1
|
Pröts P, Novotny-Diermayr V, Ott JA. A novel three-part pharynx and its parallel evolution within symbiotic marine nematodes (Desmodoroidea, Stilbonematinae). ORG DIVERS EVOL 2024; 24:353-373. [PMID: 39308636 PMCID: PMC11410900 DOI: 10.1007/s13127-024-00643-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/02/2024] [Indexed: 09/25/2024]
Abstract
Stilbonematinae are nematodes commonly found in shallow marine sands. They are overgrown by a genus- and species-specific coat of chemoautotrophic sulphur-oxidizing ectosymbiotic bacteria which profit from the vertical migration of their hosts through the chemocline by alternately gaining access to oxidizing and reducing chemical species, while in return, the host feeds on its symbionts. The subfamily exhibits a large morphological variability; e.g. the anterior pharynx is cylindrical in genera possessing a voluminous coat, but species with a bacterial monolayer possess a distinctly swollen corpus and therefore a tripartite pharynx. Since 18S-based phylogenetic analyses do not show close relationships between corpus-bearing species, we investigated the pharynx morphology using phalloidin staining in combination with confocal laser scanning microscopy, transmission electron microscopy and light microscopy in order to assess an independent evolution. The class-wide stable position of the subventral pharynx ampullae was used as a morphological marker. Ampullae are positioned at the anterior-most end of the isthmus in Cyathorobbea, further posterior in Catanema and Robbea and inside the corpus in Laxus oneistus. We therefore conclude an independent evolution of corpus enlargements within Stilbonematinae. This further suggests that pharynx morphology is driven by the volume of the symbiotic bacterial coat rather than phylogeny. Based on an existing mathematical model, an enlarged corpus should enable its bearer to ingest food in smaller quantities, in gourmet style, whereas a cylindrical pharynx would restrict its bearer to ancestral gourmand feeding. A review of pharynx types of Nematoda showed that the Stilbonematinae pharynx is substantially different compared to other tripartite pharynges. The lack of pharyngeal tubes and valves, the undivided corpus and evenly distributed nuclei in the isthmus warrant the definition of the "stilbonematoid" three-part pharynx.
Collapse
Affiliation(s)
- Philipp Pröts
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | | | - Jörg A. Ott
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Jiao JY, Abdugheni R, Zhang DF, Ahmed I, Ali M, Chuvochina M, Dedysh SN, Dong X, Göker M, Hedlund BP, Hugenholtz P, Jangid K, Liu SJ, Moore ERB, Narsing Rao MP, Oren A, Rossello-Mora R, Rekadwad BN, Salam N, Shu W, Sutcliffe IC, Teo WFA, Trujillo ME, Venter SN, Whitman WB, Zhao G, Li WJ. Advancements in prokaryotic systematics and the role of Bergey's International Society for Microbial Systematicsin addressing challenges in the meta-data era. Natl Sci Rev 2024; 11:nwae168. [PMID: 39071100 PMCID: PMC11275469 DOI: 10.1093/nsr/nwae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 07/30/2024] Open
Abstract
Prokaryotes are ubiquitous in the biosphere, important for human health and drive diverse biological and environmental processes. Systematics of prokaryotes, whose origins can be traced to the discovery of microorganisms in the 17th century, has transitioned from a phenotype-based classification to a more comprehensive polyphasic taxonomy and eventually to the current genome-based taxonomic approach. This transition aligns with a foundational shift from studies focused on phenotypic traits that have limited comparative value to those using genome sequences. In this context, Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB) and Bergey's International Society for Microbial Systematics (BISMiS) play a pivotal role in guiding prokaryotic systematics. This review focuses on the historical development of prokaryotic systematics with a focus on the roles of BMSAB and BISMiS. We also explore significant contributions and achievements by microbiologists, highlight the latest progress in the field and anticipate challenges and opportunities within prokaryotic systematics. Additionally, we outline five focal points of BISMiS that are aimed at addressing these challenges. In conclusion, our collaborative effort seeks to enhance ongoing advancements in prokaryotic systematics, ensuring its continued relevance and innovative characters in the contemporary landscape of genomics and bioinformatics.
