1
|
Ribeiro ACR, Deshpande LS. A review of pre-clinical models for Gulf War Illness. Pharmacol Ther 2021; 228:107936. [PMID: 34171340 DOI: 10.1016/j.pharmthera.2021.107936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/08/2023]
Abstract
Gulf War Illness (GWI) is a chronic multisymptomatic disorder that afflicts over 1/3rd of the 1991 GW veterans. It spans multiple bodily systems and presents itself as a syndrome exhibiting diverse symptoms including fatigue, depression, mood, and memory and concentration deficits, musculoskeletal pain and gastrointestinal distress in GW veterans. The etiology of GWI is complex and many factors, including chemical, physiological, and environmental stressors present in the GW arena, have been implicated for its development. It has been over 30 years since the end of the GW but, GWI has been persistent in suffering veterans who are also dealing with paucity of effective treatments. The multifactorial aspect of GWI along with genetic heterogeneity and lack of available data surrounding war-time exposures have proved to be challenging in developing pre-clinical models of GWI. Despite this, over a dozen GWI animal models exist in the literature. In this article, following a brief discussion of GW history, GWI definitions, and probable causes for its pathogenesis, we will expand upon various experimental models used in GWI laboratory research. These animal models will be discussed in the context of their attempts at mimicking GW-related exposures with regards to the variations in chemical combinations, doses, and frequency of exposures. We will discuss their advantages and limitations in modeling GWI followed by a discussion of behavioral and molecular findings in these models. The mechanistic data obtained from these preclinical studies have offered multiple molecular pathways including chronic inflammation, mitochondrial dysfunction, oxidative stress, lipid disturbances, calcium homeostatic alterations, changes in gut microbiota, and epigenetic modifications, amongst others for explaining GWI development and its persistence. Finally, these findings have also informed us on novel druggable targets in GWI. While, it has been difficult to conceive a single pre-clinical model that could express all the GWI signs and exhibit biological complexity reflective of the clinical presentation in GWI, animal models have been critical for identifying molecular underpinnings of GWI and evaluating treatment strategies for GWI.
Collapse
Affiliation(s)
- Ana C R Ribeiro
- Departments of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Laxmikant S Deshpande
- Departments of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Departments of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Callahan PM, Terry AV, Nelson FR, Volkmann RA, Vinod AB, Zainuddin M, Menniti FS. Modulating inhibitory response control through potentiation of GluN2D subunit-containing NMDA receptors. Neuropharmacology 2020; 173:107994. [PMID: 32057801 DOI: 10.1016/j.neuropharm.2020.107994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/16/2020] [Accepted: 02/05/2020] [Indexed: 01/15/2023]
Abstract
NMDA receptors containing GluN2D subunits are expressed in the subthalamic nucleus and external globus pallidus, key nuclei of the indirect and hyperdirect pathways of the basal ganglia. This circuitry integrates cortical input with dopaminergic signaling to select advantageous behaviors among available choices. In the experiments described here, we characterized the effects of PTC-174, a novel positive allosteric modulator (PAM) of GluN2D subunit-containing NMDA receptors, on response control regulated by this circuitry. The indirect pathway suppresses less advantageous behavioral choices, a manifestation of which is suppression of locomotor activity in rats. Systemic administration of PTC-174 produced a dose-dependent reduction in activity in rats placed in a novel open field or administered the stimulants MK-801 or amphetamine. The hyperdirect pathway controls release of decisions from the basal ganglia to the cortex to optimize choice processing. Such response control was modeled in rats as premature responding in the 5-choice serial reaction time (5-CSRT) task. PTC-174 produced a dose-dependent reduction in premature responding in this task. These data suggest that potentiation of GluN2D receptor activity by PTC-174 facilitates the complex basal ganglia information processing that underlies response control. The behavioral effects occurred at estimated free PTC-174 brain concentrations predicted to induce 10-50% increases in GluN2D activity. The present findings suggest the potential of GluN2D PAMs to modulate basal ganglia function and to treat neurological disorders related to dysfunctional response control.
