1
|
Benita BA, Koss KM. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024; 17:1443985. [PMID: 39634607 PMCID: PMC11616451 DOI: 10.3389/fnmol.2024.1443985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation. Recently, research groups have focused on peptide discovery to identify these phenotypes, find novel mechanisms, and mediate or re-engineer their actions. Peptides retain the diverse function of proteins but significantly reduce the activity dependence on delicate 3D structures. Several peptides targeting unique phenotypes of microglia and astroglia have been identified, along with several capable of mediating deleterious behaviors or promoting beneficial outcomes in the context of neuroinflammation. A comprehensive review of the peptides unique to microglia and astroglia will be provided along with their primary discovery methodologies, including top-down approaches using known biomolecules and naïve strategies using peptide and phage libraries.
Collapse
Affiliation(s)
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Department of Neurobiology, University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
- Sealy Institute for Drug Discovery (SIDD), University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
| |
Collapse
|
2
|
Deng MY, Cheng J, Gao N, Li XY, Liu H, Wang YX. Dexamethasone attenuates neuropathic pain through spinal microglial expression of dynorphin A via the cAMP/PKA/p38 MAPK/CREB signaling pathway. Brain Behav Immun 2024; 119:36-50. [PMID: 38555991 DOI: 10.1016/j.bbi.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
This study aimed to elucidate the opioid mechanisms underlying dexamethasone-induced pain antihypersensitive effects in neuropathic rats. Dexamethasone (subcutaneous and intrathecal) and membrane-impermeable Dex-BSA (intrathecal) administration dose-dependently inhibited mechanical allodynia and thermal hyperalgesia in neuropathic rats. Dexamethasone and Dex-BSA treatments increased expression of dynorphin A in the spinal cords and primary cultured microglia. Dexamethasone specifically enhanced dynorphin A expression in microglia but not astrocytes or neurons. Intrathecal injection of the microglial metabolic inhibitor minocycline blocked dexamethasone-stimulated spinal dynorphin A expression; intrathecal minocycline, the glucocorticoid receptor antagonist Dex-21-mesylate, dynorphin A antiserum, and κ-opioid receptor antagonist GNTI completely blocked dexamethasone-induced mechanical antiallodynia and thermal antihyperalgesia. Additionally, dexamethasone elevated spinal intracellular cAMP levels, leading to enhanced phosphorylation of PKA, p38 MAPK and CREB. The specific adenylate cyclase inhibitor DDA, PKA inhibitor H89, p38 MAPK inhibitor SB203580 and CREB inhibitor KG-501 completely blocked dexamethasone-induced anti-neuropathic pain and increased microglial dynorphin A exprression. In conclusion, this study reveal that dexamethasone mitigateds neuropathic pain through upregulation of dynorphin A in spinal microglia, likely involving the membrane glucocorticoid receptor/cAMP/PKA/p38 MAPK/CREB signaling pathway.
Collapse
Affiliation(s)
- Meng-Yan Deng
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou 450001, China; King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Jing Cheng
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou 450001, China
| | - Na Gao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou 450001, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Hao Liu
- School of Basic Medical Science, School of Medicine, Ningbo University, Zhejiang 315211, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China.
| |
Collapse
|
3
|
Shu H, Liu S, Crawford J, Tao F. A female-specific role for trigeminal dynorphin in orofacial pain comorbidity. Pain 2023; 164:2801-2811. [PMID: 37463238 PMCID: PMC10790138 DOI: 10.1097/j.pain.0000000000002980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/01/2023] [Indexed: 07/20/2023]
Abstract
ABSTRACT Migraine is commonly reported in patients with temporomandibular disorders (TMDs), but little is known about the mechanisms underlying the comorbid condition. Here, we prepared a mouse model to investigate this comorbidity, in which masseter muscle tendon ligation (MMTL) was performed to induce a myogenic TMD, and the pre-existing TMD enabled a subthreshold dose of nitroglycerin (NTG) to produce migraine-like pain in mice. RNA sequencing followed by real-time quantitative polymerase chain reaction confirmation showed that MMTL plus NTG treatment increased prodynorphin ( Pdyn ) mRNA expression in the spinal trigeminal nucleus caudalis (Sp5C) of female mice but not in male mice. Chemogenetic inhibition of Pdyn -expressing neurons or microinjection of antidynorphin antiserum in the Sp5C alleviated MMTL-induced masseter hypersensitivity and diminished the MMTL-enabled migraine-like pain in female mice but not in male mice. Moreover, chemogenetic activation of Pdyn -expressing neurons or microinjection of dynorphin A (1-17) peptide in the Sp5C enabled a subthreshold dose of NTG to induce migraine-like pain in female mice but not in male mice. Taken together, our results suggest that trigeminal dynorphin has a female-specific role in the modulation of comorbid TMDs and migraine.