Collapse
Affiliation(s)
- Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dao-Feng Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing 210024, China
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad 45500, Pakistan
| | - Mukhtiar Ali
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Queensland 4072, Australia
| | - Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Markus Göker
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig D-38124, Germany
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Queensland 4072, Australia
| | - Kamlesh Jangid
- Bioenergy Group, MACS Collection of Microorganisms, Agharkar Research Institute, Pune 411004, India
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Edward R B Moore
- Department of Infectious Disease, Institute for Biomedicine, and Culture Collection University of Gothenburg (CCUG), Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-40234, Sweden
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Aharon Oren
- The Alexander Silberman Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles 070190, Spain
| | - Bhagwan Narayan Rekadwad
- MicrobeAI Lab, Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Nimaichand Salam
- National Agri-Food Biotechnology Institute, Knowledge City, Mohali 140306, India
| | - Wensheng Shu
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Iain C Sutcliffe
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Wee Fei Aaron Teo
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Martha E Trujillo
- Microbiology and Genetics Department, University of Salamanca, Salamanca 37008, Spain
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Guoping Zhao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
3
|
Oren A. On validly published names, correct names, and changes in the nomenclature of phyla and genera of prokaryotes: a guide for the perplexed. NPJ Biofilms Microbiomes 2024; 10:20. [PMID: 38467688 PMCID: PMC10928132 DOI: 10.1038/s41522-024-00494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
4
|
Arahal D, Bisgaard M, Christensen H, Clermont D, Dijkshoorn L, Duim B, Emler S, Figge M, Göker M, Moore ERB, Nemec A, Nørskov-Lauritsen N, Nübel U, On SLW, Vandamme P, Ventosa A. The best of both worlds: a proposal for further integration of Candidatus names into the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2024; 74. [PMID: 38180015 DOI: 10.1099/ijsem.0.006188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
The naming of prokaryotes is governed by the International Code of Nomenclature of Prokaryotes (ICNP) and partially by the International Code of Nomenclature for Algae, Fungi and Plants (ICN). Such codes must be able to determine names of taxa in a universal and unambiguous manner, thus serving as a common language across different fields and activities. This unity is undermined when a new code of nomenclature emerges that overlaps in scope with an established, time-tested code and uses the same format of names but assigns different nomenclatural status values to the names. The resulting nomenclatural confusion is not beneficial to the wider scientific community. Such ambiguity is expected to result from the establishment of the 'Code of Nomenclature of Prokaryotes Described from DNA Sequence Data' ('SeqCode'), which is in general and specific conflict with the ICNP and the ICN. Shortcomings in the interpretation of the ICNP may have exacerbated the incompatibility between the codes. It is reiterated as to why proposals to accept sequences as nomenclatural types of species and subspecies with validly published names, now implemented in the SeqCode, have not been implemented by the International Committee on Systematics of Prokaryotes (ICSP), which oversees the ICNP. The absence of certain regulations from the ICNP for the naming of as yet uncultivated prokaryotes is an acceptable scientific argument, although it does not justify the establishment of a separate code. Moreover, the proposals rejected by the ICSP are unnecessary to adequately regulate the naming of uncultivated prokaryotes. To provide a better service to the wider scientific community, an alternative proposal to emend the ICNP is presented, which would result in Candidatus names being regulated analogously to validly published names. This proposal is fully consistent with previous ICSP decisions, preserves the essential unity of nomenclature and avoids the expected nomenclatural confusion.
Collapse
Affiliation(s)
- David Arahal
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | | | - Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Dominique Clermont
- Institut Pasteur, Université Paris Cité, CRBIP, CIP-Collection of Institut Pasteur, F-75015 Paris, France
| | - Lenie Dijkshoorn
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, Leiden / Torensteelaan 68, 3281 MA Numansdorp, Netherlands
| | - Birgitta Duim
- Department Biomolecular Health Sciences, Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CS Utrecht, Netherlands
| | - Stefan Emler
- SmartGene Services SARL, EPFL Innovation Park, PSE-C, CH-1015 Lausanne, Switzerland
| | - Marian Figge
- Westerdijk Fungal Biodiversity Institute Uppsalalaan 8 3584 CT, Utrecht, Netherlands
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| | - Edward R B Moore
- Department of Infectious Disease and Culture Collection University of Gothenburg (CCUG), Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-402 34 Gothenburg, Sweden
| | - Alexandr Nemec
- Laboratory of Bacterial Genetics, National Institute of Public Health, Srobarova 48, 100 00 Prague 10, Czech Republic
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, V Úvalu 84, 150 06 Prague 5, Czechia
| | | | - Ulrich Nübel
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Stephen L W On
- Department of Wine, Food and Molecular Biosciences, Faculty of Agricultural Science, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Peter Vandamme
