1
|
Zhu M, Lan Z, Park J, Gong S, Wang Y, Guo F. Regulation of CNS pathology by Serpina3n/SERPINA3: The knowns and the puzzles. Neuropathol Appl Neurobiol 2024; 50:e12980. [PMID: 38647003 PMCID: PMC11131959 DOI: 10.1111/nan.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Neuroinflammation, blood-brain barrier (BBB) dysfunction, neuron and glia injury/death and myelin damage are common central nervous system (CNS) pathologies observed in various neurological diseases and injuries. Serine protease inhibitor (Serpin) clade A member 3n (Serpina3n), and its human orthologue SERPINA3, is an acute-phase inflammatory glycoprotein secreted primarily by the liver into the bloodstream in response to systemic inflammation. Clinically, SERPINA3 is dysregulated in brain cells, cerebrospinal fluid and plasma in various neurological conditions. Although it has been widely accepted that Serpina3n/SERPINA3 is a reliable biomarker of reactive astrocytes in diseased CNS, recent data have challenged this well-cited concept, suggesting instead that oligodendrocytes and neurons are the primary sources of Serpina3n/SERPINA3. The debate continues regarding whether Serpina3n/SERPINA3 induction represents a pathogenic or a protective mechanism. Here, we propose possible interpretations for previously controversial data and present perspectives regarding the potential role of Serpina3n/SERPINA3 in CNS pathologies, including demyelinating disorders where oligodendrocytes are the primary targets. We hypothesise that the 'good' or 'bad' aspects of Serpina3n/SERPINA3 depend on its cellular sources, its subcellular distribution (or mis-localisation) and/or disease/injury types. Furthermore, circulating Serpina3n/SERPINA3 may cross the BBB to impact CNS pathologies. Cell-specific genetic tools are critically important to tease out the potential roles of cell type-dependent Serpina3n in CNS diseases/injuries.
Collapse
Affiliation(s)
- Meina Zhu
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Zhaohui Lan
- Center for Brain Health and Brain Technology, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Joohyun Park
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | | | - Yan Wang
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Fuzheng Guo
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| |
Collapse
|
2
|
Nurmasitoh T, Sari DCR, Susilowati R. Moderate-Intensity Intermittent Exercise Prevents Memory Deficit, Hippocampal Neuron Loss, and Elevated Level of Alzheimer's Dementia Markers in the Hippocampus of Trimethyltin-Induced Rats. Ann Anat 2023; 249:152103. [PMID: 37182815 DOI: 10.1016/j.aanat.2023.152103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Moderate-intensity intermittent exercise (MIIE) has been proposed as an effective method for preventing Alzheimer dementia (AD). AIM This study aimed to investigate the effects of MIIE on the spatial memory and protein level of AD markers in the hippocampus of trimethyltin (TMT)-induced rat model of hippocampal degeneration. METHODS Male Sprague Dawley (SD) rats were randomly assigned into four groups: normal control (N), exercise control (E), TMT control (T), and exercise and TMT (ET). Rats of the exercise groups (E and ET) were forced to run on a treadmill for 30minutes each day at maximum for 12 weeks. Intraperitoneal injection of 8mg/kgBW TMT was administered as a single dose, 10 days before the last exercise treatment for the T and ET groups. The spatial memory of rats was examined using Morris Water Maze (MWM) test after the exercise period. After euthanasia, the hippocampal tissue was dissected out and the level of hippocampal presenilin (PSEN)-1 and phosphorylated tau (p-tau) protein were measured using ELISA. The total number of hippocampal pyramidal neurons was estimated using unbiased stereological analysis. Qualitative immunohistochemistry was performed to examine the expression of brain-derived neurotrophic factor (BDNF), tumor necrosis factor-alpha (TNF-α), and interleukin-10 (IL-10) in paraffin sections of the hippocampus. RESULTS TMT exposure induced memory impairment indicated by the T group having the lowest percentage of time and percentage of path length in the target quadrant compared to other groups. MIIE prevented the memory impairment effect of TMT exposure indicated by the ET group having no significantly different MWM performance compared to the E and N groups. The ET group had significantly lower levels of hippocampal AD markers, p-tau and PSEN-1, as well as significantly higher estimated total number of pyramidal neurons of hippocampal CA1 and CA2-3 regions compared to the T group. Expressions of TNF-α was weak, while the expression of IL-10 was stronger in the ET group compared to the control group. The TMT-induced group exhibited stronger expression of BDNF. CONCLUSION MIIE prevents neuronal loss and impaired spatial memory upon TMT exposure most probably via preventing elevated levels of hippocampal AD markers and neuroinflammation. WC:350.
Collapse
Affiliation(s)
- Titis Nurmasitoh
- Department of Histology & Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Department of Physiology, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Dwi Cahyani Ratna Sari
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rina Susilowati
- Department of Histology & Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
3
|
Vuorimaa M, Kareinen I, Toivanen P, Karlsson S, Ruohonen S. Deep Learning-Based Segmentation of Morphologically Distinct Rat Hippocampal Reactive Astrocytes After Trimethyltin Exposure. Toxicol Pathol 2022; 50:754-762. [PMID: 36125102 DOI: 10.1177/01926233221124497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As regulators of homeostasis, astrocytes undergo morphological changes after injury to limit the insult in central nervous system (CNS). Trimethyltin (TMT) is a known neurotoxicant that induces reactive astrogliosis in rat CNS. To evaluate the degree of reactive astrogliosis, the assessment relies on manual counting or semiquantitative scoring. We hypothesized that deep learning algorithm could be used to identify the grade of reactive astrogliosis in immunoperoxidase-stained sections in a quantitative manner. The astrocyte algorithm was created using a commercial supervised deep learning platform and the used training set consisted of 940 astrocytes manually annotated from hippocampus and cortex. Glial fibrillary acidic protein-labeled brain sections of rat TMT model were analyzed for astrocytes with the trained algorithm. Algorithm was able to count the number of individual cells, cell areas, and circumferences. The astrocyte algorithm identified astrocytes with varying sizes from immunostained sections with high confidence. Algorithm analysis data revealed a novel morphometric marker based on cell area and circumference. This marker correlated with the time-dependent progression of the neurotoxic profile of TMT. This study highlights the potential of using novel deep learning-based image analysis tools in neurotoxicity and pharmacology studies.
Collapse
|
4
|
Trans-Anethole Alleviates Trimethyltin Chloride-Induced Impairments in Long-Term Potentiation. Pharmaceutics 2022; 14:pharmaceutics14071422. [PMID: 35890317 PMCID: PMC9320999 DOI: 10.3390/pharmaceutics14071422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Trans-anethole is an aromatic compound that has been studied for its anti-inflammation, anticonvulsant, antinociceptive, and anticancer effects. A recent report found that trans-anethole exerted neuroprotective effects on the brain via multiple pathways. Since noxious stimuli may both induce neuronal cell injury and affect synaptic functions (e.g., synaptic transmission or plasticity), it is important to understand whether the neuroprotective effect of trans-anethole extends to synaptic plasticity. Here, the effects of trimethyltin (TMT), which is a neurotoxic organotin compound, was investigated using the field recording method on hippocampal slice of mice. The influence of trans-anethole on long-term potentiation (LTP) was also studied for both NMDA receptor-dependent and NMDA receptor–independent cases. The action of trans-anethole on TMT-induced LTP impairment was examined, too. These results revealed that trans-anethole enhances NMDA receptor-dependent and -independent LTP and alleviates TMT-induced LTP impairment. These results suggest that trans-anethole modulates hippocampal LTP induction, prompting us to speculate that it may be helpful for improving cognitive impairment arising from neurodegenerative diseases, including Alzheimer’s disease.