Collapse
Affiliation(s)
- Hui Shu
- Department of Biomedical Sciences, Texas A&M University
School of Dentistry, Dallas, Texas, USA
| | - Sufang Liu
- Department of Biomedical Sciences, Texas A&M University
School of Dentistry, Dallas, Texas, USA
| | - Joshua Crawford
- Department of Biomedical Sciences, Texas A&M University
School of Dentistry, Dallas, Texas, USA
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University
School of Dentistry, Dallas, Texas, USA
- Center for Craniofacial Research and Diagnosis, Texas
A&M University School of Dentistry, Dallas, Texas, USA
| |
Collapse
|
4
|
Abstract
The opioid peptides and their receptors have been linked to multiple key biological processes in the nervous system. Here we review the functions of the kappa opioid receptor (KOR) and its endogenous agonists dynorphins (Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L, Proc Natl Acad Sci U S A 76:6666-6670, 1979) in modulating itch and pain (nociception). Specifically, we discuss their roles relative to recent findings that tell us more about the cells and circuits which are impacted by this opioid and its receptor and present reanalysis of single-cell sequencing data showing the expression profiles of these molecules. Since the KOR is relatively specifically activated by peptides derived from the prodynorphin gene and other opioid peptides that show lower affinities, this will be the only interactions we consider (Chavkin C, Goldstein A, Nature 291:591-593, 1981; Chavkin C, James IF, Goldstein A, Science 215:413-415, 1982), although it was noted that at higher doses peptides other than dynorphins might stimulate KOR (Lai J, Luo MC, Chen Q, Ma S, Gardell LR, Ossipov MH, Porreca F, Nat Neurosci 9:1534-1540, 2006). This review has been organized based on anatomy with each section describing the effect of the kappa opioid system in a specific location but let us not forget that most of these circuits are interconnected and are therefore interdependent.
Collapse
Affiliation(s)
- Pang-Yen Tseng
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | - Mark A Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA.
| |
Collapse
|
5
|
Shoaib RM, Ahmad KA, Wang YX. Protopanaxadiol alleviates neuropathic pain by spinal microglial dynorphin A expression following glucocorticoid receptor activation. Br J Pharmacol 2021; 178:2976-2997. [PMID: 33786848 DOI: 10.1111/bph.15471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE New remedies are required for the treatment of neuropathic pain due to insufficient efficacy of available therapies. This study provides a novel approach to develop painkillers for chronic pain treatment. EXPERIMENTAL APPROACH The rat formalin pain test and spinal nerve ligation model of neuropathic pain were used to evaluate antinociception of protopanaxadiol. Primary cell cultures, immunofluorescence staining, and gene and protein expression were also performed for mechanism studies. KEY RESULTS Gavage protopanaxadiol remarkably produces pain antihypersensitive effects in neuropathic pain, bone cancer pain and inflammatory pain, with efficacy comparable with gabapentin. Long-term PPD administration does not induce antihypersensitive tolerance, but prevents and reverses the development and expression of morphine analgesic tolerance. Oral protopanaxadiol specifically stimulates spinal expression of dynorphin A in microglia but not in astrocytes or neurons. Protopanaxadiol gavage-related pain antihypersensitivity is abolished by the intrathecal pretreatment with the microglial metabolic inhibitor minocycline, dynorphin antiserum or specific κ-opioid receptor antagonist GNTI. Intrathecal pretreatment with glucocorticoid receptor)antagonists RU486 and dexamethasone-21-mesylate, but not GPR-30 antagonist G15 or mineralocorticoid receptor antagonist eplerenone, completely attenuates protopanaxadiol-induced spinal dynorphin A expression and pain antihypersensitivity in neuropathic pain. Treatment with protopanaxadiol, the glucocorticoid receptor agonist dexamethasone and membrane-impermeable glucocorticoid receptor agonist dexamethasone-BSA in cultured microglia induces remarkable dynorphin A expression, which is totally blocked by pretreatment with dexamthasone-21-mesylate. CONCLUSION AND IMPLICATIONS All the results, for the first time, indicate that protopanaxadiol produces pain antihypersensitivity in neuropathic pain probably through spinal microglial dynorphin A expression after glucocorticoid receptor activation and hypothesize that microglial membrane glucocorticoid receptor/dynorphin A pathway is a potential target to discover and develop novel painkillers in chronic pain.
Collapse
Affiliation(s)
| | - Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
6
|
García-Domínguez M, González-Rodríguez S, Hidalgo A, Baamonde A, Menéndez L. Kappa-opioid receptor-mediated thermal analgesia evoked by the intrathecal administration of the chemokine CCL1 in mice. Fundam Clin Pharmacol 2021; 35:1109-1118. [PMID: 33905573 DOI: 10.1111/fcp.12685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The chemokine CC motif ligand 1 (CCL1) participates in immune cell recruitment and, as other chemokines, is also involved in nociceptive processing. In contrast with previous reports indicating its participation in allodynia and cold hypernociception when spinally administered, its ability to evoke heat thermal analgesia, mediated by circulating leukocytes and endocannabinoids, after systemic administration has recently been reported. OBJECTIVES Aiming to explore the role played by CCL1 on spinal nociception, we study here the effect of its intrathecal administration on thermal nociception in mice. METHODS Behavioral nociceptive assays, immunohistochemical experiments, white cell blood depletion procedures and qRT-PCR experiments were performed. RESULTS The intrathecal administration of CCL1 (0.3-30 ng) produced analgesia as measured by the unilateral hot plate test. This effect peaked 1 h after injection, was prevented by the CCR8 antagonist R243 and was accompanied by a reduction of c-Fos expression in spinal neurons. Whereas blood leukocyte depletion did not modify it, analgesia was abolished by the microglial inhibitor minocycline, but not the astroglial inhibitor aminoadipate. Furthermore, antinociception remained unmodified by the coadministration of cannabinoid type 1 or 2 receptors antagonists. However, it was reversed by naloxone but not by selective blockade of mu- or delta-opioid receptors. The inhibitory effect induced by the selective kappa-opioid receptor antagonist, nor-binaltorphimine, and by an anti-dynorphin A 1-17 antibody indicates that analgesia evoked by spinal CCL1 is mediated by endogenous dynorphins acting on kappa-opioid receptors. CONCLUSIONS Endogenous dynorphin and microglia behave as key players in heat thermal analgesia evoked by spinal CCL1 in mice.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Sara González-Rodríguez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Agustín Hidalgo
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Baamonde
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Menéndez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
