1
|
Effects of the Phenethylamine 2-Cl-4,5-MDMA and the Synthetic Cathinone 3,4-MDPHP in Adolescent Rats: Focus on Sex Differences. Biomedicines 2022; 10:biomedicines10102336. [PMID: 36289598 PMCID: PMC9598216 DOI: 10.3390/biomedicines10102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The illicit drug market of novel psychoactive substances (NPSs) is expanding, becoming an alarming threat due to increasing intoxication cases and insufficient (if any) knowledge of their effects. Phenethylamine 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA) and synthetic cathinone 3,4-methylenedioxy-α-pyrrolidinohexanophenone (3,4-MDPHP) are new, emerging NPSs suggested to be particularly dangerous. This study verified whether these two new drugs (i) possess abuse liability, (ii) alter plasma corticosterone levels, and (iii) interfere with dopaminergic transmission; male and female adolescent rats were included to evaluate potential sex differences in the drug-induced effects. Findings show that the two NPSs are not able to sustain reliable self-administration behavior in rats, with cumulatively earned injections of drugs being not significantly different from cumulatively earned injections of saline in control groups. Yet, at the end of the self-administration training, females (but not males) exhibited higher plasma corticosterone levels after chronic exposure to low levels of 3,4-MDPHP (but not of 2-Cl-4,5-MDMA). Finally, electrophysiological patch-clamp recordings in the rostral ventral tegmental area (rVTA) showed that both drugs are able to increase the firing rate of rVTA dopaminergic neurons in males but not in females, confirming the sex dimorphic effects of these two NPSs. Altogether, this study demonstrates that 3,4-MDPHP and 2-Cl-4,5-MDMA are unlikely to induce dependence in occasional users but can induce other effects at both central and peripheral levels that may significantly differ between males and females.
Collapse
|
2
|
Inkaya EN, Barlas N. Investigation of combined effects of propyl paraben and methyl paraben on the hypothalamic-pituitary-adrenal axis in male rats. Toxicol Ind Health 2022; 38:687-701. [PMID: 36066884 DOI: 10.1177/07482337221117652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate the endocrine-disrupting effects of methyl paraben (MeP) and propyl paraben (PrP) mixture on the hypothalamic-pituitary-adrenal axis (HPA). In this study, six experimental groups were designated. These groups included three control groups (control, corn oil control, and positive control (50 mg/kg/day BPA)) and three dose groups (10, 100, and 500 mg/kg/day MeP+PrP). MeP with PrP were mixed in a 1:1 ratio and administered to the 42-day-old male rats by oral gavage for 30 days. At the end of the experiment, adrenocorticotropic hormone (ACTH), corticosterone and aldosterone hormones were analyzed in serum. Effects of MeP+PrP on the adrenal glands were investigated by immunohistochemical staining of 11ß hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) enzymes involved in the synthesis steps of corticosterone and aldosterone. Also, pituitary and adrenal glands were examined histopathologically. In the histopathological findings, cortical nodule, congestion, and edema were found in the tissues. In the pituitary gland, cytokeratin rings were detected in all MeP+PrP dose groups, supporting the increase of corticosterone and ACTH. Serum corticosterone, aldosterone, and ACTH hormone levels were increased in the 100 mg/kg/day MeP+PrP and BPA groups. Results obtained from immunohistochemical staining showed that increased staining parallelled increased corticosterone and aldosterone hormone levels. In summary, the results showed that exposure to the MeP+PrP mixture caused a significant increase in ACTH and corticosterone. Also, the MeP+PrP mixture caused a significant increase of CYP11B1 and CYP11B2. MeP+PrP exposure disrupts the normal HPA axis.
Collapse
Affiliation(s)
- Eda Nur Inkaya
- Faculty of Science, Department of Biology, 198375Hacettepe University, Ankara, Turkey
| | - Nurhayat Barlas
- Faculty of Science, Department of Biology, 198375Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Lisdahl KM, Sher KJ, Conway KP, Gonzalez R, Feldstein Ewing SW, Nixon SJ, Tapert S, Bartsch H, Goldstein RZ, Heitzeg M. Adolescent brain cognitive development (ABCD) study: Overview of substance use assessment methods. Dev Cogn Neurosci 2018; 32:80-96. [PMID: 29559216 PMCID: PMC6375310 DOI: 10.1016/j.dcn.2018.02.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 02/01/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022] Open
Abstract
One of the objectives of the Adolescent Brain Cognitive Development (ABCD) Study (https://abcdstudy.org/) is to establish a national longitudinal cohort of 9 and 10 year olds that will be followed for 10 years in order to prospectively study the risk and protective factors influencing substance use and its consequences, examine the impact of substance use on neurocognitive, health and psychosocial outcomes, and to understand the relationship between substance use and psychopathology. This article provides an overview of the ABCD Study Substance Use Workgroup, provides the goals for the workgroup, rationale for the substance use battery, and includes details on the substance use module methods and measurement tools used during baseline, 6-month and 1-year follow-up assessment time-points. Prospective, longitudinal assessment of these substance use domains over a period of ten years in a nationwide sample of youth presents an unprecedented opportunity to further understand the timing and interactive relationships between substance use and neurocognitive, health, and psychopathology outcomes in youth living in the United States.