- BCCM/LMG, Laboratorium voor Microbiologie, Universiteit Gent (UGent) K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, C/. Prof. Garcia Gonzalez 2, ES-41012 Sevilla, Spain
| |
Collapse
|
5
|
Bulaev A, Kadnikov V, Elkina Y, Beletsky A, Melamud V, Ravin N, Mardanov A. Shifts in the Microbial Populations of Bioleach Reactors Are Determined by Carbon Sources and Temperature. BIOLOGY 2023; 12:1411. [PMID: 37998010 PMCID: PMC10669018 DOI: 10.3390/biology12111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
In the present study, the effect of additional carbon sources (carbon dioxide and molasses) on the bio-oxidation of a pyrite-arsenopyrite concentrate at temperatures of 40-50 °C was studied, and novel data regarding the patterns of the bio-oxidation of gold-bearing sulfide concentrates and the composition of the microbial populations performing these processes were obtained. At 40 °C, additional carbon sources did not affect the bio-oxidation efficiency. At the same time, the application of additional carbon dioxide improved the bio-oxidation performance at temperatures of 45 and 50 °C and made it possible to avoid the inhibition of bio-oxidation due to an increase in the temperature. Therefore, the use of additional carbon dioxide may be proposed to prevent the negative effect of an increase in temperature on the bio-oxidation of sulfide concentrates. 16S rRNA gene profiling revealed archaea of the family Thermoplasmataceae (Acidiplasma, Ferroplasma, Cuniculiplasma, and A-plasma group) and bacteria of the genera Leptospirillum, with Sulfobacillus and Acidithiobacillus among the dominant groups in the community. Temperature influenced the composition of the communities to a greater extent than the additional sources of carbon and the mode of operation of the bioreactor. Elevating the temperature from 40 °C to 50 °C resulted in increases in the shares of Acidiplasma and Sulfobacillus and decreases in the relative abundances of Ferroplasma, Leptospirillum, and Acidithiobacillus, while Cuniculiplasma and A-plasma were more abundant at 45 °C. A metagenomic analysis of the studied population made it possible to characterize novel archaea belonging to an uncultivated, poorly-studied group of Thermoplasmatales which potentially plays an important role in the bio-oxidation process. Based on an analysis of the complete genome, we propose describing the novel species and novel genus as "Candidatus Carboxiplasma ferriphilum" gen. nov., spec. nov.
Collapse
Affiliation(s)
- Aleksandr Bulaev
- Research Center of Biotechnology, The Russian Academy of Sciences, Leninsky Ave. 33 Bld. 2, 119071 Moscow, Russia; (V.K.); (Y.E.); (A.B.); (V.M.); (A.M.)
| | | | | | | | | | | | | |
Collapse
|
6
|
On SLW. Minutes of the inaugural 25 October 2022 meeting of International Committee on Systematics of Prokaryotes (ICSP) Subcommittees on Taxonomy representatives: challenges, trends, and perspectives for microbial taxonomists. Int J Syst Evol Microbiol 2023; 73. [PMID: 37787396 DOI: 10.1099/ijsem.0.006075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Affiliation(s)
- Stephen L W On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
7
|
Oren A. Naming new taxa of prokaryotes in the 21st century. Can J Microbiol 2023; 69:151-157. [PMID: 36852830 DOI: 10.1139/cjm-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The nomenclature of prokaryotes is regulated by the rules of the International Code of Nomenclature of Prokaryotes (ICNP) and is based on the Linnaean binomial system. The current rules of the Code only cover the nomenclature of the cultivated minority. Proposals to incorporate the uncultivated majority of bacteria and archaea under the rules of the Code were recently rejected by the International Committee on Systematics of Prokaryotes. The provisional rank of Candidatus can be used to name uncultivated prokaryotes whose names cannot be validly published under the rules of the ICNP, but their names can now be validated under the Code of Nomenclature of Prokaryotes Described from Sequence Data (the SeqCode), which was recently established to cover the nomenclature of the uncultivated majority. Metagenomics, single-cell genomics, and high-throughput cultivation techniques have led to a flood of new organisms currently waiting to be named. Automated programs such as GAN and Protologger can assist researchers in naming and describing newly discovered prokaryotes, cultivated as well as uncultivated. However, Latin and Greek skills remain indispensable for proper quality control of names that must meet the standards set by the codes of nomenclature.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
8
|
Göker M, Moore ERB, Oren A, Trujillo ME. Status of the SeqCode in the International Journal of Systematic and Evolutionary Microbiology. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748408 DOI: 10.1099/ijsem.0.005754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The recent publication of an alternative nomenclatural code that targets prokaryotes, the Code of Nomenclature of Prokaryotes Described from DNA Sequence Data (SeqCode), raises questions about how to treat names 'validly published' under that code in the International Journal of Systematic and Evolutionary Microbiology (IJSEM). Here, it is reiterated that the IJSEM must function in accordance with the International Code of Nomenclature of Prokaryotes (ICNP). It is also reiterated that the ICNP covers all prokaryotes and that it accordingly assigns a nomenclatural status to all names of prokaryotic taxa. This implies that the ICNP also assigns a status to names that are only 'validly published' under the SeqCode. It follows that the IJSEM must treat such names as not validly published, since 'validly published under the SeqCode' is not a nomenclatural status, under the ICNP. Such names should be marked accordingly as Candidatus names or printed in quotation marks. The same measures would need to be taken by other journals which intend to adhere to the ICNP.