7
|
Zhao MJ, Wang MY, Ma L, Ahmad KA, Wang YX. Bulleyaconitine A Inhibits Morphine-Induced Withdrawal Symptoms, Conditioned Place Preference, and Locomotor Sensitization Via Microglial Dynorphin A Expression. Front Pharmacol 2021; 12:620926. [PMID: 33716748 PMCID: PMC7953057 DOI: 10.3389/fphar.2021.620926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/12/2021] [Indexed: 11/25/2022] Open
Abstract
Bulleyaconitine A (BAA), a C19-diterpenoid alkaloid, has been prescribed as a nonnarcotic analgesic to treat chronic pain over four decades in China. The present study investigated its inhibition in morphine-induced withdrawal symptoms, conditioned place preference (CPP) and locomotor sensitization, and then explored the underlying mechanisms of actions. Multiple daily injections of morphine but not BAA up to 300 μg/kg/day into mice evoked naloxone-induced withdrawal symptoms (i.e., shakes, jumps, genital licks, fecal excretion and body weight loss), CPP expression, and locomotor sensitization. Single subcutaneous BAA injection (30–300 μg/kg) dose-dependently and completely attenuated morphine-induced withdrawal symptoms, with ED50 values of 74.4 and 105.8 μg/kg in shakes and body weight loss, respectively. Subcutaneous BAA (300 μg/kg) also totally alleviated morphine-induced CPP acquisition and expression and locomotor sensitization. Furthermore, subcutaneous BAA injection also specifically stimulated dynorphin A expression in microglia but not astrocytes or neurons in nucleus accumbens (NAc) and hippocampal, measured for gene and protein expression and double immunofluorescence staining. In addition, subcutaneous BAA-inhibited morphine-induced withdrawal symptoms and CPP expression were totally blocked by the microglial metabolic inhibitor minocycline, dynorphin A antiserum, or specific KOR antagonist GNTI, given intracerebroventricularly. These results, for the first time, illustrate that BAA attenuates morphine-induced withdrawal symptoms, CPP expression, and locomotor sensitization by stimulation of microglial dynorphin A expression in the brain, suggesting that BAA may be a potential candidate for treatment of opioids-induced physical dependence and addiction.
Collapse
Affiliation(s)
- Meng-Jing Zhao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Mi-Ya Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Le Ma
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
8
|
Serafin EK, Paranjpe A, Brewer CL, Baccei ML. Single-nucleus characterization of adult mouse spinal dynorphin-lineage cells and identification of persistent transcriptional effects of neonatal hindpaw incision. Pain 2021; 162:203-218. [PMID: 33045156 PMCID: PMC7744314 DOI: 10.1097/j.pain.0000000000002007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neonatal tissue damage can have long-lasting effects on nociceptive processing in the central nervous system, which may reflect persistent injury-evoked alterations to the normal balance between synaptic inhibition and excitation in the spinal dorsal horn. Spinal dynorphin-lineage (pDyn) neurons are part of an inhibitory circuit which limits the flow of nociceptive input to the brain and is disrupted by neonatal tissue damage. To identify the potential molecular underpinnings of this disruption, an unbiased single-nucleus RNAseq analysis of adult mouse spinal pDyn cells characterized this population in depth and then identified changes in gene expression evoked by neonatal hindpaw incision. The analysis revealed 11 transcriptionally distinct subpopulations (ie, clusters) of dynorphin-lineage cells, including both inhibitory and excitatory neurons. Investigation of injury-evoked differential gene expression identified 15 genes that were significantly upregulated or downregulated in adult pDyn neurons from neonatally incised mice compared with naive littermate controls, with both cluster-specific and pan-neuronal transcriptional changes observed. Several of the identified genes, such as Oxr1 and Fth1 (encoding ferritin), were related to the cellular stress response. However, the relatively low number of injury-evoked differentially expressed genes also suggests that posttranscriptional regulation within pDyn neurons may play a key role in the priming of developing nociceptive circuits by early-life injury. Overall, the findings reveal novel insights into the molecular heterogeneity of a key population of dorsal horn interneurons that has previously been implicated in the suppression of mechanical pain and itch.
Collapse
Affiliation(s)
- Elizabeth K Serafin
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States . Dr. Brewer is now with the Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Aditi Paranjpe
- Division of Biomedical Informatics, Bioinformatics Collaborative Services, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Chelsie L Brewer
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States . Dr. Brewer is now with the Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Mark L Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States . Dr. Brewer is now with the Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
9
|
Shao S, Xia H, Hu M, Chen C, Fu J, Shi G, Guo Q, Zhou Y, Wang W, Shi J, Zhang T. Isotalatizidine, a C 19-diterpenoid alkaloid, attenuates chronic neuropathic pain through stimulating ERK/CREB signaling pathway-mediated microglial dynorphin A expression. J Neuroinflammation 2020; 17:13. [PMID: 31924228 PMCID: PMC6953278 DOI: 10.1186/s12974-019-1696-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023] Open
Abstract
Background Isotalatizidine is a representative C19-diterpenoid alkaloid extracted from the lateral roots of Aconitum carmichaelii, which has been widely used to treat various diseases on account of its analgesic, anti-inflammatory, anti-rheumatic, and immunosuppressive properties. The aim of this study was to evaluate the analgesic effect of isotalatizidine and its underlying mechanisms against neuropathic pain. Methods A chronic constrictive injury (CCI)-induced model of neuropathic pain was established in mice, and the limb withdrawal was evaluated by the Von Frey filament test following isotalatizidine or placebo administration. The signaling pathways in primary or immortalized microglia cells treated with isotalatizidine were analyzed by Western blotting and immunofluorescence. Results Intrathecal injection of isotalatizidine attenuated the CCI-induced mechanical allodynia in a dose-dependent manner. At the molecular level, isotalatizidine selectively increased the phosphorylation of p38 and ERK1/2, in addition to activating the transcription factor CREB and increasing dynorphin A production in cultured primary microglia. However, the downstream effects of isotalatizidine were abrogated by the selective ERK1/2 inhibitor U0126-EtOH or CREB inhibitor of KG-501, but not by the p38 inhibitor SB203580. The results also were confirmed in in vivo experiments. Conclusion Taken together, isotalatizidine specifically activates the ERK1/2 pathway and subsequently CREB, which triggers dynorphin A release in the microglia, eventually leading to its anti-nociceptive action.