Collapse
Affiliation(s)
- Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Small Animal Behavior Core, Augusta University, Augusta, GA, 30912, USA
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Small Animal Behavior Core, Augusta University, Augusta, GA, 30912, USA
| | | | | | - A B Vinod
- Jubilant Biosys Ltd, Yeshwantpur, Bangalore, 560022, Karnataka, India
| | - Mohd Zainuddin
- Jubilant Biosys Ltd, Yeshwantpur, Bangalore, 560022, Karnataka, India
| | - Frank S Menniti
- The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
3
|
Perez-Fernandez C, Morales-Navas M, Guardia-Escote L, Colomina MT, Giménez E, Sánchez-Santed F. Postnatal exposure to low doses of Chlorpyrifos induces long-term effects on 5C-SRTT learning and performance, cholinergic and GABAergic systems and BDNF expression. Exp Neurol 2020; 330:113356. [DOI: 10.1016/j.expneurol.2020.113356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/13/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
|
4
|
Perez-Fernandez C, Flores P, Sánchez-Santed F. A Systematic Review on the Influences of Neurotoxicological Xenobiotic Compounds on Inhibitory Control. Front Behav Neurosci 2019; 13:139. [PMID: 31333425 PMCID: PMC6620897 DOI: 10.3389/fnbeh.2019.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/06/2019] [Indexed: 01/24/2023] Open
Abstract
Background: Impulsive and compulsive traits represent a variety of maladaptive behaviors defined by the difficulties to stop an improper response and the control of a repeated behavioral pattern without sensitivity to changing contingencies, respectively. Otherwise, human beings are continuously exposed to plenty neurotoxicological agents which have been systematically linked to attentional, learning, and memory dysfunctions, both preclinical and clinical studies. Interestingly, the link between both impulsive and compulsive behaviors and the exposure to the most important xenobiotic compounds have been extensively developed; although the information has been rarely summarized. For this, the present systematic review schedule and analyze in depth the most important works relating different subtypes of the above-mentioned behaviors with 4 of the most important xenobiotic compounds: Lead (Pb), Methylmercury (MeHg), Polychlorinated biphenyls (PCB), and Organophosphates (OP) in both preclinical and clinical models. Methods: Systematic search strategy on PubMed databases was developed, and the most important information was structured both in text and in separate tables based on rigorous methodological quality assessment. Results: For Lead, Methylmercury, Polychlorinated biphenyls and organophosphates, a total of 44 (31 preclinical), 34 (21), 38 (23), and 30 (17) studies were accepted for systematic synthesis, respectively. All the compounds showed an important empirical support on their role in the modulation of impulsive and, in lesser degree, compulsive traits, stronger and more solid in animal models with inconclusive results in humans in some cases (i.e., MeHg). However, preclinical and clinical studies have systematically focused on different subtypes of the above-mentioned behaviors, as well as impulsive choice or habit conformations have been rarely studied. Discussion: The strong empirical support in preclinical studies contrasts with the lack of connection between preclinical and clinical models, as well as the different methodologies used. Further research should be focused on dissipate these differences as well as deeply study impulsive choice, decision making, risk taking, and cognitive flexibility, both in experimental animals and humans.