Collapse
|
5
|
Stekic A, Zeljkovic M, Zaric Kontic M, Mihajlovic K, Adzic M, Stevanovic I, Ninkovic M, Grkovic I, Ilic TV, Nedeljkovic N, Dragic M. Intermittent Theta Burst Stimulation Ameliorates Cognitive Deficit and Attenuates Neuroinflammation via PI3K/Akt/mTOR Signaling Pathway in Alzheimer’s-Like Disease Model. Front Aging Neurosci 2022; 14:889983. [PMID: 35656538 PMCID: PMC9152158 DOI: 10.3389/fnagi.2022.889983] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegeneration implies progressive neuronal loss and neuroinflammation further contributing to pathology progression. It is a feature of many neurological disorders, most common being Alzheimer’s disease (AD). Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive stimulation which modulates excitability of stimulated brain areas through magnetic pulses. Numerous studies indicated beneficial effect of rTMS in several neurological diseases, including AD, however, exact mechanism are yet to be elucidated. We aimed to evaluate the effect of intermittent theta burst stimulation (iTBS), an rTMS paradigm, on behavioral, neurochemical and molecular level in trimethyltin (TMT)-induced Alzheimer’s-like disease model. TMT acts as a neurotoxic agent targeting hippocampus causing cognitive impairment and neuroinflammation, replicating behavioral and molecular aspects of AD. Male Wistar rats were divided into four experimental groups–controls, rats subjected to a single dose of TMT (8 mg/kg), TMT rats subjected to iTBS two times per day for 15 days and TMT sham group. After 3 weeks, we examined exploratory behavior and memory, histopathological and changes on molecular level. TMT-treated rats exhibited severe and cognitive deficit. iTBS-treated animals showed improved cognition. iTBS reduced TMT-induced inflammation and increased anti-inflammatory molecules. We examined PI3K/Akt/mTOR signaling pathway which is involved in regulation of apoptosis, cell growth and learning and memory. We found significant downregulation of phosphorylated forms of Akt and mTOR in TMT-intoxicated animals, which were reverted following iTBS stimulation. Application of iTBS produces beneficial effects on cognition in of rats with TMT-induced hippocampal neurodegeneration and that effect could be mediated via PI3K/Akt/mTOR signaling pathway, which could candidate this protocol as a potential therapeutic approach in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Andjela Stekic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milica Zeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marina Zaric Kontic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Mihajlovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Adzic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Milica Ninkovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Ivana Grkovic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tihomir V. Ilic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Milorad Dragic,
| |
Collapse
|
6
|
Dragic M, Mihajlovic K, Adzic M, Jakovljevic M, Kontic MZ, Mitrović N, Laketa D, Lavrnja I, Kipp M, Grković I, Nedeljkovic N. Expression of Ectonucleoside Triphosphate Diphosphohydrolase 2 (NTPDase2) Is Negatively Regulated Under Neuroinflammatory Conditions In Vivo and In Vitro. ASN Neuro 2022; 14:17590914221102068. [PMID: 35593054 PMCID: PMC9125070 DOI: 10.1177/17590914221102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) hydrolyzes extracellular ATP to ADP, which is the ligand for P2Y1,12,13 receptors. The present study describes the distribution of NTPDase2 in adult rat brains in physiological conditions, and in hippocampal neurodegeneration induced by trimethyltin (TMT). The study also describes the regulation of NTPDase2 by inflammatory mediators in primary astrocytes and oligodendroglial cell line OLN93. In physiological conditions, NTPDase2 protein was most abundant in the hippocampus, where it was found in fibrous astrocytes and synaptic endings in the synaptic-rich hippocampal layers. In TMT-induced neurodegeneration, NTPDase2-mRNA acutely decreased at 2-dpi and then gradually recovered to the control level at 7-dpi and 21-dpi. As determined by immunohistochemistry and double immunofluorescence, the decrease was most pronounced in the dentate gyrus (DG), where NTPDase2 withdrew from the synaptic boutons in the polymorphic layer of DG, whereas the recovery of the expression was most profound in the subgranular layer. Concerning the regulation of NTPDase2 gene expression, proinflammatory cytokines IL-6, IL-1β, TNFα, and IFNγ negatively regulated the expression of NTPDase2 in OLN93 cells, while did not altering the expression in primary astrocytes. Different cell-intrinsic stressors, such as depletion of intracellular energy store, oxidative stress, endoplasmic reticulum stress, and activation of protein kinase C, also massively disturbed the expression of the NTPDase2 gene. Together, our results suggest that the expression and the activity of NTPDase2 transiently cease in neurodegeneration and brain injury, most likely as a part of the acute adaptive response designed to promote cell defense, survival, and recovery.
Collapse
Affiliation(s)
- Milorad Dragic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Katarina Mihajlovic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Adzic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Jakovljevic
- Institute for Biological Research “Sinisa Stankovic”, National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marina Zaric Kontic
- Vinča Institute of Nuclear Sciences, National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Mitrović
- Vinča Institute of Nuclear Sciences, National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Laketa
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research “Sinisa Stankovic”, National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Markus Kipp
- Institute for Anatomy Rostock, University Medicine Rostock, Rostock, Germany
| | - Ivana Grković
- Vinča Institute of Nuclear Sciences, National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Nurmasitoh T, Sari DCR, Susilowati R. Toxic Substance-induced Hippocampal Neurodegeneration in Rodents as Model of Alzheimer’s Dementia. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Alzheimer’s Dementia (AD) cases are increasing with the global elderly population. To study the part of the brain affected by AD, animal models for hippocampal degeneration are still necessary to better understand AD pathogenesis and develop treatment and prevention measures.
AIM: This study was a systematic review of toxic substance-induced animal models of AD using the Morris Water Maze method in determining hippocampal-related memory impairment. Our aim was reviewing the methods of AD induction using toxic substances in laboratory rodents and evaluating the report of the AD biomarkers reported in the models.
METHODS: Data were obtained from articles in the PubMed database, then compiled, categorized, and analyzed. Eighty studies published in the past 5 years were included for analysis.
RESULTS AND DISCUSSION: The most widely used method was intracerebroventricular injection of amyloid-β _substances. However, some less technically challenging techniques using oral or intraperitoneal administration of other toxic substances also produce successful models. Instead of hippocampal neurodegeneration, many studies detected biomarkers of the AD pathological process while some reported inflammation, oxidative stress, neurotrophic factors, and changes of cholinergic activity. Female animals were underrepresented despite a high incidence of AD in women.
CONCLUSION: Toxic substances may be used to develop AD animal models characterized with appropriate AD pathological markers. Characterization of methods with the most easy-handling techniques and more studies in female animal models should be encouraged.
Collapse
|
8
|
Dragić M, Mitrović N, Adžić M, Nedeljković N, Grković I. Microglial- and Astrocyte-Specific Expression of Purinergic Signaling Components and Inflammatory Mediators in the Rat Hippocampus During Trimethyltin-Induced Neurodegeneration. ASN Neuro 2021; 13:17590914211044882. [PMID: 34569324 PMCID: PMC8495514 DOI: 10.1177/17590914211044882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined the involvement of purinergic signaling components in
the rat model of hippocampal degeneration induced by trimethyltin (TMT)
intoxication (8 mg/kg, single intraperitoneal injection), which results in
behavioral and neurological dysfunction similar to neurodegenerative disorders.