Collapse
Affiliation(s)
- Shuai Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Hu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Junmin Fu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gaona Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenjie Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Mao XF, Wu HY, Tang XQ, Ali U, Liu H, Wang YX. Activation of GPR40 produces mechanical antiallodynia via the spinal glial interleukin-10/β-endorphin pathway. J Neuroinflammation 2019; 16:84. [PMID: 30981281 PMCID: PMC6461825 DOI: 10.1186/s12974-019-1457-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022] Open
Abstract
Background The G protein-coupled receptor 40 (GPR40), broadly expressed in various tissues such as the spinal cord, exerts multiple physiological functions including pain regulation. This study aimed to elucidate the mechanisms underlying GPR40 activation-induced antinociception in neuropathic pain, particularly related to the spinal glial expression of IL-10 and subsequent β-endorphin. Methods Spinal nerve ligation-induced neuropathic pain model was used in this study. β-Endorphin and IL-10 levels were measured in the spinal cord and cultured primary microglia, astrocytes, and neurons. Double immunofluorescence staining of β-endorphin with glial and neuronal cellular biomarkers was also detected in the spinal cord and cultured primary microglia, astrocytes, and neurons. Results GPR40 was expressed on microglia, astrocytes, and neurons in the spinal cords and upregulated by spinal nerve ligation. Intrathecal injection of the GPR40 agonist GW9508 dose-dependently attenuated mechanical allodynia and thermal hyperalgesia in neuropathic rats, with Emax values of 80% and 100% MPE and ED50 values of 6.7 and 5.4 μg, respectively. Its mechanical antiallodynia was blocked by the selective GPR40 antagonist GW1100 but not GPR120 antagonist AH7614. Intrathecal GW9508 significantly enhanced IL-10 and β-endorphin immunostaining in spinal microglia and astrocytes but not in neurons. GW9508 also markedly stimulated gene and protein expression of IL-10 and β-endorphin in cultured primary spinal microglia and astrocytes but not in neurons, originated from 1-day-old neonatal rats. The IL-10 antibody inhibited GW9508-stimulated gene expression of the β-endorphin precursor proopiomelanocortin (POMC) but not IL-10, whereas the β-endorphin antibody did not affect GW9508-stimulated IL-10 or POMC gene expression. GW9508 increased phosphorylation of mitogen-activated protein kinases (MAPKs) including p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), and its stimulatory effects on IL-10 and POMC expression were blocked by each MAPK isoform inhibitor. Spinal GW9508-induced mechanical antiallodynia was completely blocked by intrathecal minocycline, IL-10 neutralizing antibody, β-endorphin antiserum, and μ-opioid receptor-preferred antagonist naloxone. Conclusions Our results illustrate that GPR40 activation produces antinociception via the spinal glial IL-10/β-endorphin antinociceptive pathway. Electronic supplementary material The online version of this article (10.1186/s12974-019-1457-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xue-Qi Tang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Usman Ali
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
11
|
Király K, Kozsurek M, Lukácsi E, Barta B, Alpár A, Balázsa T, Fekete C, Szabon J, Helyes Z, Bölcskei K, Tékus V, Tóth ZE, Pap K, Gerber G, Puskár Z. Glial cell type-specific changes in spinal dipeptidyl peptidase 4 expression and effects of its inhibitors in inflammatory and neuropatic pain. Sci Rep 2018; 8:3490. [PMID: 29472575 PMCID: PMC5823904 DOI: 10.1038/s41598-018-21799-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/08/2018] [Indexed: 01/02/2023] Open
Abstract
Altered pain sensations such as hyperalgesia and allodynia are characteristic features of various pain states, and remain difficult to treat. We have shown previously that spinal application of dipeptidyl peptidase 4 (DPP4) inhibitors induces strong antihyperalgesic effect during inflammatory pain. In this study we observed low level of DPP4 mRNA in the rat spinal dorsal horn in physiological conditions, which did not change significantly either in carrageenan-induced inflammatory or partial nerve ligation-generated neuropathic states. In naïve animals, microglia and astrocytes expressed DPP4 protein with one and two orders of magnitude higher than neurons, respectively. DPP4 significantly increased in astrocytes during inflammation and in microglia in neuropathy. Intrathecal application of two DPP4 inhibitors tripeptide isoleucin-prolin-isoleucin (IPI) and the antidiabetic drug vildagliptin resulted in robust opioid-dependent antihyperalgesic effect during inflammation, and milder but significant opioid-independent antihyperalgesic action in the neuropathic model. The opioid-mediated antihyperalgesic effect of IPI was exclusively related to mu-opioid receptors, while vildagliptin affected mainly delta-receptor activity, although mu- and kappa-receptors were also involved. None of the inhibitors influenced allodynia. Our results suggest pathology and glia-type specific changes of DPP4 activity in the spinal cord, which contribute to the development and maintenance of hyperalgesia and interact with endogenous opioid systems.