Collapse
Affiliation(s)
- Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| | - Edward R B Moore
- Department of Infectious Disease and Culture Collection University of Gothenburg (CCUG), Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-402 34 Gothenburg, Sweden
| | - Aharon Oren
- The Hebrew University of Jerusalem, The Institute of Life Sciences, Edmond J. Safra Campus - Givat Ram, 9190401 Jerusalem, Israel
| | - Martha E Trujillo
- University of Salamanca, Dpto de Microbiología y Genética, Campus Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
9
|
Liguori BL, Stacy BA, Fischer PU, Fischer K, Archer LL, Childress AL, Shaver DJ, Kariyawasam S, Wellehan JFX. Identification of a novel Neorickettsia species in a Kemp's ridley sea turtle with granulomatous nephritis and development of a quantitative PCR assay. Transbound Emerg Dis 2022; 69:3673-3683. [PMID: 36215150 DOI: 10.1111/tbed.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 02/04/2023]
Abstract
An adult male Kemp's ridley turtle was found dead on the coast of Kenedy County, Texas, in August 2019 with bilateral severe, diffuse granulomatous nephritis. Pan-bacterial 16S rRNA gene polymerase chain reaction (PCR) and amplicon sequencing of affected tissue indicated the presence of a Neorickettsia. Neorickettsia is a genus of obligate intracellular Alphaproteobacteria that are transmitted by digenean trematodes. For further characterization, primers were designed to amplify and sequence the groEL gene. Phylogenetic analysis found that the organism was distinct from other known species to a degree consistent with a novel species. Immunohistochemistry using an antibody directed against a Neorickettsia surface protein showed bacterial clusters within the renal granulomas. A species-specific quantitative PCR was designed and detected the organism within the liver and colon of the index case. A quantitative PCR survey of grossly normal kidneys opportunistically collected from additional stranded sea turtle kidneys detected this organism in five of 15 Kemp's ridley turtles, two of nine green turtles, and neither of two loggerhead turtles. Recognition of this novel organism in an endangered species is concerning; additional work is underway to further characterize the potential of this organism as a pathogen of sea turtles.
Collapse
Affiliation(s)
- Brittany L Liguori
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida Comparative, Gainesville, Florida, USA
| | - Brian A Stacy
- NOAA, National Marine Fisheries Service, Office of Protected Resources, University of Florida, Gainesville, Florida, USA
| | - Peter U Fischer
- Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kerstin Fischer
- Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linda L Archer
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida Comparative, Gainesville, Florida, USA
| | - April L Childress
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida Comparative, Gainesville, Florida, USA
| | - Donna J Shaver
- National Park Service, Padre Island National Seashore, Division of Sea Turtle Science and Recovery, Corpus Christi, Texas, USA
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida Comparative, Gainesville, Florida, USA
| | - James F X Wellehan
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida Comparative, Gainesville, Florida, USA
| |
Collapse
|
10
|
It’s time for a new type of type to facilitate naming the microbial world. New Microbes New Infect 2022; 47:100991. [PMID: 35800027 PMCID: PMC9253472 DOI: 10.1016/j.nmni.2022.100991] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/09/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Since January 1, 2001, the only acceptable nomenclatural type for species under the International Code of Nomenclature of Prokaryotes (ICNP) has been pure cultures. Here, we argue that this requirement is discordant with the more inclusive nature of nomenclatural types accepted under other codes of nomenclature and posit that the unique rigidity of the ICNP has failed to serve the broad research community and has stifled progress. This case is based on the axiom that many archaea and bacteria are interdependent in nature and therefore difficult, if not impossible, to grow, preserve, and distribute as pure cultures. As such, a large proportion of Earth's biodiversity cannot be named under the current system, which limits our ability to communicate about microbial diversity within and beyond the microbiology research community. Genome sequence data are now encouraged for valid publication of new taxa in microbial systematics journals, and metagenome-assembled genomes and single cell-amplified genomes are being generated rapidly from every biome on Earth. Thus, genome sequences are available for both cultivated and uncultivated microorganisms and can readily serve as a new category of nomenclatural type, allowing for a unified nomenclature for all archaea and bacteria, whether or not they are available as pure cultures. Ideally this would be under a single code of nomenclature but, as we review here, the newly established SeqCode will operate in parallel with the ICNP as a first step toward this goal.
Collapse
|