We investigated spatial and temporal patterns of ecto-nucleoside triphosphate
diphosphohydrolase 1 (NTPDase1/CD39) and ecto-5′ nucleotidase (eN/CD73)
activity, their cell-specific localization, and analyzed gene expression pattern
and/or cellular localization of purinoreceptors and proinflammatory mediators
associated with reactive glial cells. Our study demonstrated that all Iba1+
cells at the injured area, irrespective of their morphology, upregulated
NTPDase1/CD39, while induction of eN/CD73 has been observed at amoeboid Iba1+
cells localized within the hippocampal neuronal layers with pronounced cell
death. Marked induction of P2Y12R, P2Y6R, and
P2X4-messenger RNA at the early stage of TMT-induced
neurodegeneration might reflect the functional properties, migration, and
chemotaxis of microglia, while induction of P2X7R at amoeboid cells
probably modulates their phagocytic role. Reactive astrocytes expressed
adenosine A1, A2A, and P2Y1 receptors, revealed
induction of complement component C3, inducible nitric oxide synthase, nuclear
factor-kB, and proinflammatory cytokines at the late stage of TMT-induced
neurodegeneration. An increased set of purinergic system components on activated
microglia (NTPDase1/CD39, eN/CD73, and P2X7) and astrocytes
(A1R, A2AR, and P2Y1), and loss of
homeostatic glial and neuronal purinergic pathways (P2Y12 and
A1R) may shift purinergic signaling balance toward excitotoxicity
and inflammation, thus favoring progression of pathological events. These
findings may contribute to a better understanding of the involvement of
purinergic signaling components in the progression of neurodegenerative
disorders that could be target molecules for the development of novel
therapies.
Collapse
Affiliation(s)
- Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, 89101University of Belgrade, Belgrade, Serbia
| | - Marija Adžić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Center for Laser Microscopy, 98829Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nadežda Nedeljković
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, 89101University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Liu M, Pi H, Xi Y, Wang L, Tian L, Chen M, Xie J, Deng P, Zhang T, Zhou C, Liang Y, Zhang L, He M, Lu Y, Chen C, Yu Z, Zhou Z. KIF5A-dependent axonal transport deficiency disrupts autophagic flux in trimethyltin chloride-induced neurotoxicity. Autophagy 2021; 17:903-924. [PMID: 32160081 PMCID: PMC8078766 DOI: 10.1080/15548627.2020.1739444] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 01/18/2023] Open
Abstract
Trimethyltin chloride (TMT) is widely used as a constituent of fungicides and plastic stabilizers in the industrial and agricultural fields, and is generally acknowledged to have potent neurotoxicity, especially in the hippocampus; however, the mechanism of induction of neurotoxicity by TMT remains elusive. Herein, we exposed Neuro-2a cells to different concentrations of TMT (2, 4, and 8 μM) for 24 h. Proteomic analysis, coupled with bioinformatics analysis, revealed the important role of macroautophagy/autophagy-lysosome machinery in TMT-induced neurotoxicity. Further analysis indicated significant impairment of autophagic flux by TMT via suppressed lysosomal function, such as by inhibiting lysosomal proteolysis and changing the lysosomal pH, thereby contributing to defects in autophagic clearance and subsequently leading to nerve cell death. Mechanistically, molecular interaction networks of Ingenuity Pathway Analysis identified a downregulated molecule, KIF5A (kinesin family member 5A), as a key target in TMT-impaired autophagic flux. TMT decreased KIF5A protein expression, disrupted the interaction between KIF5A and lysosome, and impaired lysosomal axonal transport. Moreover, Kif5a overexpression restored axonal transport, increased lysosomal dysfunction, and antagonized TMT-induced neurotoxicity in vitro. Importantly, in TMT-administered mice with seizure symptoms and histomorphological injury in the hippocampus, TMT inhibited KIF5A expression in the hippocampus. Gene transfer of Kif5a enhanced autophagic clearance in the hippocampus and alleviated TMT-induced neurotoxicity in vivo. Our results are the first to demonstrate KIF5A-dependent axonal transport deficiency to cause autophagic flux impairment via disturbance of lysosomal function in TMT-induced neurotoxicity; manipulation of KIF5A may be a therapeutic approach for antagonizing TMT-induced neurotoxicity.Abbreviations: 3-MA: 3-methyladenine; AAV: adeno-associated virus; ACTB: actin beta; AGC: automatic gain control; ATG: autophagy-related; ATP6V0D1: ATPase H+ transporting lysosomal V0 subunit D1; ATP6V1E1: ATPase H+ transporting lysosomal V1 subunit E1; CA: cornu ammonis; CQ: chloroquine; CTSB: cathepsin B; CTSD: cathepsin D; DCTN1: dynactin subunit 1; DG: dentate gyrus; DYNLL1: dynein light chain LC8-type 1; FBS: fetal bovine serum; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; IPA: Ingenuity Pathway Analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes; KIF5A: kinesin family member 5A; LAMP: lysosomal-associated membrane protein; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PBS: phosphate-buffered saline; PFA: paraformaldehyde; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PRM: parallel reaction monitoring; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; SYP: synaptophysin; TAX1BP1: Tax1 binding protein 1; TMT: trimethyltin chloride; TUB: tubulin.
Collapse
Affiliation(s)
- Mengyu Liu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China
- School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yu Xi
- Department of Environmental Medicine, and Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| | - Li Tian
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Mengyan Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Jia Xie
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Tao Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Chao Zhou
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yidan Liang
- Department of Cell Biology, School of Life Sciences and School of Medicine, Guangxi University, Nanning, China
| | - Lei Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Mindi He
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yonghui Lu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Zhou Zhou
- Department of Environmental Medicine, and Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Effects of Dizocilpine, Midazolam and Their Co-Application on the Trimethyltin (TMT)-Induced Rat Model of Cognitive Deficit. Brain Sci 2021; 11:brainsci11030400. [PMID: 33809889 PMCID: PMC8004281 DOI: 10.3390/brainsci11030400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/20/2022] Open
Abstract
Research of treatment options addressing the cognitive deficit associated with neurodegenerative disorders is of particular importance. Application of trimethyltin (TMT) to rats represents a promising model replicating multiple relevant features of such disorders. N-methyl-D-aspartate (NMDA) receptor antagonists and gamma-aminobutyric acid type A (GABAA) receptor potentiators have been reported to alleviate the TMT-induced cognitive deficit. These compounds may provide synergistic interactions in other models. The aim of this study was to investigate, whether co-application of NMDA receptor antagonist dizocilpine (MK-801) and GABAA receptor potentiator midazolam would be associated with an improved effect on the TMT-induced model of cognitive deficit. Wistar rats injected with TMT were repeatedly (12 days) treated with MK-801, midazolam, or both. Subsequently, cognitive performance was assessed. Finally, after a 17-day drug-free period, hippocampal neurodegeneration (neuronal density in CA2/3 subfield in the dorsal hippocampus, dentate gyrus morphometry) were analyzed. All three protective treatments induced similar degree of therapeutic effect in Morris water maze. The results of histological analyses were suggestive of minor protective effect of the combined treatment (MK-801 and midazolam), while these compounds alone were largely ineffective at this time point. Therefore, in terms of mitigation of cognitive deficit, the combined treatment was not associated with improved effect.