Collapse
Affiliation(s)
- Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089, Budapest, Hungary
| | - Márk Kozsurek
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Erika Lukácsi
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Benjamin Barta
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Alán Alpár
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Tamás Balázsa
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Csaba Fekete
- "Lendület" Laboratory of Integrative Neurobiology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, H-1083, Budapest, Hungary
| | - Judit Szabon
- "Lendület" Laboratory of Integrative Neurobiology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, H-1083, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, H-7624, Pécs, Hungary.,MTA-PTE NAP B Chronic Pain Research Group, University of Pécs, H-7624, Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, H-7624, Pécs, Hungary
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, H-7624, Pécs, Hungary
| | - Zsuzsanna E Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Károly Pap
- Department of Traumatology, Semmelweis University, H-1113 Budapest, Hungary & Department of Orthopaedics and Traumatology, Uzsoki Hospital, H-1145, Budapest, Hungary
| | - Gábor Gerber
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Zita Puskár
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary.
| |
Collapse
|
12
|
Saidi M, Beaudry F. Targeted high-resolution quadrupole-Orbitrap mass spectrometry analyses reveal a significant reduction of tachykinin and opioid neuropeptides level in PC1 and PC2 mutant mouse spinal cords. Neuropeptides 2017; 65:37-44. [PMID: 28476408 DOI: 10.1016/j.npep.2017.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/09/2017] [Accepted: 04/13/2017] [Indexed: 12/30/2022]
Abstract
Tachykinin and opioid neuropeptides play a fundamental role in pain transmission, modulation and inhibition. The proteolysis control of endogenous tachykinin and opioid neuropeptides has a significant impact on pain perception. The role of proprotein convertases (PCs) in the proteolysis of proneuropeptides was previously established but very few studies have shown the direct impact of PCs on the regulation of specific tachykinin and opioid peptides in the central nervous system. There is an increasing interest in the therapeutic targeting of PCs for the treatment of pain but it is imperative to assess the impact of PCs on the pronociceptive and the endogenous opioid systems. The objective of this study was to determine the relative concentration of targeted neuropeptides in the spinal cord of WT, PC1-/+ and PC2-/+ animals to establish the impact of a restricted PCs activity on the regulation of specific neuropeptides. The analysis of tachykinin and opioid neuropeptides were performed on a HPLC-MS/MS (High-Resolution Quadrupole-Orbitrap Mass Spectrometer). The results revealed a significant decrease of Dyn A (p<0.01), Leu-Enk (p<0.001), Met-Enk (p<0.001), Tach58-71 (p<0.05), SP (p<0.01) and NKA (p<0.001) concentrations in both, PC1-/+ and PC2-/+ animals. Therefore, the modulation of PCs activity has an important impact on specific pronociceptive peptides (SP and NKA), but the results also shown that endogenous opioid system is hindered and consequently it will affect significantly the pain modulatory pathways. These observations may have insightful impact on future analgesic drug developments and therapeutic strategies.
Collapse
Affiliation(s)
- Mouna Saidi
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada.
| |
Collapse
|
13
|
Li TF, Wu HY, Wang YR, Li XY, Wang YX. Molecular signaling underlying bulleyaconitine A (BAA)-induced microglial expression of prodynorphin. Sci Rep 2017; 7:45056. [PMID: 28327597 PMCID: PMC5361206 DOI: 10.1038/srep45056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/20/2017] [Indexed: 12/30/2022] Open
Abstract
Bulleyaconitine (BAA) has been shown to possess antinociceptive activities by stimulation of dynorphin A release from spinal microglia. This study investigated its underlying signal transduction mechanisms. The data showed that (1) BAA treatment induced phosphorylation of CREB (rather than NF-κB) and prodynorphin expression in cultured primary microglia, and antiallodynia in neuropathy, which were totally inhibited by the CREB inhibitor KG-501; (2) BAA upregulated phosphorylation of p38 (but not ERK or JNK), and the p38 inhibitor SB203580 (but not ERK or JNK inhibitor) and p38β gene silencer siRNA/p38β (but not siRNA/p38α) completely blocked BAA-induced p38 phosphorylation and/or prodynorphin expression, and antiallodynia; (3) BAA stimulated cAMP production and PKA phosphorylation, and the adenylate cyclase inhibitor DDA and PKA inhibitor H-89 entirely antagonized BAA-induced prodynorphin expression and antiallodynia; (4) The Gs-protein inhibitor NF449 completely inhibited BAA-increased cAMP level, prodynorphin expression and antiallodynia, whereas the antagonists of noradrenergic, corticotrophin-releasing factor, A1 adenosine, formyl peptide, D1/D2 dopamine, and glucagon like-peptide-1 receptors failed to block BAA-induced antiallodynia. The data indicate that BAA-induced microglial expression of prodynorphin is mediated by activation of the cAMP-PKA-p38β-CREB signaling pathway, suggesting that its possible target is a Gs-protein-coupled receptor - "aconitine receptor", although the chemical identity is not illustrated.