Collapse
Affiliation(s)
- Krista M Lisdahl
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 East Hartford Ave, 224 Garland Hall, Milwaukee, WI, 53211, United States.
| | - Kenneth J Sher
- Curators' Professor of Psychological Sciences, University of Missouri, 210 McAlester Hall, Columbia, MO 65211, United States
| | - Kevin P Conway
- Division of Epidemiology, Services and Prevention Research, National Institute on Drug Abuse,6001 Executive Boulevard, Bethesda, MD 20892, United States
| | - Raul Gonzalez
- Department of Psychology, Florida International University,11200 SW 8th Street AHC-4, 461, Miami, FL 33199, United States
| | - Sarah W Feldstein Ewing
- Department of Child & Adolescent Psychiatry, Oregon Health & Science University, Mail code: DC7P, 3181 SW Sam Jackson Park Rd, Portland OR 97239, United States
| | - Sara Jo Nixon
- Department of Psychiatry, P.O. Box 100256, University of Florida, Gainesville, FL 32610, United States
| | - Susan Tapert
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, United States
| | - Hauke Bartsch
- Center for Multimodal Imaging and Genetics, Department of Radiology, University of California, San Diego,9452 Medical Center Drive, La Jolla, CA, 92037, United States
| | - Rita Z Goldstein
- Department of Psychiatry (primary) and Department of Neuroscience, Friedman Brain Institute (secondary), Chief, Brain Imaging Center (BIC), Icahn School of Medicine at Mount Sinai, The Leon and Norma Hess Center for Science and Medicine, 1470 Madison Ave, New York, NY 10029, United States
| | - Mary Heitzeg
- Department of Psychiatry, University of Michigan,4250 Plymouth Road, Ann Arbor, MI 48109, United States
| |
Collapse
|
4
|
Shahraki MR, Irani M. The effects of ecstasy on liver function tests, blood glucose, and lipids profile of male rats. INTERNATIONAL JOURNAL OF HIGH RISK BEHAVIORS & ADDICTION 2014; 3:e21076. [PMID: 25741481 PMCID: PMC4331654 DOI: 10.5812/ijhrba.21076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/20/2014] [Accepted: 07/26/2014] [Indexed: 11/30/2022]
Abstract
Background: Ecstasy is used to improve mood and cordiality; however, based on some reports, it is neurotoxic to human users. Objectives: Because of the euphoria induced by MDMA (3,4-methylenedioxymethamphetamine) on the users, its consumption is increasing in almost all countries. This study was carried out to determine the effects of ecstasy administration in rats’ blood sugar, lipids profile, and liver function tests. Materials and Methods: The experiment was performed using 50 mature Wistar-Albino male rats. The rats were divided into five groups (n = 10). Sham control group (A), received tap water and ordinary rodent diet. The control (B) was administered saline but tests group C, D1, and D2 received single dose and multiple doses of MDMA, respectively. After experimental period, animals were deeply anesthetized by diethyl ether, sacrificed and the blood samples were collected for the evaluation of blood glucose, serum lipid and aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALK-P). Data were expressed as mean ± SD and statistical difference was considered significant at P < 0.05. Results: In C group, the values of blood sugar (193.8 ± 11.6 mg/dL), low density lipoprotein (LDL) (19.2 ± 7.9 mg/dL), and cholesterol (76.1 ± 10.6 mg/dL), were significantly increased compared with those of control A and B (135 ± 12.7), (140 ± 18.8), and (45.4 ± 9.8), (49.8 ± 2.1) (49.4 ± 10.6) groups. However, aspartate transaminase (AST) and alanine transaminase (ALT) were significantly increased in groups D1 (145.8 ± 14.7 U/L), (91.1 ± 8.1 U/L), and D2 (159.4 ± 13.8 U/L) and (75.4 ± 7.8) compared with those of group A (107.2 ± 8.1), (45.4 ± 9.8), B (79.8 ± 12.1), (49.8 ± 2.1), and C (115.6 ± 17.5), (52.1 ± 7.6 U/L). Cholesterol and LDL increased in groups C and D compared with group A. Conclusions: These results indicated that chronic administration of MDMA affects liver as well as lipoprotein profile in male rats. The exact mechanism of action needs further investigation.