Collapse
|
11
|
Thong-Asa W, Prasartsri S, Klomkleaw N, Thongwan N. The neuroprotective effect of betanin in trimethyltin-induced neurodegeneration in mice. Metab Brain Dis 2020; 35:1395-1405. [PMID: 32894390 DOI: 10.1007/s11011-020-00615-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023]
Abstract
Betanin, a natural food colorant with powerful antioxidative properties, has not been studied in terms of neurodegenerative disease intervention. Therefore, the present study aimed to investigate the neuroprotective effects of betanin against trimethyltin chloride (TMT) -induced neurodegeneration in mice. Forty male ICR mice were randomly divided into four groups: Sham-veh, TMT-veh, TMT-Bet50 and TMT-Bet100. In the TMT groups, neurodegeneration was induced with a one-time intraperitoneal injection of 2.6 mg/kg TMT. Betanin-treated groups (Bet) were given oral doses of 50 or 100 mg/kg dissolved in normal saline solution. Administrations were started 24 h prior to TMT injection and continued for 2 weeks. Anxious behavior and spatial cognition were evaluated, respectively. After behavioral tests, brain oxidative status, hippocampal histology and choline acetyltransferase (ChAT) activity were evaluated. Results showed that TMT significant induce anxious behavior and spatial learning and memory deficits (p < 0.05). These were found concurrently with significant decreases in CA1 ChAT activity, brain tissue catalase (CAT) and superoxide dismutase (SOD) activities with significant increase in hippocampal CA1 degeneration (p < 0.05). Betanin 100 mg/kg exhibited significant anxiolytic effect, preventive effect on CA1 degeneration and CA1 ChAT activity alteration as well as improvement of spatial learning and memory deficits (p < 0.05). These were found concurrently with significant increases of reduced glutathione, CAT and SOD activities as well as the decrease in malondialdehyde (p < 0.05). We conclude that betanin 100 mg/kg exhibits neuroprotective effects against TMT-induced neurodegeneration in mice via its anti-oxidative properties, protective against hippocampal CA1 degeneration and ChAT activity alteration. Therefore, betanin is interesting in further neurodegenerative therapeutic study and applications.
Collapse
Affiliation(s)
- Wachiryah Thong-Asa
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand.
| | - Supakorn Prasartsri
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Nattakan Klomkleaw
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Nutnicha Thongwan
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
12
|
Ceccariglia S, Alvino A, Del Fà A, Parolini O, Michetti F, Gangitano C. Autophagy is Activated In Vivo during Trimethyltin-Induced Apoptotic Neurodegeneration: A Study in the Rat Hippocampus. Int J Mol Sci 2019; 21:ijms21010175. [PMID: 31881802 PMCID: PMC6982133 DOI: 10.3390/ijms21010175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Trimethyltin (TMT) is an organotin compound known to produce significant and selective neuronal degeneration and reactive astrogliosis in the rodent central nervous system. Autophagy is the main cellular mechanism for degrading and recycling protein aggregates and damaged organelles, which in different stress conditions, such as starvation, generally improves cell survival. Autophagy is documented in several pathologic conditions, including neurodegenerative diseases. This study aimed to investigate the autophagy and apoptosis signaling pathways in hippocampal neurons of TMT-treated (Wistar) rats to explore molecular mechanisms involved in toxicant-induced neuronal injury. The microtubule-associated protein light chain (LC3, autophagosome marker) and sequestosome1 (SQSTM1/p62) (substrate of autophagy-mediated degradation) expressions were examined by Western blotting at different time points after intoxication. The results demonstrate that the LC3 II/I ratio significantly increased at 3 and 5 days, and that p62 levels significantly decreased at 7 and 14 days. Immunofluorescence images of LC3/neuronal nuclear antigen (NeuN) showed numerous strongly positive LC3 neurons throughout the hippocampus at 3 and 5 days. The terminal deoxynucleotidyltransferase dUTP nick end labeling (TUNEL) assay indicated an increase in apoptotic cells starting from 5 days after treatment. In order to clarify apoptotic pathway, immunofluorescence images of apoptosis-inducing factor (AIF)/NeuN did not show nuclear translocation of AIF in neurons. Increased expression of cleaved Caspase-3 was revealed at 5-14 days in all hippocampal regions by Western blotting and immunohistochemistry analyses. These data clearly demonstrate that TMT intoxication induces a marked increase in both autophagy and caspase-dependent apoptosis, and that autophagy occurring just before apoptosis could have a potential role in neuronal loss in this experimental model of neurodegeneration.
Collapse
Affiliation(s)
- Sabrina Ceccariglia
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.C.); (A.A.); (A.D.F.); (O.P.); (C.G.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandra Alvino
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.C.); (A.A.); (A.D.F.); (O.P.); (C.G.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Aurora Del Fà
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.C.); (A.A.); (A.D.F.); (O.P.); (C.G.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.C.); (A.A.); (A.D.F.); (O.P.); (C.G.)
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza—Istituto Ospedaliero, 25124 Brescia, Italy
| | - Fabrizio Michetti
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- IRCSS Istituto Scientifico San Raffaele, Università Vita-Salute San Raffaele, 20132 Milano MI, Italy
- Correspondence: ; Tel.: +39-06-30155848; Fax: +39-06-30155753
| | - Carlo Gangitano
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.C.); (A.A.); (A.D.F.); (O.P.); (C.G.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
13
|
Dragić M, Zarić M, Mitrović N, Nedeljković N, Grković I. Two Distinct Hippocampal Astrocyte Morphotypes Reveal Subfield-Different Fate during Neurodegeneration Induced by Trimethyltin Intoxication. Neuroscience 2019; 423:38-54. [PMID: 31682945 DOI: 10.1016/j.neuroscience.2019.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Astrocytes comprise a heterogenic group of glial cells, which perform homeostatic functions in the central nervous system. These cells react to all kind of insults by changing the morphology and function that result in a transition from the quiescent to a reactive phenotype. Trimethyltin (TMT) intoxication, which reproduces pathological events in the hippocampus similar to those associated with seizures and cognitive decline, has been proven as a useful model for studying responses of the glial cells to neurodegeneration. In the present study, we have explored morphological varieties of astrocytes in the hippocampal subregions of ovariectomized female rats exposed to TMT. We have demonstrated an early loss of neurons in CA1 and DG subfields. Distinct morphotypes of protoplasmic astrocytes observed in CA1/CA3 and the hilus of control animals developed different responses to TMT intoxication, as assessed by GFAP-immunohistochemistry. In CA1 subregion, GFAP+ astrocytes preserved their domain organization and responded with typical hypertrophy, while the hilar GFAP+ astrocytes developed atrophy-like phenotype and increased expression of vimentin and nestin 7 days after the exposure. Both reactive and atrophied-like astrocytes expressed Kir4.1 in CA1/CA3 and the hilus of DG, respectively, indicating that these cells did not change their potential for normal activity at this time point of pathology. Together, the results demonstrate the persistence of two protoplasmic morphotypes of astrocytes, with distinct appearance, function, and fate after TMT-induced neurodegeneration, suggesting their pleiotropic roles in the hippocampal response to neurodegeneration.