Collapse
Affiliation(s)
- Teng-Fei Li
- King’s Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Hai-Yun Wu
- King’s Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Yi-Rui Wang
- King’s Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin-Yan Li
- King’s Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Yong-Xiang Wang
- King’s Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
14
|
Li TF, Gong N, Wang YX. Ester Hydrolysis Differentially Reduces Aconitine-Induced Anti-hypersensitivity and Acute Neurotoxicity: Involvement of Spinal Microglial Dynorphin Expression and Implications for Aconitum Processing. Front Pharmacol 2016; 7:367. [PMID: 27761113 PMCID: PMC5051147 DOI: 10.3389/fphar.2016.00367] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023] Open
Abstract
Aconitines, including bulleyaconitine A, probably the most bioactive and abundant alkaloids in Aconitum plant, are a group of diester C19-diterpenoid alkaloids with one acetylester group attached to C8 of the diterpenoid skeleton and one benzoylester group to C14. Hydrolysis of both groups is involved in the processing of Aconitum, a traditional Chinese medicinal approach. We recently demonstrated that bulleyaconitine A produced anti-hypersensitivity, which was mediated by stimulation of spinal microglial dynorphin A expression. This study aimed to elucidate whether the acetylester and benzoylester groups are involved in aconitine-induced dynorphin A expression, anti-hypersensitivity, neurotoxicity in neuropathic rats. Intrathecal administration of aconitine and benzoylaconine (but not aconine) attenuated mechanical allodynia and heat hyperalgesia, with normalized ED50 values of 35 pmol and 3.6 nmol, respectively. Aconitine and benzoylaconine anti-allodynia was completely blocked by the microglial inhibitor, dynorphin A antiserum, and κ-opioid receptor antagonist. Aconitine and benzoylaconine, but not aconine, stimulated dynorphin A expression in cultured primary spinal microglia, with EC50 values of 32 nM and 3 μM, respectively. Intrathecal aconitine, benzoylaconine and aconine induced flaccid paralysis and death, with normalized TD50 values of 0.5 nmol, 0.2 μmol, and 1.6 μmol, respectively. The TD50/ED50 ratios of aconitine and benzolyaconine were 14:1 and 56:1. Our results suggest that both the C8-acetyl and C14-benzoyl groups are essential for aconitine to stimulate spinal microglial dynorphin A expression and subsequent anti-hypersensitivity, which can be separated from neurotoxicity, because both benzoylaconine and aconine differentially produced anti-hypersensitivity and neurotoxicity due to their different stimulatory ability on dynorphin A expression. Our results support the scientific rationale for Aconitum processing, but caution should be taken to avoid overprocessing and excess hydrolysis of benzolyaconine to aconine.
Collapse
Affiliation(s)
- Teng-Fei Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy Shanghai, China
| | - Nian Gong
- King's Lab, Shanghai Jiao Tong University School of Pharmacy Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy Shanghai, China
| |
Collapse
|
15
|
Podvin S, Yaksh T, Hook V. The Emerging Role of Spinal Dynorphin in Chronic Pain: A Therapeutic Perspective. Annu Rev Pharmacol Toxicol 2016; 56:511-33. [PMID: 26738478 DOI: 10.1146/annurev-pharmtox-010715-103042] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Notable findings point to the significance of the dynorphin peptide neurotransmitter in chronic pain. Spinal dynorphin neuropeptide levels are elevated during development of chronic pain and sustained during persistent chronic pain. Importantly, knockout of the dynorphin gene prevents development of chronic pain in mice, but acute nociception is unaffected. Intrathecal (IT) administration of opioid and nonopioid dynorphin peptides initiates allodynia through a nonopioid receptor mechanism; furthermore, antidynorphin antibodies administered by the IT route attenuate chronic pain. Thus, this review presents the compelling evidence in the field that supports the role of dynorphin in facilitating the development of a persistent pain state. These observations illustrate the importance of elucidating the control mechanisms responsible for the upregulation of spinal dynorphin in chronic pain. Also, spinal dynorphin regulation of downstream signaling molecules may be implicated in hyperpathic states. Therapeutic strategies to block the upregulation of spinal dynorphin may provide a nonaddictive approach to improve the devastating condition of chronic pain that occurs in numerous human diseases.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093;
| | | | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093; .,Department of Neurosciences, and.,Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, California 92093
| |
Collapse
|
16
|
Huang Q, Mao XF, Wu HY, Li TF, Sun ML, Liu H, Wang YX. Bullatine A stimulates spinal microglial dynorphin A expression to produce anti-hypersensitivity in a variety of rat pain models. J Neuroinflammation 2016; 13:214. [PMID: 27577933 PMCID: PMC5006272 DOI: 10.1186/s12974-016-0696-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022] Open
Abstract
Background Aconiti brachypodi Radix (Xue-shang-yi-zhi-hao) has been prescribed to manage chronic pain, arthritis, and traumatic injuries. Bullatine A, a C20-diterpenoid alkaloid, is one of its principle effective compounds. This study aimed to investigate the anti-hypersensitivity of bullatine A in a variety of rat pain models and explore its mechanisms of action. Methods Rat neuropathic pain, inflammatory pain, diabetic neuropathic pain, and bone cancer pain models were used. Dynorphin A and pro-inflammatory cytokines were measured in the spinal cord and cultured primary microglia. Double immunofluorescence staining of dynorphin A and glial and neuronal cellular markers was also measured in the spinal cord. Results Subcutaneous and intrathecal injection of bullatine A dose-dependently attenuated spinal nerve ligation-, complete Freud’s adjuvant-, diabetes-, and bone cancer-induced mechanical allodynia and thermal hyperalgesia, with the efficacies of 45–70 % inhibition, and half-effective doses of 0.9–1.9 mg/kg for subcutaneous injection. However, bullatine A was not effective in blocking acute nociceptive response in the normal condition. Bullatine A specifically stimulated dynorphin A expression in microglia in the spinal cord in vivo and cultured primary microglia in vitro; the stimulatory effects were completely inhibited by the microglial inhibitor minocycline. In contrast, bullatine A did not have an inhibitory effect on peripheral nerve injury- or lipopolysaccharide-induced pro-inflammatory cytokine expression. The spinal anti-allodynic effects of bullatine A were entirely blocked by intrathecal injection of minocycline, the specific dynorphin A antiserum, and the selective k-opioid receptor antagonist. Conclusions We, for the first time, demonstrate that bullatine A specifically attenuates pain hypersensitivity, regardless of the pain models employed. The results also suggest that stimulation of spinal microglial dynorphin A expression mediates bullatine A anti-nociception in pain hypersensitivity conditions.