Collapse
Affiliation(s)
| | - Pilar Flores
- Department of Psychology and Health Research Center, University of Almería, Almería, Spain
| | | |
Collapse
|
5
|
Yan Z, Yang Q, Wang X, Torres OL, Tang S, Zhang S, Guo R, Chen J. Correlation between antibiotic-induced feeding depression and body size reduction in zooplankton (rotifer, Brachionus calyciflorus): Neural response and digestive enzyme inhibition. CHEMOSPHERE 2019; 218:376-383. [PMID: 30476769 DOI: 10.1016/j.chemosphere.2018.11.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/05/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
The study analyzed the correlation between the antibiotic-induced feeding depression and body size reduction in rotifer, Brachionus calyciflorus, involving exposure, post-exposure and re-exposure periods. The filtration and ingestion rates of the rotifers were inhibited in these three exposure periods at any given concentration of the antibiotic sulfamethazine (SMZ). As food for rotifer, the cell size of the green algae was unchanged, which indicated that it could not drive feeding depression. Secondly, several corresponding physiological responses were considered. Reactive oxygen species (ROS) levels increased in the post-exposure and the re-exposure; acetylcholinesterase (AChE) activity was significantly decreased in the exposure and the re-exposure, whereas it was induced in the post-exposure. The activities of amylase and lipase were always inhibited in these three exposure periods. Additionally, significant decreases in lorica length, width and biovolume of rotifers occurred after the feeding depression. Statistical analysis indicated a positive correlation between the activity of the digestive enzyme and the body size. Our results demonstrated that SMZ could influence the neurotransmission, inhibit the activity of the digestive enzyme, and finally result in body size reduction. These results provided an integrated perspective on assessing the toxicity effects of antibiotic in non-lethal dosage on the feeding behavior of non-target aquatic organisms.
Collapse
Affiliation(s)
- Zhengyu Yan
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiulian Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Oscar Lopez Torres
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Shengkai Tang
- Key Laboratory of Fisheries Resources in Inland Water of Jiangsu Province, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, 210042, China
| | - Ruixin Guo
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianqiu Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Phillips KF, Deshpande LS. Chronic Neurological Morbidities and Elevated Hippocampal Calcium Levels in a DFP-Based Rat Model of Gulf War Illness. Mil Med 2018; 183:552-555. [DOI: 10.1093/milmed/usx148] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/22/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kristin F Phillips
- Department of Neurology, Virginia Commonwealth University, PO Box 980599, 1217 East Marshall Street, Richmond, VA 23284
| | - Laxmikant S Deshpande
- Department of Neurology, Virginia Commonwealth University, PO Box 980599, 1217 East Marshall Street, Richmond, VA 23284
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1217 East Marshall Street, Richmond, VA 23284
| |
Collapse
|
7
|
Rao AN, Patil A, Brodnik ZD, Qiang L, España RA, Sullivan KA, Black MM, Baas PW. Pharmacologically increasing microtubule acetylation corrects stress-exacerbated effects of organophosphates on neurons. Traffic 2017; 18:433-441. [PMID: 28471062 DOI: 10.1111/tra.12489] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 12/18/2022]
Abstract
Many veterans of the 1990-1991 Gulf War contracted Gulf War Illness (GWI), a multisymptom disease that primarily affects the nervous system. Here, we treated cultures of human or rat neurons with diisopropyl fluorophosphate (DFP), an analog of sarin, one of the organophosphate (OP) toxicants to which the military veterans were exposed. All observed cellular defects produced by DFP were exacerbated by pretreatment with corticosterone or cortisol, which, in rat and human neurons, respectively, serves in our experiments to mimic the physical stress endured by soldiers during the war. To best mimic the disease, DFP was used below the level needed to inhibit acetylcholinesterase. We observed a diminution in the ratio of acetylated to total tubulin that was correctable by treatment with tubacin, a drug that inhibits HDAC6, the tubulin deacetylase. The reduction in microtubule acetylation was coupled with deficits in microtubule dynamics, which were correctable by HDAC6 inhibition. Deficits in mitochondrial transport and dopamine release were also improved by tubacin. Thus, various negative effects of the toxicant/stress exposures were at least partially correctable by restoring microtubule acetylation to a more normal status. Such an approach may have therapeutic benefit for individuals suffering from GWI or other neurological disorders linked to OP exposure.