Collapse
Affiliation(s)
- Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Studentski trg 3, 11001 Belgrade, Serbia; Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia.
| | - Marina Zarić
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Nadežda Nedeljković
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Studentski trg 3, 11001 Belgrade, Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| |
Collapse
|
14
|
Schvartz D, González-Ruiz V, Walter N, Antinori P, Jeanneret F, Tonoli D, Boccard J, Zurich MG, Rudaz S, Monnet-Tschudi F, Sandström J, Sanchez JC. Protein pathway analysis to study development-dependent effects of acute and repeated trimethyltin (TMT) treatments in 3D rat brain cell cultures. Toxicol In Vitro 2019; 60:281-292. [PMID: 31176792 DOI: 10.1016/j.tiv.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/18/2019] [Accepted: 05/29/2019] [Indexed: 11/25/2022]
Abstract
Trimethyltin is an organometallic compound, described to be neurotoxic and to trigger neuroinflammation and oxidative stress. Previous studies associated TMT with the perturbation of mitochondrial function, or neurotransmission. However, the mechanisms of toxicity may differ depending on the duration of exposure and on the stage of maturation of brain cells. This study aim at elucidating whether the toxicity pathways triggered by a known neurotoxicant (TMT) differs depending on cell maturation stage or duration of exposure. To this end omics profiling of immature and differentiated 3D rat brain cell cultures exposed for 24 h or 10 days (10-d) to 0.5 and 1 μM of TMT was performed to better understand the underlying mechanisms of TMT associated toxicity. Proteomics identified 55 and 17 proteins affected by acute TMT treatment in immature and differentiated cultures respectively, while 10-day treatment altered 96 proteins in immature cultures versus 353 in differentiated. The results suggest different sensitivity to TMT depending on treatment duration and cell maturation. In accordance with known TMT mechanisms oxidative stress and neuroinflammation was observed after 10-d treatment at both maturation stages, whereas the neuroinflammatory process was more prominent in differentiated cultures than in the immature, no development-dependent difference could be detected for oxidative stress or synaptic neurodegeneration. Pathway analysis revealed that both vesicular trafficking and the synaptic machinery were strongly affected by 10-d TMT treatment in both maturation stages, as was GABAergic and glutamatergic neurotransmission. This study shows that omics approaches combined with pathway analysis constitutes an improved tool-set in elucidating toxicity mechanisms.
Collapse
Affiliation(s)
- Domitille Schvartz
- Translational Biomarker Group, Department of Internal Medicine Specialties, University of Geneva, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Víctor González-Ruiz
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Analytical Sciences, School of Pharmaceutical Sciences, Universities of Geneva and Lausanne, Geneva, Switzerland
| | - Nadia Walter
- Translational Biomarker Group, Department of Internal Medicine Specialties, University of Geneva, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Paola Antinori
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Neuroproteomics group, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland
| | - Fabienne Jeanneret
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Analytical Sciences, School of Pharmaceutical Sciences, Universities of Geneva and Lausanne, Geneva, Switzerland
| | - David Tonoli
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Analytical Sciences, School of Pharmaceutical Sciences, Universities of Geneva and Lausanne, Geneva, Switzerland
| | - Julien Boccard
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Analytical Sciences, School of Pharmaceutical Sciences, Universities of Geneva and Lausanne, Geneva, Switzerland
| | - Marie-Gabrielle Zurich
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Serge Rudaz
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Analytical Sciences, School of Pharmaceutical Sciences, Universities of Geneva and Lausanne, Geneva, Switzerland
| | - Florianne Monnet-Tschudi
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Jenny Sandström
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Jean-Charles Sanchez
- Translational Biomarker Group, Department of Internal Medicine Specialties, University of Geneva, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland.
| |
Collapse
|
15
|
González-Ruiz V, Schvartz D, Sandström J, Pezzatti J, Jeanneret F, Tonoli D, Boccard J, Monnet-Tschudi F, Sanchez JC, Rudaz S. An Integrative Multi-Omics Workflow to Address Multifactorial Toxicology Experiments. Metabolites 2019; 9:E79. [PMID: 31022902 PMCID: PMC6523777 DOI: 10.3390/metabo9040079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/03/2019] [Accepted: 04/21/2019] [Indexed: 01/02/2023] Open
Abstract
Toxicology studies can take advantage of omics approaches to better understand the phenomena underlying the phenotypic alterations induced by different types of exposure to certain toxicants. Nevertheless, in order to analyse the data generated from multifactorial omics studies, dedicated data analysis tools are needed. In this work, we propose a new workflow comprising both factor deconvolution and data integration from multiple analytical platforms. As a case study, 3D neural cell cultures were exposed to trimethyltin (TMT) and the relevance of the culture maturation state, the exposure duration, as well as the TMT concentration were simultaneously studied using a metabolomic approach combining four complementary analytical techniques (reversed-phase LC and hydrophilic interaction LC, hyphenated to mass spectrometry in positive and negative ionization modes). The ANOVA multiblock OPLS (AMOPLS) method allowed us to decompose and quantify the contribution of the different experimental factors on the outcome of the TMT exposure. Results showed that the most important contribution to the overall metabolic variability came from the maturation state and treatment duration. Even though the contribution of TMT effects represented the smallest observed modulation among the three factors, it was highly statistically significant. The MetaCore™ pathway analysis tool revealed TMT-induced alterations in biosynthetic pathways and in neuronal differentiation and signaling processes, with a predominant deleterious effect on GABAergic and glutamatergic neurons. This was confirmed by combining proteomic data, increasing the confidence on the mechanistic understanding of such a toxicant exposure.
Collapse
Affiliation(s)
- Víctor González-Ruiz
- Analytical Sciences, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland.
- Swiss Centre for Applied Human Toxicology, 4055 Basel, Switzerland.
| | - Domitille Schvartz
- Swiss Centre for Applied Human Toxicology, 4055 Basel, Switzerland.
- Translational Biomarker Group, Department of Internal Medicine Specialties, University of Geneva, 1206 Geneva, Switzerland.
| | - Jenny Sandström
- Swiss Centre for Applied Human Toxicology, 4055 Basel, Switzerland.
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Julian Pezzatti
- Analytical Sciences, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland.
- Swiss Centre for Applied Human Toxicology, 4055 Basel, Switzerland.
| | - Fabienne Jeanneret
- Analytical Sciences, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland.
- Swiss Centre for Applied Human Toxicology, 4055 Basel, Switzerland.
| | - David Tonoli
- Analytical Sciences, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland.
- Swiss Centre for Applied Human Toxicology, 4055 Basel, Switzerland.
| | - Julien Boccard
- Analytical Sciences, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland.
- Swiss Centre for Applied Human Toxicology, 4055 Basel, Switzerland.
| | - Florianne Monnet-Tschudi
- Swiss Centre for Applied Human Toxicology, 4055 Basel, Switzerland.
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Jean-Charles Sanchez
- Swiss Centre for Applied Human Toxicology, 4055 Basel, Switzerland.
- Translational Biomarker Group, Department of Internal Medicine Specialties, University of Geneva, 1206 Geneva, Switzerland.
| | - Serge Rudaz
- Analytical Sciences, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland.