Collapse
Affiliation(s)
- Qian Huang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Teng-Fei Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ming-Li Sun
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
17
|
Orduna AR, Beaudry F. Characterization of endoproteolytic processing of dynorphins by proprotein convertases using mouse spinal cord S9 fractions and mass spectrometry. Neuropeptides 2016; 57:85-94. [PMID: 26578270 DOI: 10.1016/j.npep.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/09/2015] [Accepted: 10/11/2015] [Indexed: 12/21/2022]
Abstract
Dynorphins are important neuropeptides with a central role in nociception and pain alleviation. Many mechanisms regulate endogenous dynorphin concentrations, including proteolysis. Proprotein convertases (PCs) are widely expressed in the central nervous system and specifically cleave at C-terminal of either a pair of basic amino acids, or a single basic residue. The proteolysis control of endogenous big dynorphin (BDyn) and dynorphin A (Dyn A) levels has a profound impact on pain perception and the role of PCs remain unclear. The objective of this study was to decipher the role of PC1 and PC2 in the proteolysis control of BDyn and Dyn A levels using cellular fractions of spinal cords from wild-type (WT), PC1(-/+) and PC2(-/+) animals and mass spectrometry. Our results clearly demonstrate that both PC1 and PC2 are involved in the proteolysis regulation of BDyn and Dyn A with a more important role for PC1. C-terminal processing of BDyn generates specific peptide fragments dynorphin 1-19, dynorphin 1-13, dynorphin 1-11 and dynorphin 1-7, and C-terminal processing of Dyn A generates dynorphin 1-13, dynorphin 1-11 and dynorphin 1-7, all these peptide fragments are associated with PC1 or PC2 processing. Moreover, the proteolysis of BDyn leads to the formation of Dyn A and Leu-Enk, two important opioid peptides. The rate of formation of both is significantly reduced in cellular fractions of spinal cord mutant mice. As a consequence, even the partial inhibition of PC1 or PC2 may impair the endogenous opioid system.
Collapse
Affiliation(s)
- Alberto Ruiz Orduna
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Faculté de Médecine Vétérinaire, Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Faculté de Médecine Vétérinaire, Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
| |
Collapse
|
18
|
Li TF, Fan H, Wang YX. Aconitum-Derived Bulleyaconitine A Exhibits Antihypersensitivity Through Direct Stimulating Dynorphin A Expression in Spinal Microglia. THE JOURNAL OF PAIN 2016; 17:530-48. [DOI: 10.1016/j.jpain.2015.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022]
|
19
|
Saidi M, Beaudry F. Liquid chromatography-electrospray linear ion trap mass spectrometry analysis of targeted neuropeptides in Tac1(-/-) mouse spinal cords reveals significant lower concentration of opioid peptides. Neuropeptides 2015; 52:79-87. [PMID: 26072188 DOI: 10.1016/j.npep.2015.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 12/26/2022]
Abstract
Tachykinin and opioid peptides play a central role in pain transmission, modulation and inhibition. The treatment of pain is very important in medicine and many studies using NK1 receptor antagonists failed to show significant analgesic effects in humans. Recent investigations suggest that both pronociceptive tachykinins and the analgesic opioid systems are important for normal pain sensation. The analysis of opioid peptides in Tac1(-/-) spinal cord tissues offers a great opportunity to verify the influence of the tachykinin system on specific opioid peptides. The objectives of this study were to develop an HPLC-MS/MRM assay to quantify targeted peptides in spinal cord tissues. Secondly, we wanted to verify if the Tac1(-/-) mouse endogenous opioid system is hampered and therefore affects significantly the pain modulatory pathways. Targeted neuropeptides were analyzed by high performance liquid chromatography linear ion trap mass spectrometry. Our results reveal that EM-2, Leu-Enk and Dyn A were down-regulated in Tac1(-/-) spinal cord tissues. Interestingly, Dyn A was almost 3 fold down-regulated (p<0.0001). No significant concentration differences were observed in mouse Tac1(-/-) spinal cords for Met-Enk and CGRP. The analysis of Tac1(-/-) mouse spinal cords revealed noteworthy decreases of EM-2, Leu-Enk and Dyn A concentrations which strongly suggest a significant impact on the endogenous pain-relieving mechanisms. These observations may have insightful impact on future analgesic drug developments and therapeutic strategies.
Collapse
Affiliation(s)
- Mouna Saidi
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
20
|
Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000PRIME REPORTS 2015; 7:56. [PMID: 26097729 PMCID: PMC4447049 DOI: 10.12703/p7-56] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of the pain state is of great therapeutic relevance to virtually every medical specialty. Failure to manage its expression has deleterious consequence to the well-being of the organism. An understanding of the complex biology of the mechanisms underlying the processing of nociceptive information provides an important pathway towards development of novel and robust therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage between mechanism and the associated behaviorally defined pain state. This review seeks to provide an overview of current thinking targeting pain biology, the use of preclinical models and the development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current development strategies for analgesics are considered.