Collapse
Affiliation(s)
- Anand N Rao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Ankita Patil
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Zachary D Brodnik
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Rodrigo A España
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | - Mark M Black
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, Pennsylvania
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Voorhees JR, Rohlman DS, Lein PJ, Pieper AA. Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds. Front Neurosci 2017; 10:590. [PMID: 28149268 PMCID: PMC5241311 DOI: 10.3389/fnins.2016.00590] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/08/2016] [Indexed: 01/06/2023] Open
Abstract
Organophosphorus (OPs) compounds are widely used as insecticides, plasticizers, and fuel additives. These compounds potently inhibit acetylcholinesterase (AChE), the enzyme that inactivates acetylcholine at neuronal synapses, and acute exposure to high OP levels can cause cholinergic crisis in humans and animals. Evidence further suggests that repeated exposure to lower OP levels insufficient to cause cholinergic crisis, frequently encountered in the occupational setting, also pose serious risks to people. For example, multiple epidemiological studies have identified associations between occupational OP exposure and neurodegenerative disease, psychiatric illness, and sensorimotor deficits. Rigorous scientific investigation of the basic science mechanisms underlying these epidemiological findings requires valid preclinical models in which tightly-regulated exposure paradigms can be correlated with neurotoxicity. Here, we review the experimental models of occupational OP exposure currently used in the field. We found that animal studies simulating occupational OP exposures do indeed show evidence of neurotoxicity, and that utilization of these models is helping illuminate the mechanisms underlying OP-induced neurological sequelae. Still, further work is necessary to evaluate exposure levels, protection methods, and treatment strategies, which taken together could serve to modify guidelines for improving workplace conditions globally.
Collapse
Affiliation(s)
- Jaymie R. Voorhees
- Department of Psychiatry, University of Iowa Carver College of MedicineIowa City, IA, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa Carver College of MedicineIowa City, IA, USA
| | - Diane S. Rohlman
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Occupational and Environmental Health, University of Iowa College of Public HealthIowa City, IA, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, DavisDavis, CA, USA
| | - Andrew A. Pieper
- Department of Psychiatry, University of Iowa Carver College of MedicineIowa City, IA, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Neurology, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Free Radical and Radiation Biology Program, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Radiation Oncology Holden Comprehensive Cancer Center, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Veteran Affairs, University of Iowa Carver College of MedicineIowa City, IA, USA
- Weill Cornell Autism Research Program, Weill Cornell Medical CollegeNew York, NY, USA
| |
Collapse
|
9
|
Chronic Treatment with Naltrexone Prevents Memory Retention Deficits in Rats Poisoned with the Sarin Analog Diisopropylfluorophosphate (DFP) and Treated with Atropine and Pralidoxime. J Med Toxicol 2016; 11:433-8. [PMID: 25925946 DOI: 10.1007/s13181-015-0480-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Humans and rats poisoned with sarin develop chronic neurological disabilities that are not prevented with standardized antidotal therapy. We hypothesized that rats poisoned with the sarin analogue diisopropylfluorophosphate (DFP) and resuscitated with atropine and pralidoxime would have long-term memory deficits that were preventable with naltrexone treatment. Long Evans rats (250-275 g) were randomized to: DFP (N = 8): single subcutaneous (SC) injection of DFP (5 mg/kg). Treatment (N = 9): DFP (5 mg/kg) followed by chronic naltrexone (5 mg/kg/day × 12 weeks). Control (N = 12): single SC injection of isopropyl alcohol, (DFP vehicle) followed by chronic naltrexone (5 mg/kg/day). If toxicity developed after injection, antidotal therapy was initiated with atropine (2 mg/kg) and pralidoxime (25 mg/kg) and repeated as needed. After 12 weeks, rats underwent testing for place learning (acquisition) across 5 days of training using the Morris Water Maze. On day 6 a memory retention test was performed. Statistical analysis was performed using IBM SPSS Statistics. Rats receiving DFP rapidly developed toxicity requiring antidotal rescue. No differences in acquisition were seen between the DFP vs. DFP + naltrexone rats. During memory testing, DFP-poisoned rats spent significantly less time (29.4 ± 2.11 versus 38.5 ± 2.5 s, p < 0.05) and traveled less distance (267 ± 24.6 versus 370 ± 27.5 cm, p < 0.05) in the target quadrant compared to the treatment group. Treatment rats performed as well as control rats (p > 0.05) on the test for memory retention. Poisoning with DFP induced impaired memory retention. Deficits were not prevented by acute rescue with atropine and pralidoxime. Chronic naltrexone treatment led to preserved memory after DFP poisoning.