- Swiss Centre for Applied Human Toxicology, 4055 Basel, Switzerland.
| |
Collapse
|
16
|
Pershina EV, Mikheeva IB, Kamaltdinova ER, Arkhipov VI. Expression of mGlu Receptor Genes in the Hippocampus After Intoxication with Trimethyltin. J Mol Neurosci 2018; 67:258-264. [PMID: 30506300 DOI: 10.1007/s12031-018-1233-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/25/2018] [Indexed: 12/22/2022]
Abstract
A variety of localization and signaling properties of eight subtypes of metabotropic glutamate receptors (mGluRs) in the brain provide glutamate an important regulatory role in many processes, including neurodegeneration and repair of neuronal damage. To identify specific subtypes of mGluRs, which are involved in neurodegeneration process, we assessed expression levels of their genes under pathophysiological conditions. Using quantitative real-time RT-PCR analysis, we studied transcription levels of mGlu2-5 and mGlu7 genes in the hippocampus after its damage by neurotoxicant trimethyltin chloride (TMT) in Wistar rats. This organotin compound is known to cause neurodegeneration in the brain, especially in the hippocampus. Morphological studies confirmed neuronal damage in CA3-CA4 subfields of the hippocampus 6 weeks after the treatment with TMT. Step-through passive avoidance test revealed memory deterioration in rat-treated TMT. Interestingly, 3 and 6 weeks after the treatment with TMT, expression levels of the mGlu2 and mGlu7 genes were not changed in comparison to the control values while expression level of mGlu4 genes was upregulated throughout the whole studied period of TMT action. The dynamics of mGlu3 gene expression revealed the existence of neuroinflammation 3 weeks after the treatment with TMT, which was further confirmed by the upregulation of cyclooxygenase-2 gene expression. The expression level of mGlu5 receptors was downregulated 6 weeks after the treatment with TMT. Our results revealed a significant role of mGlu4, mGlu5, and mGlu3 receptors in the neurodegenerative/reparative processes in the hippocampus after the treatment with TMT. Ligands of these receptor subtypes can be, therefore, considered potential therapeutic targets for prevention or reduction of neurodegeneration.
Collapse
Affiliation(s)
- E V Pershina
- Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, Russia, 142290.,Pushchino State Institute of Natural Sciences, Pushchino, Russia
| | - I B Mikheeva
- Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, Russia, 142290
| | - E R Kamaltdinova
- Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, Russia, 142290.,Pushchino State Institute of Natural Sciences, Pushchino, Russia
| | - V I Arkhipov
- Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, Russia, 142290. .,Pushchino State Institute of Natural Sciences, Pushchino, Russia.
| |
Collapse
|
17
|
Sakhaie MH, Soleimani M, Pourheydar B, Majd Z, Atefimanesh P, Asl SS, Mehdizadeh M. Effects of Extremely Low-Frequency Electromagnetic Fields on Neurogenesis and Cognitive Behavior in an Experimental Model of Hippocampal Injury. Behav Neurol 2017; 2017:9194261. [PMID: 29259353 PMCID: PMC5702423 DOI: 10.1155/2017/9194261] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/23/2017] [Accepted: 08/08/2017] [Indexed: 01/19/2023] Open
Abstract
Exposure to extremely low-frequency electromagnetic fields may induce constant modulation in neuronal plasticity. In recent years, tremendous efforts have been made to design a suitable strategy for enhancing adult neurogenesis, which seems to be deterred due to brain senescence and several neurodegenerative diseases. In this study, we evaluated the effects of ELF-EMF on neurogenesis and memory, following treatment with trimethyltin chloride (TMT) as a neurotoxicant. The mice in all groups (n = 56) were injected with BrdU during the experiment for seven consecutive days to label newborn cells. Spatial memory was assessed by the Morris water maze (MWM) test. By the end of the experiment, neurogenesis and neuronal differentiation were assessed in the hippocampus, using immunohistochemistry and Western blot analysis. Based on the findings, exposure to ELF-EMF enhanced spatial learning and memory in the MWM test. ELF-EMF exposure significantly enhanced the number of BrdU+ and NeuN+ cells in the dentate gyrus of adult mice (P < 0.001 and P < 0.05, resp.). Western blot analysis revealed significant upregulation of NeuroD2 in ELF-EMF-exposed mice compared to the TMT-treated group (P < 0.05). These findings suggest that ELF-EMF might have clinical implications for the improvement of neurodegenerative processes and could help develop a novel therapeutic approach in regenerative medicine.
Collapse
Affiliation(s)
- Mohammad Hassan Sakhaie
- Cellular and Molecular Research Center and Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Arak University of Medical Sciences, Arak, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center and Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Pourheydar
- Urmia University of Medical Sciences, Faculty of Medicine, Neurophysiology Research Center, Department of Anatomy, Urmia, Iran
| | - Zahra Majd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pezhman Atefimanesh
- Cellular and Molecular Research Center, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soleimani Asl
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Faculty of Advanced Technologies in Medicine, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Kaplan BLF, Li J, LaPres JJ, Pruett SB, Karmaus PWF. Contributions of nonhematopoietic cells and mediators to immune responses: implications for immunotoxicology. Toxicol Sci 2016; 145:214-32. [PMID: 26008184 DOI: 10.1093/toxsci/kfv060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotoxicology assessments have historically focused on the effects that xenobiotics exhibit directly on immune cells. These studies are invaluable as they identify immune cell targets and help characterize mechanisms and/or adverse outcome pathways of xenobiotics within the immune system. However, leukocytes can receive environmental cues by cell-cell contact or via released mediators from cells of organs outside of the immune system. These organs include, but are not limited to, the mucosal areas such as the lung and the gut, the liver, and the central nervous system. Homeostatic perturbation in these organs induced directly by toxicants can initiate and alter the outcome of local and systemic immunity. This review will highlight some of the identified nonimmune influences on immune homeostasis and provide summaries of how immunotoxic mechanisms of selected xenobiotics involve nonimmune cells or mediators. Thus, this review will identify data gaps and provide possible alternative mechanisms by which xenobiotics alter immune function that could be considered during immunotoxicology safety assessment.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Jinze Li
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - John J LaPres
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Stephen B Pruett
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Peer W F Karmaus
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
19
|
O'Callaghan JP, Kelly KA, Locker AR, Miller DB, Lasley SM. Corticosterone primes the neuroinflammatory response to DFP in mice: potential animal model of Gulf War Illness. J Neurochem 2015; 133:708-21. [PMID: 25753028 PMCID: PMC4722811 DOI: 10.1111/jnc.13088] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 11/30/2022]
Abstract
Gulf War Illness (GWI) is a multi‐symptom disorder with features characteristic of persistent sickness behavior. Among conditions encountered in the Gulf War (GW) theater were physiological stressors (e.g., heat/cold/physical activity/sleep deprivation), prophylactic treatment with the reversible AChE inhibitor, pyridostigmine bromide (PB), the insect repellent, N,N‐diethyl‐meta‐toluamide (DEET), and potentially the nerve agent, sarin. Prior exposure to the anti‐inflammatory glucocorticoid, corticosterone (CORT), at levels associated with high physiological stress, can paradoxically prime the CNS to produce a robust proinflammatory response to neurotoxicants and systemic inflammation; such neuroinflammatory effects can be associated with sickness behavior. Here, we examined whether CORT primed the CNS to mount neuroinflammatory responses to GW exposures as a potential model of GWI. Male C57BL/6 mice were treated with chronic (14 days) PB/ DEET, subchronic (7–14 days) CORT, and acute exposure (day 15) to diisopropyl fluorophosphate (DFP), a sarin surrogate and irreversible AChE inhibitor. DFP alone caused marked brain‐wide neuroinflammation assessed by qPCR of tumor necrosis factor‐α, IL6, chemokine (C‐C motif) ligand 2, IL‐1β, leukemia inhibitory factor, and oncostatin M. Pre‐treatment with high physiological levels of CORT greatly augmented (up to 300‐fold) the neuroinflammatory responses to DFP. Anti‐inflammatory pre‐treatment with minocycline suppressed many proinflammatory responses to CORT+DFP. Our findings are suggestive of a possible critical, yet unrecognized interaction between the stressor/environment of the GW theater and agent exposure(s) unique to this war. Such exposures may in fact prime the CNS to amplify future neuroinflammatory responses to pathogens, injury, or toxicity. Such occurrences could potentially result in the prolonged episodes of sickness behavior observed in GWI.