Collapse
Affiliation(s)
- Mohammad Reza Shahraki
- Department of Physiology, Zahedan University of Medical Sciences, Zahedan, IR Iran
- Corresponding author: Mohmmad Reza Shahraki, Department of Physiology, Zahedan University of Medical Sciences, Zahedan, IR Iran. Tel: +98-5413414552-5, Fax: +98-5413414563, E-mail:
| | - Mahdieh Irani
- Zahedan Health Service Center, Zahedan University of Medical Sciences, Zahedan, IR Iran
| |
Collapse
|
5
|
Llorente-Berzal A, Puighermanal E, Burokas A, Ozaita A, Maldonado R, Marco EM, Viveros MP. Sex-dependent psychoneuroendocrine effects of THC and MDMA in an animal model of adolescent drug consumption. PLoS One 2013; 8:e78386. [PMID: 24223797 PMCID: PMC3817254 DOI: 10.1371/journal.pone.0078386] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/18/2013] [Indexed: 01/05/2023] Open
Abstract
Ecstasy is a drug that is usually consumed by young people at the weekends and frequently, in combination with cannabis. In the present study we have investigated the long-term effects of administering increasing doses of delta-9-tetrahydrocannabinol [THC; 2.5, 5, 10 mg/kg; i.p.] from postnatal day (pnd) 28 to 45, alone and/or in conjunction with 3,4-methylenedioxymethamphetamine [MDMA; two daily doses of 10 mg/kg every 5 days; s.c.] from pnd 30 to 45, in both male and female Wistar rats. When tested one day after the end of the pharmacological treatment (pnd 46), MDMA administration induced a reduction in directed exploration in the holeboard test and an increase in open-arm exploration in an elevated plus maze. In the long-term, cognitive functions in the novel object test were seen to be disrupted by THC administration to female but not male rats. In the prepulse inhibition test, MDMA-treated animals showed a decrease in prepulse inhibition at the most intense prepulse studied (80 dB), whereas in combination with THC it induced a similar decrease at 75 dB. THC decreased hippocampal Arc expression in both sexes, while in the frontal cortex this reduction was only evident in females. MDMA induced a reduction in ERK1/2 immunoreactivity in the frontal cortex of male but not female animals, and THC decreased prepro-orexin mRNA levels in the hypothalamus of males, although this effect was prevented when the animals also received MDMA. The results presented indicate that adolescent exposure to THC and/or MDMA induces long-term, sex-dependent psychophysiological alterations and they reveal functional interactions between the two drugs.
Collapse
Affiliation(s)
- Alvaro Llorente-Berzal
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Emma Puighermanal
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Aurelijus Burokas
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andrés Ozaita
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (RM); (MPV)
| | - Eva M. Marco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Maria-Paz Viveros
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
- * E-mail: (RM); (MPV)
| |
Collapse
|
6
|
Llorente-Berzal A, Manzanedo C, Daza-Losada M, Valero M, López-Gallardo M, Aguilar MA, Rodríguez-Arias M, Miñarro J, Viveros MP. Sex-dependent effects of early maternal deprivation on MDMA-induced conditioned place preference in adolescent rats: Possible neurochemical correlates. Toxicology 2013; 311:78-86. [DOI: 10.1016/j.tox.2012.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 11/16/2022]
|
7
|
Graham DL, Herring NR, Schaefer TL, Holland KD, Vorhees CV, Williams MT. Electroencephalographic and convulsive effects of binge doses of (+)-methamphetamine, 5-methoxydiisopropyltryptamine, and (±)-3,4-methylenedioxymethamphetamine in rats. ACTA ACUST UNITED AC 2012; 5:1-8. [PMID: 25995775 DOI: 10.2174/1876523801205010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The abuse of drugs such as methamphetamine (MA), 3,4-methylenedioxymethamphetamine (Ecstasy, MDMA), and 5-methoxydiisopropyltryptamine (5-MeO-DIPT; Foxy) is global. Symptoms from taking these drugs include tachycardia, agitation, hyperpyrexia, and sometimes seizures. We compared the EEG effects of these drugs in male Sprague-Dawley rats (~300 g) implanted with cortical electroencephalographic (EEG) electrodes prior to testing. Animals received four subcutaneous injections of MA, MDMA, or Foxy (10 mg/kg each as freebase, administered every 2 h), or saline as these doses produce lasting effects on learning, memory, and monoamines. EEG tracings were recorded before, during, and after treatment. Animals receiving MDMA showed no significant EEG abnormalities or myoclonus. MA treatment resulted in myoclonic activity and in brief (<10 s) EEG epileptiform activity in ~50% of the rats. Longer seizure activity (10 s to 5 min) was recorded in some MA-treated rats following the third and fourth doses. The onset of myoclonic activity following Foxy treatment occurred shortly after the first dose. All rats receiving Foxy showed seizures by the second dose and this continued throughout the treatment regimen. The results show that binge doses of MA and MDMA, which mimic the neurochemical changes seen in chronic users, increase EEG abnormalities after MA but not after MDMA. While the neurochemical effects of Foxy are not known in humans, this drug causes severe EEG abnormalities and overt seizures in 100% of tested animals.