Collapse
|
10
|
Smith C, Lee R, Moran A, Sipos M. Repeated low-dose exposures to sarin, soman, or VX affect acoustic startle in guinea pigs. Neurotoxicol Teratol 2016; 54:36-45. [DOI: 10.1016/j.ntt.2016.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/21/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
11
|
Phillips KF, Deshpande LS. Repeated low-dose organophosphate DFP exposure leads to the development of depression and cognitive impairment in a rat model of Gulf War Illness. Neurotoxicology 2015; 52:127-33. [PMID: 26619911 DOI: 10.1016/j.neuro.2015.11.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/20/2015] [Accepted: 11/22/2015] [Indexed: 02/02/2023]
Abstract
Approximately 175,000-250,000 of the returning veterans from the 1991 Persian Gulf War exhibit chronic multi-symptom illnesses that includes neurologic co-morbidities such as depression, anxiety and cognitive impairments. Amongst a host of causative factors, exposure to low levels of the nerve agent Sarin has been strongly implicated for expression of Gulf War Illness (GWI). Nerve agents similar to pesticides are organophosphate (OP) compounds. There is evidence from civilian population that exposure to OPs such as in agricultural workers and nerve agents such as the survivors and first-responders of the Tokyo subway Sarin gas attack suffer from chronic neurological problems similar to GWI symptoms. Given this unique chemical profile, OPs are ideal to study the effects of nerve agents and develop models of GWI in civilian laboratories. In this study, we used repeated low-dose exposure to OP agent diisopropyl fluorophosphate (DFP) over a 5-day period to approximate the duration and level of Sarin exposure during the Persian Gulf War. We tested the rats at 3-months post DFP exposure. Using a battery of behavioral assays, we observed the presence of symptoms of chronic depression, anxiety and memory problems as characterized by increased immobility time in the Forced Swim Test, anhedonia in the Sucrose Preference Test, anxiety in the Elevated Plus Maze, and spatial memory impairments in the Object Location Test, respectively. Chronic low dose DFP exposure was also associated with hippocampal neuronal damage as characterized by the presence of Fluoro-Jade staining. Given that OP exposure is considered a leading cause of GWI related morbidities, this animal model will be ideally suited to study underlying molecular mechanisms for the expression of GWI neurological symptoms and identify drugs for the effective treatment of GWIs.