Gulf War (GW) veterans were exposed to stressors, prophylactic medicines and, potentially, nerve agents in theater. Subsequent development of GW Illness, a persistent multi‐symptom disorder with features characteristic of sickness behavior, may be caused by priming of the CNS resulting in exaggerated neuroinflammatory responses to pathogens/insults. Nerve agent, diisopropyl fluorophosphate (DFP), produced a neuroinflammatory response that was exacerbated by pre‐treatment with levels of corticosterone simulating heightened stressor conditions. While prophylactic treatments reduced DFP‐induced neuroinflammation, this effect was negated when those treatments were combined with corticosterone.
Collapse
Affiliation(s)
- James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | | | | | | | | |
Collapse
|
20
|
Kim J, Yang M, Son Y, Jang H, Kim D, Kim JC, Kim SH, Kang MJ, Im HI, Shin T, Moon C. Glial activation with concurrent up-regulation of inflammatory mediators in trimethyltin-induced neurotoxicity in mice. Acta Histochem 2014; 116:1490-500. [PMID: 25265880 DOI: 10.1016/j.acthis.2014.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Trimethyltin (TMT), a potent neurotoxic chemical, causes dysfunction and neuroinflammation in the brain, particularly in the hippocampus. The present study assessed TMT-induced glial cell activation and inflammatory cytokine alterations in the mouse hippocampus, BV-2 microglia, and primary cultured astrocytes. In the mouse hippocampus, TMT treatment significantly increased the expression of glial cell markers, including the microglial marker ionized calcium-binding adapter molecule 1 and the astroglial marker glial fibrillary acidic protein. The expression of M1 and M2 microglial markers (inducible nitric oxide synthase [iNOS] and CD206, respectively) and pro-inflammatory cytokines (interleukin [IL]-1β, IL-6 and tumor necrosis factor [TNF]-α) were significantly increased in the mouse hippocampus following TMT treatment. In BV-2 microglia, iNOS, IL-1β, TNF-α, and IL-6 expression increased significantly, whereas arginase-1 and CD206 expression decreased significantly after TMT treatment in a time- and concentration-dependent manner. In primary cultured astrocytes, iNOS, arginase-1, IL-1β, TNF-α, and IL-6 expression increased significantly, whereas IL-10 expression decreased significantly after TMT treatment in a time- and concentration-dependent manner. These results indicate that significant up-regulation of pro-inflammatory signals in TMT-induced neurotoxicity may be associated with pathological processing of TMT-induced neurodegeneration.
Collapse
|
21
|
Magalingam KB, Radhakrishnan A, Ramdas P, Haleagrahara N. Quercetin Glycosides Induced Neuroprotection by Changes in the Gene Expression in a Cellular Model of Parkinson’s Disease. J Mol Neurosci 2014; 55:609-17. [DOI: 10.1007/s12031-014-0400-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022]
|
22
|
Ceccariglia S, D’altocolle A, Del Fa’ A, Silvestrini A, Barba M, Pizzolante F, Repele A, Michetti F, Gangitano C. Increased expression of Aquaporin 4 in the rat hippocampus and cortex during trimethyltin-induced neurodegeneration. Neuroscience 2014; 274:273-88. [DOI: 10.1016/j.neuroscience.2014.05.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022]
|
23
|
Ogata K, Sumida K, Miyata K, Kushida M, Kuwamura M, Yamate J. Circulating miR-9* and miR-384-5p as potential indicators for trimethyltin-induced neurotoxicity. Toxicol Pathol 2014; 43:198-208. [PMID: 24777749 DOI: 10.1177/0192623314530533] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circulating microRNAs (miRNAs) show promise as biomarkers due to their tissue-specific expression and high stability. This study was conducted to investigate whether nervous system-enriched miR-9* and hippocampus-enriched miR-384-5p could be indicators of neurotoxicity in serum. Rats were given a single administration of trimethyltin (TMT) chloride at 6, 9, or 12 mg/kg by gavage, and brain and serum were collected 1, 4, and 7 days after administration. MiR-9* and miR-384-5p levels in serum and hippocampus were analyzed by reverse transcriptase polymerase chain reaction (RT-PCR), and their neurotoxicity detection sensitivities were compared with nervous symptoms, auditory response, and histopathology. TMT caused tremor, hypersensitivity, and decreased auditory response at 12 mg/kg on day 1 and at 9 mg/kg on day 4. Histopathologically, neural cell death and glial reaction were observed in brain (mainly hippocampus) at 12 mg/kg on day 1, 4, and 7 and at 6 and 9 mg/kg on day 4 and 7. MiR-9* and miR-384-5p levels were elevated in serum at 9 and 12 mg/kg on days 4 and 7 (at 9 mg/kg on day 7, miR-9* only) but were not changed in hippocampus. These miRNAs were considered to be elevated with the evolution of neural cell death and were thus considered possible novel indicators of neurotoxicity.
Collapse
Affiliation(s)
- Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Kayo Sumida
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | - Kaori Miyata
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | - Masahiko Kushida
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
24
|
Zhang L, Zhao Q, Chen CH, Qin QZ, Zhou Z, Yu ZP. Synaptophysin and the dopaminergic system in hippocampus are involved in the protective effect of rutin against trimethyltin-induced learning and memory impairment. Nutr Neurosci 2013; 17:222-9. [PMID: 24001577 DOI: 10.1179/1476830513y.0000000085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES This study aimed to investigate the protective effect of rutin against trimethyltin-induced spatial learning and memory impairment in mice. This study focused on the role of synaptophysin, growth-associated protein 43 and the action of the dopaminergic system in mechanisms associated with rutin protection and trimethyltin-induced spatial learning and memory impairment. METHODS Cognitive learning and memory was measured by Morris Water Maze. The expression of synaptophysin and growth-associated protein 43 in hippocampus was analyzed by western blot. The concentrations of dopamine, homovanillic acid, and dihyroxyphenylacetic acid in hippocampus were detected using reversed phase high-performance liquid chromatography with electrochemical detection. RESULTS Trimethyltin-induced spatial learning impairment showed a dose-dependent mode. Synaptophysin but not growth-associated protein 43 was decreased in the hippocampus after trimethyltin administration. The concentration of dopamine decreased, while homovanillic acid increased in the hippocampus after trimethyltin administration. Mice pretreated with 20 mg/kg of rutin for 7 consecutive days exhibited improved water maze performance. Moreover, rutin pretreatment reversed the decrease of synaptophysin expression and dopamine alteration. DISCUSSION These results suggest that rutin may protect against spatial memory impairment induced by trimethyltin. Synaptophysin and the dopaminergic system may be involved in trimethyltin-induced neuronal damage in hippocampus.