Collapse
|
21
|
Chen X, Wang T, Lin C, Chen B. Effect of adenoviral delivery of prodynorphin gene on experimental inflammatory pain induced by formalin in rats. Int J Clin Exp Med 2014; 7:4877-4886. [PMID: 25663984 PMCID: PMC4307431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
Circumstantial evidences suggest that dynorphins and their common precursor prodynorphin (PDYN) are involved in antinociception and neuroendocrine signaling. DREAM knockout mice had increased levels of PDYN and dynorphin expression, and reduced sensitivity to painful stimuli. However, some data support the notion that the up-regulation of spinal dynorphin expression is a common critical feature in neuropathic pain. It is not clear whether the production of dynorphin A can be increased when more PDYN is present. In this study we investigated the changes in pain behaviors, spinal PDYN mRNA expression and dynorphin A production on formalin-induced pain in rats receiving the pretreatment of adenoviral delivery of PDYN. Our results showed that the adenoviral transfer of PDYN gene was sufficient to reduce pain behaviors resulting from formalin injection, and the antinociceptive effect after receiving the pretreatment of adenoviral delivery of PDYN was mediated at the level of the spinal cord via KOR.
Collapse
Affiliation(s)
- Xionggang Chen
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical UniversityFuzhou 350005, P. R. China
| | - Tingting Wang
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical UniversityFuzhou 350005, P. R. China
| | - Caizhu Lin
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical UniversityFuzhou 350005, P. R. China
| | - Baihong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical UniversityFuzhou 350005, P. R. China
| |
Collapse
|
22
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
23
|
Waniek A, Hartlage-Rübsamen M, Höfling C, Kehlen A, Schilling S, Demuth HU, Roßner S. Identification of thyrotropin-releasing hormone as hippocampal glutaminyl cyclase substrate in neurons and reactive astrocytes. Biochim Biophys Acta Mol Basis Dis 2014; 1852:146-55. [PMID: 25446989 DOI: 10.1016/j.bbadis.2014.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/29/2014] [Accepted: 11/11/2014] [Indexed: 01/07/2023]
Abstract
Recently, Aβ peptide variants with an N-terminal truncation and pyroglutamate modification were identified and shown to be highly neurotoxic and prone to aggregation. This modification of Aβ is catalyzed by glutaminyl cyclase (QC) and pharmacological inhibition of QC diminishes Aβ deposition and accompanying gliosis and ameliorates memory impairment in transgenic mouse models of Alzheimer's disease (AD). QC expression was initially described in the hypothalamus, where thyrotropin-releasing hormone (TRH) is one of its physiological substrates. In addition to its hormonal role, a novel neuroprotective function of TRH following excitotoxicity and Aβ-mediated neurotoxicity has been reported in the hippocampus. Functionally matching this finding, we recently demonstrated QC expression by hippocampal interneurons in mouse brain. Here, we detected neuronal co-expression of QC and TRH in the hippocampus of young adult wild type mice using double immunofluorescence labeling. This provides evidence for TRH being a physiological QC substrate in hippocampus. Additionally, in neocortex of aged but not of young mice transgenic for amyloid precursor protein an increase of QC mRNA levels was found compared to wild type littermates. This phenomenon was not observed in hippocampus, which is later affected by Aβ pathology. However, in hippocampus of transgenic - but not of wild type mice - a correlation between QC and TRH mRNA levels was revealed. This co-regulation of the enzyme QC and its substrate TRH was reflected by a co-induction of both proteins in reactive astrocytes in proximity of Aβ deposits. Also, in primary mouse astrocytes a co-induction of QC and TRH was demonstrated upon Aβ stimulation.
Collapse
Affiliation(s)
- Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | | | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | - Astrid Kehlen
- Institute for Medical Microbiology, Martin-Luther-University Halle-Wittenberg, Germany
| | - Stephan Schilling
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT Halle, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT Halle, Germany.
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany.
| |
Collapse
|
24
|
The purinergic system and glial cells: emerging costars in nociception. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495789. [PMID: 25276794 PMCID: PMC4168030 DOI: 10.1155/2014/495789] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/08/2014] [Indexed: 12/23/2022]
Abstract
It is now well established that glial cells not only provide mechanical and trophic support to neurons but can directly contribute to neurotransmission, for example, by release and uptake of neurotransmitters and by secreting pro- and anti-inflammatory mediators. This has greatly changed our attitude towards acute and chronic disorders, paving the way for new therapeutic approaches targeting activated glial cells to indirectly modulate and/or restore neuronal functions. A deeper understanding of the molecular mechanisms and signaling pathways involved in neuron-to-glia and glia-to-glia communication that can be pharmacologically targeted is therefore a mandatory step toward the success of this new healing strategy. This holds true also in the field of pain transmission, where the key involvement of astrocytes and microglia in the central nervous system and satellite glial cells in peripheral ganglia has been clearly demonstrated, and literally hundreds of signaling molecules have been identified. Here, we shall focus on one emerging signaling system involved in the cross talk between neurons and glial cells, the purinergic system, consisting of extracellular nucleotides and nucleosides and their membrane receptors. Specifically, we shall summarize existing evidence of novel “druggable” glial purinergic targets, which could help in the development of innovative analgesic approaches to chronic pain states.
Collapse
|