Denomics Inc. 518, 5 Digital-Ro 26-Gil, Guro-Gu, Seoul, 08389, South Korea
| | - Q-Schick Auh
- Department of Orofacial Pain and Oral Medicine, Kyung Hee University School of Dentistry, Kyung Hee University Medical Center, #613 Hoegi-Dong, Dongdaemun-Gu, Seoul, 02447, South Korea
| |
Collapse
|
4
|
Han HS, Yum H, Cho YD, Kim S. Improvement of halitosis by probiotic bacterium Weissella cibaria CMU: A randomized controlled trial. Front Microbiol 2023; 14:1108762. [PMID: 36733919 PMCID: PMC9886871 DOI: 10.3389/fmicb.2023.1108762] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Several in vitro and in vivo studies have evaluated the effect of probiotics on oral health; however, human clinical studies are still limited. Therefore, this study aimed to examine the effects of Weissella cibaria Chonnam Medical University (CMU)-containing tablets on halitosis. This randomized, double-blinded, placebo-controlled study included 100 adults with halitosis (age, 20-70 years). The participants were randomly assigned to the test group (n = 50) and control group (n = 50). One tablet [1 × 108 colony forming units (CFU)/tablet] was to be taken each day over 8 weeks. The concentrations of volatile sulfur compounds (VSCs), bad breath improvement scores, and oral colonization of W. cibaria were measured. Psychosocial indicators including depression, self-esteem, oral health-related quality of life, and subjective oral health status were evaluated. Most variables were assessed at baseline, 4, and 8 weeks, and W. cibaria number and safety variables were assessed at baseline and 8 weeks. Intergroup comparisons were carried out using Student's t-test, Chi-square test, or Fisher's exact test on per-protocol analysis. Intragroup differences before and after intake were analyzed using the linear mixed-effect model (LMM). Per-protocol analysis was carried out in the test group (n = 45) and control group (n = 46). Total VSC was significantly lower in the probiotics group than in the placebo group at baseline (week 0, p = 0.046) and at 8 weeks (p = 0.017). The sum of hydrogen sulfide and methyl mercaptan did not differ significantly between the groups at baseline; however, it was significantly lower in the probiotics group than in the placebo group at week 8 (p = 0.012). Bad breath improvement (BBI) scores were significantly reduced at week 8 (p = 0.006) in the probiotics group. Statistically significant intergroup differences were observed for changes in the level of W. cibaria at week 8 (p < 0.001). Psychological indicators significantly improved from baseline to week 8 in the probiotics group. No safety issues were observed in either group. The levels of W. cibaria was higher in patients with halitosis using W. cibaria CMU-containing tablets. The subjective degree of bad breath and psychological indicators were improved in patients with halitosis using W. cibaria CMU-containing tablets.
Collapse
|
5
|
Gastrointestinal Tract, Microbiota and Multiple Sclerosis (MS) and the Link Between Gut Microbiota and CNS. Curr Microbiol 2023; 80:38. [DOI: 10.1007/s00284-022-03150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
|
6
|
Gao H, Ma L, Sun W, McClements DJ, Cheng C, Zeng H, Zou L, Liu W. Impact of encapsulation of probiotics in oil-in-water high internal phase emulsions on their thermostability and gastrointestinal survival. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107478] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Wyszyńska M, Nitsze-Wierzba M, Białożyt-Bujak E, Kasperski J, Skucha-Nowak M. The Problem of Halitosis in Prosthetic Dentistry, and New Approaches to Its Treatment: A Literature Review. J Clin Med 2021; 10:jcm10235560. [PMID: 34884262 PMCID: PMC8658399 DOI: 10.3390/jcm10235560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/03/2022] Open
Abstract
The aim of this work is a review of recent scientific literature about intra-oral halitosis among patients using dentures. Halitosis is a condition in which an unpleasant smell comes out of the oral cavity, which is caused mainly by volatile sulfur and non-sulfured compounds. The etiology of halitosis may be intra- or extra-oral; in most patients, however, it is due to the activity of microorganisms in the oral cavity. The problem of the occurrence of intra-oral halitosis has accompanied patients for many years. In dental prosthetics, the problem of halitosis occurs in patients using removable or fixed dentures. In both cases, new niches for the development of microorganisms may be created, including those related to intra-oral halitosis. It should be noted that dentures—both fixed and removable—are a foreign body placed in the patient’s oral cavity which, in case of insufficient hygiene, may constitute a reservoir of microorganisms, causing this unpleasant condition. Conventional treatment of intraoral halitosis reduces microbial activity via chemical and/or mechanical action. Currently, the search for new strategies in the treatment of halitosis is in progress. One idea is to use photodynamic therapy, while another is to modify poly(methyl methacrylate) (PMMA) with silver and graphene nanoparticles. Additionally, attempts have been made to combine those two methods. Another unconventional method of treating halitosis is the use of probiotics.
Collapse
Affiliation(s)
- Magdalena Wyszyńska
- Unit of Dental Material Sciences, Department/Institute of Prosthetic Dentistry and Dental Material Sciences, Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland;
- Correspondence:
| | - Monika Nitsze-Wierzba
- Department/Institute of Prosthetic Dentistry and Dental Material Sciences, Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland; (M.N.-W.); (J.K.)
| | - Ewa Białożyt-Bujak
- Unit of Dental Material Sciences, Department/Institute of Prosthetic Dentistry and Dental Material Sciences, Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland;
| | - Jacek Kasperski
- Department/Institute of Prosthetic Dentistry and Dental Material Sciences, Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland; (M.N.-W.); (J.K.)
| | - Małgorzata Skucha-Nowak
- Unit of Dental Propedeutics, Department of Conservative Dentistry with Endodontics, Division of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland;
| |
Collapse
|
8
|
Yousefi B, Kokhaei P, Mehranfar F, Bahar A, Abdolshahi A, Emadi A, Eslami M. The role of the host microbiome in autism and neurodegenerative disorders and effect of epigenetic procedures in the brain functions. Neurosci Biobehav Rev 2021; 132:998-1009. [PMID: 34742725 DOI: 10.1016/j.neubiorev.2021.10.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/13/2021] [Accepted: 10/31/2021] [Indexed: 12/19/2022]
Abstract
Autism Spectrum Disorder (ASD) is a severe neurological/neurodegenerative syndrome that results in cognitive and communication disorders. The degree of dysbiosis is related to the severity of ASD signs. The gut is conferred with a variety of sensory receptors that cooperate with effector systems including the endocrine, nervous and gut immune systems of the intestine. Gut dysbiosis causes amplified inflammation, the launch of the HPA axis, changed levels of neurotransmitters and bacterial metabolites; these may donate to abnormal signaling throughout the Vagus nerve in ASD. Decreased integrity of the gastrointestinal barrier led to extreme leakage of substances as of the intestine in early life and inflammation followed by disruption of BBB integrity maybe increase the risk of ASD. Microbiota, by controlling the barrier permeability, regulate the quantity and types of bioactive materials that are transferred from the intestine to the brain. Exposure to metabolites and microbial products regulate significant procedures in the CNS, including glial cell role, myelination, synaptic pruning, and play a role in neurobehavioral, neurodegenerative, psychiatric, and metabolic syndrome.
Collapse
Affiliation(s)
- Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Parviz Kokhaei
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran; Immune and Gene Therapy Lab, Cancer Centre Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Fatemeh Mehranfar
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Aisa Bahar
- Department of Biochemistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Anna Abdolshahi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Emadi
- Deputy of Research and Technology, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|