Collapse
Affiliation(s)
- Kristin F Phillips
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | |
Collapse
|
12
|
Hernandez CM, Beck WD, Naughton SX, Poddar I, Adam BL, Yanasak N, Middleton C, Terry AV. Repeated exposure to chlorpyrifos leads to prolonged impairments of axonal transport in the living rodent brain. Neurotoxicology 2015; 47:17-26. [PMID: 25614231 DOI: 10.1016/j.neuro.2015.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/06/2015] [Accepted: 01/11/2015] [Indexed: 01/07/2023]
Abstract
The toxicity of the class of chemicals known as the organophosphates (OP) is most commonly attributed to the inhibition of the enzyme acetylcholinesterase. However, there is significant evidence that this mechanism may not account for all of the deleterious neurologic and neurobehavioral symptoms of OP exposure, especially those associated with levels that produce no overt signs of acute toxicity. In the study described here we evaluated the effects of the commonly used OP-pesticide, chlorpyrifos (CPF) on axonal transport in the brains of living rats using manganese (Mn(2+))-enhanced magnetic resonance imaging (MEMRI) of the optic nerve (ON) projections from the retina to the superior colliculus (SC). T1-weighted MEMRI scans were evaluated at 6 and 24h after intravitreal injection of Mn(2+). As a positive control for axonal transport deficits, initial studies were conducted with the tropolone alkaloid colchicine administered by intravitreal injection. In subsequent studies both single and repeated exposures to CPF were evaluated for effects on axonal transport using MEMRI. As expected, intravitreal injection of colchicine (2.5μg) produced a robust decrease in transport of Mn(2+) along the optic nerve (ON) and to the superior colliculus (SC) (as indicated by the reduced MEMRI contrast). A single subcutaneous (s.c.) injection of CPF (18.0mg/kg) was not associated with significant alterations in the transport of Mn(2+). Conversely, 14-days of repeated s.c. exposure to CPF (18.0mg/kg/day) was associated with decreased transport of Mn(2+) along the ONs and to the SC, an effect that was also present after a 30-day (CPF-free) washout period. These results indicate that repeated exposures to a commonly used pesticide, CPF can result in persistent alterations in axonal transport in the living mammalian brain. Given the fundamental importance of axonal transport to neuronal function, these observations may (at least in part) explain some of the long term neurological deficits that have been observed in humans who have been repeatedly exposed to doses of OPs not associated with acute toxicity.
Collapse
Affiliation(s)
- Caterina M Hernandez
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States
| | - Wayne D Beck
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States
| | - Sean X Naughton
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States
| | - Indrani Poddar
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States
| | - Bao-Ling Adam
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States
| | - Nathan Yanasak
- Core Imaging Facility for Small Animals (CIFSA), Georgia Regents University, Augusta, GA 30912, United States
| | - Chris Middleton
- Core Imaging Facility for Small Animals (CIFSA), Georgia Regents University, Augusta, GA 30912, United States
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, United States.
| |
Collapse
|
13
|
Kaur S, Singh S, Chahal KS, Prakash A. Potential pharmacological strategies for the improved treatment of organophosphate-induced neurotoxicity. Can J Physiol Pharmacol 2014; 92:893-911. [DOI: 10.1139/cjpp-2014-0113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Organophosphates (OP) are highly toxic compounds that cause cholinergic neuronal excitotoxicity and dysfunction by irreversible inhibition of acetylcholinesterase, resulting in delayed brain damage. This delayed secondary neuronal destruction, which arises primarily in the cholinergic areas of the brain that contain dense accumulations of cholinergic neurons and the majority of cholinergic projection, could be largely responsible for persistent profound neuropsychiatric and neurological impairments such as memory, cognitive, mental, emotional, motor, and sensory deficits in the victims of OP poisoning. The therapeutic strategies for reducing neuronal brain damage must adopt a multifunctional approach to the various steps of brain deterioration: (i) standard treatment with atropine and related anticholinergic compounds; (ii) anti-excitotoxic therapies to prevent cerebral edema, blockage of calcium influx, inhibition of apoptosis, and allow for the control of seizure; (iii) neuroprotection by aid of antioxidants and N-methyl-d-aspartate (NMDA) antagonists (multifunctional drug therapy), to inhibit/limit the secondary neuronal damage; and (iv) therapies targeting chronic neuropsychiatric and neurological symptoms. These neuroprotective strategies may prevent secondary neuronal damage in both early and late stages of OP poisoning, and thus may be a beneficial approach to treating the neuropsychological and neuronal impairments resulting from OP toxicity.
Collapse
Affiliation(s)
- Shamsherjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
- Punjab Technical University, Kapurthala 144601, Punjab, India
| | - Satinderpal Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Karan Singh Chahal
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Atish Prakash
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| |
Collapse
|