Collapse
|
25
|
McPherson CA, Merrick BA, Harry GJ. In vivo molecular markers for pro-inflammatory cytokine M1 stage and resident microglia in trimethyltin-induced hippocampal injury. Neurotox Res 2013; 25:45-56. [PMID: 24002884 DOI: 10.1007/s12640-013-9422-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/13/2013] [Accepted: 08/20/2013] [Indexed: 12/18/2022]
Abstract
Microglia polarization to the classical M1 activation state is characterized by elevated pro-inflammatory cytokines; however, a full profile has not been generated in the early stages of a sterile inflammatory response recruiting only resident microglia. We characterized the initial M1 state in a hippocampal injury model dependent upon tumor necrosis factor (TNF) receptor signaling for dentate granule cell death. Twenty-one-day-old CD1 male mice were injected with trimethyltin (TMT 2.3 mg/kg, i.p.) and the hippocampus was examined at an early stage (24-h post-dosing) of neuronal death. Glia activation was assessed using a custom quantitative nuclease protection assay. We report elevated mRNA levels for glia response such as ionizing calcium-binding adapter molecule-1 and glial fibrillary acidic protein (Gfap); Fas, hypoxia inducible factor alpha, complement component 1qb, TNF-related genes (Tnf, Tnfaip3, Tnfrsfla); interleukin-1 alpha, Cd44, chemokine (C-C motif) ligand (Ccl)2, Cc14, integrin alpha M, lipocalin (Lcn2), and secreted phosphoprotein 1 (Spp1). These changes occurred in the absence of changes in matrix metalloproteinase 9 and 12, neural cell adhesion molecule, metabotropic glutamate receptor (Grm)3, and Ly6/neurotoxin 1 (Lynx1), as well as, a decrease in neurotrophin 3, glutamate receptor subunit epsilon (Grin)-2b, and neurotrophic tyrosine kinase receptor, type 3. The M2 anti-inflammatory marker, transforming growth factor beta-1 (Tgfb1) was elevated. mRNAs associated with early stage of injury-induced neurogenesis including fibroblast growth factor 21 and Mki67 were elevated. In the "non-injured" temporal cortex receiving projections from the hippocampus, Lynx1, Grm3, and Grin2b were decreased and Gfap increased. Formalin fixed-paraffin-embedded tissue did not generate a comparable profile.
Collapse
Affiliation(s)
- C A McPherson
- Neurotoxicology Group, Division of National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, MD E1-07, Research Triangle Park, NC, 27709, USA
| | | | | |
Collapse
|
26
|
Gene expression profiling as a tool to investigate the molecular machinery activated during hippocampal neurodegeneration induced by trimethyltin (TMT) administration. Int J Mol Sci 2013; 14:16817-35. [PMID: 23955266 PMCID: PMC3759937 DOI: 10.3390/ijms140816817] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 12/31/2022] Open
Abstract
Trimethyltin (TMT) is an organotin compound exhibiting neurotoxicant effects selectively localized in the limbic system and especially marked in the hippocampus, in both experimental animal models and accidentally exposed humans. TMT administration causes selective neuronal death involving either the granular neurons of the dentate gyrus or the pyramidal cells of the Cornu Ammonis, with a different pattern of localization depending on the different species studied or the dosage schedule. TMT is broadly used to realize experimental models of hippocampal neurodegeneration associated with cognitive impairment and temporal lobe epilepsy, though the molecular mechanisms underlying the associated selective neuronal death are still not conclusively clarified. Experimental evidence indicates that TMT-induced neurodegeneration is a complex event involving different pathogenetic mechanisms, probably acting differently in animal and cell models, which include neuroinflammation, intracellular calcium overload, and oxidative stress. Microarray-based, genome-wide expression analysis has been used to investigate the molecular scenario occurring in the TMT-injured brain in different in vivo and in vitro models, producing an overwhelming amount of data. The aim of this review is to discuss and rationalize the state-of-the-art on TMT-associated genome wide expression profiles in order to identify comparable and reproducible data that may allow focusing on significantly involved pathways.
Collapse
|
27
|
Kim J, Yang M, Kim SH, Kim JC, Wang H, Shin T, Moon C. Possible role of the glycogen synthase kinase-3 signaling pathway in trimethyltin-induced hippocampal neurodegeneration in mice. PLoS One 2013; 8:e70356. [PMID: 23940567 PMCID: PMC3734066 DOI: 10.1371/journal.pone.0070356] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022] Open
Abstract
Trimethyltin (TMT) is an organotin compound with potent neurotoxic effects characterized by neuronal destruction in selective regions, including the hippocampus. Glycogen synthase kinase-3 (GSK-3) regulates many cellular processes, and is implicated in several neurodegenerative disorders. In this study, we evaluated the therapeutic effect of lithium, a selective GSK-3 inhibitor, on the hippocampus of adult C57BL/6 mice with TMT treatment (2.6 mg/kg, intraperitoneal [i.p.]) and on cultured hippocampal neurons (12 days in vitro) with TMT treatment (5 µM). Lithium (50 mg/kg, i.p., 0 and 24 h after TMT injection) significantly attenuated TMT-induced hippocampal cell degeneration, seizure, and memory deficits in mice. In cultured hippocampal neurons, lithium treatment (0–10 mM; 1 h before TMT application) significantly reduced TMT-induced cytotoxicity in a dose-dependent manner. Additionally, the dynamic changes in GSK-3/β-catenin signaling were observed in the mouse hippocampus and cultured hippocampal neurons after TMT treatment with or without lithium. Therefore, lithium inhibited the detrimental effects of TMT on the hippocampal neurons in vivo and in vitro, suggesting involvement of the GSK-3/β-catenin signaling pathway in TMT-induced hippocampal cell degeneration and dysfunction.
Collapse
Affiliation(s)
- Juhwan Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Miyoung Yang
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, Republic of Korea
- Department of Physiology and Neurosceince Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Sung-Ho Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-Choon Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Hongbing Wang
- Department of Physiology and Neurosceince Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
- * E-mail: (TS); (CM)
| | - Changjong Moon
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, Republic of Korea
- * E-mail: (TS); (CM)
| |
Collapse
|
28
|
Neuroprotective strategies in hippocampal neurodegeneration induced by the neurotoxicant trimethyltin. Neurochem Res 2012. [PMID: 23179590 DOI: 10.1007/s11064-012-0932-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The selective vulnerability of specific neuronal subpopulations to trimethyltin (TMT), an organotin compound with neurotoxicant effects selectively involving the limbic system and especially marked in the hippocampus, makes it useful to obtain in vivo models of neurodegeneration associated with behavioural alterations, such as hyperactivity and aggression, cognitive impairment as well as temporal lobe epilepsy. TMT has been widely used to study neuronal and glial factors involved in selective neuronal death, as well as the molecular mechanisms leading to hippocampal neurodegeneration (including neuroinflammation, excitotoxicity, intracellular calcium overload, mitochondrial dysfunction and oxidative stress). It also offers a valuable instrument to study the cell-cell interactions and signalling pathways that modulate injury-induced neurogenesis, including the involvement of newly generated neurons in the possible repair processes. Since TMT appears to be a useful tool to damage the brain and study the various responses to damage, this review summarises current data from in vivo and in vitro studies on neuroprotective strategies to counteract TMT-induced neuronal death, that may be useful to elucidate the role of putative candidates for translational medical research on neurodegenerative diseases.
Collapse
|