Collapse
Affiliation(s)
- Devon L Graham
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH ; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nicole R Herring
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH ; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tori L Schaefer
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH ; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katherine D Holland
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH ; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Charles V Vorhees
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH ; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael T Williams
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH ; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
8
|
Fulceri F, Ferrucci M, Lenzi P, Soldani P, Bartalucci A, Paparelli A, Gesi M. MDMA (ecstasy) enhances loud noise-induced morphofunctional alterations in heart and adrenal gland. Microsc Res Tech 2011; 74:874-87. [PMID: 23939676 DOI: 10.1002/jemt.20971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 10/26/2010] [Indexed: 11/09/2022]
Abstract
Noise is an environmental stressor increasingly more present in modern life and, in particular, in a variety of recreational contexts. The aim of this work is to show the effects of noise on the myocardium and adrenal gland, through a careful review of the literature dealing with the peripheral effects of noise exposure in experimental and clinical studies. Noise induces adverse effects in human health, principally involving the cardiovascular and autonomic nervous systems, and the endocrine apparatus. Several factors in recreational environments potentially worsen the effects induced by loud noise. Among these, the intake of 3,4-methylenedioxymethamphetamine (MDMA) is frequently associated with noise exposure in recreational situations, because of its high compliance within social and relaxation settings. For this reason, MDMA is defined as a club drug--as its intake by young people often occurs in association with other factors, such as aggregation, high temperatures, and noise. It is known that self-administration of MDMA by humans causes severe toxicity. In particular, the myocardium is affected early after MDMA intake--resulting in tachycardia, hypertension, and arrhythmia. Furthermore, MDMA alters the activity of the adrenal glands by elevating catecholamines and corticosterone levels. This review shows that combining MDMA and loud noise exposure potentiates the effects that are produced by each single stimulant alone as seen in experimental animal models. The convergence of the effects of prolonged loud noise exposure and the consumption of MDMA on the same system might explain the sudden fatal events that happen in recreational situations.
Collapse
Affiliation(s)
- Federica Fulceri
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Graham DL, Grace CE, Braun AA, Schaefer TL, Skelton MR, Tang PH, Vorhees CV, Williams MT. Effects of developmental stress and lead (Pb) on corticosterone after chronic and acute stress, brain monoamines, and blood Pb levels in rats. Int J Dev Neurosci 2010; 29:45-55. [PMID: 20920575 DOI: 10.1016/j.ijdevneu.2010.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/10/2010] [Accepted: 09/24/2010] [Indexed: 12/28/2022] Open
Abstract
Despite restrictions, exposure to lead (Pb) continues. Moreover, exposure varies and is often higher in lower socioeconomic status (SES) families and remains a significant risk to cognitive development. Stress is another risk factor. Lower SES may be a proxy for stress in humans. When stress and Pb co-occur, risk may be increased. A few previous experiments have combined Pb with intermittent or acute stress but not with chronic stress. To determine if chronic developmental stress affects outcome in combination with Pb, we tested such effects on growth, organ weight, brain monoamines, and response to an acute stressor. Sprague Dawley rats were gavaged with Pb acetate (1 or 10 mg/kg) or vehicle every other day from postnatal day (P)4-29 and reared in standard or barren cages. Subsets were analyzed at different ages (P11, 19, 29). Chronic stress did not alter blood Pb levels but altered HPA axis response during early development whereas Pb did not. Pb treatment and rearing each altered organ-to-body weight ratios, most notably of thymus weights. Both Pb and rearing resulted in age- and region-dependent changes in serotonin and norepinephrine levels and in dopamine and serotonin turnover. The model introduced here may be useful for investigating the interaction of Pb and chronic developmental stress.
Collapse
Affiliation(s)
- Devon L Graham
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229-3039, USA.
| | | | | | | | | | | | | | | |
Collapse
|