1
|
Bauckneht M, Capitanio S, Raffa S, Roccatagliata L, Pardini M, Lapucci C, Marini C, Sambuceti G, Inglese M, Gallo P, Cecchin D, Nobili F, Morbelli S. Molecular imaging of multiple sclerosis: from the clinical demand to novel radiotracers. EJNMMI Radiopharm Chem 2019; 4:6. [PMID: 31659498 PMCID: PMC6453990 DOI: 10.1186/s41181-019-0058-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Brain PET imaging with different tracers is mainly clinically used in the field of neurodegenerative diseases and brain tumors. In recent years, the potential usefulness of PET has also gained attention in the field of MS. In fact, MS is a complex disease and several processes can be selected as a target for PET imaging. The use of PET with several different tracers has been mainly evaluated in the research setting to investigate disease pathophysiology (i.e. phenotypes, monitoring of progression) or to explore its use a surrogate end-point in clinical trials. Results We have reviewed PET imaging studies in MS in humans and animal models. Tracers have been grouped according to their pathophysiological targets (ie. tracers for myelin kinetic, neuroinflammation, and neurodegeneration). The emerging clinical indication for brain PET imaging in the differential diagnosis of suspected tumefactive demyelinated plaques as well as the clinical potential provided by PET images in view of the recent introduction of PET/MR technology are also addressed. Conclusion While several preclinical and fewer clinical studies have shown results, full-scale clinical development programs are needed to translate molecular imaging technologies into a clinical reality that could ideally fit into current precision medicine perspectives.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.
| | - Selene Capitanio
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Stefano Raffa
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Luca Roccatagliata
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy.,Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Caterina Lapucci
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.,CNR Institute of Molecular Bioimaging and Physiology, Milan, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Matilde Inglese
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Paolo Gallo
- Multiple Sclerosis Centre of the Veneto Region, Department of Neurosciences DNS, University of Padua, Padua, Italy
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, Padova University Hospital, Padua, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| | - Flavio Nobili
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| |
Collapse
|
2
|
Guo M, Gao ZG, Tyler R, Stodden T, Li Y, Ramsey J, Zhao WJ, Wang GJ, Wiers CE, Fowler JS, Rice KC, Jacobson KA, Kim SW, Volkow ND. Preclinical Evaluation of the First Adenosine A 1 Receptor Partial Agonist Radioligand for Positron Emission Tomography Imaging. J Med Chem 2018; 61:9966-9975. [PMID: 30359014 PMCID: PMC8327296 DOI: 10.1021/acs.jmedchem.8b01009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Central adenosine A1 receptor (A1R) is implicated in pain, sleep, substance use disorders, and neurodegenerative diseases, and is an important target for pharmaceutical development. Radiotracers for A1R positron emission tomography (PET) would enable measurement of the dynamic interaction of endogenous adenosine and A1R during the sleep-awake cycle. Although several human A1R PET tracers have been developed, most are xanthine-based antagonists that failed to demonstrate competitive binding against endogenous adenosine. Herein, we explored non-nucleoside (3,5-dicyanopyridine and 5-cyanopyrimidine) templates for developing an agonist A1R PET radiotracer. We synthesized novel analogues, including 2-amino-4-(3-methoxyphenyl)-6-(2-(6-methylpyridin-2-yl)ethyl)pyridine-3,5-dicarbonitrile (MMPD, 22b), a partial A1R agonist of sub-nanomolar affinity. [11C]22b showed suitable blood-brain barrier (BBB) permeability and test-retest reproducibility. Regional brain uptake of [11C]22b was consistent with known brain A1R distribution and was blocked significantly by A1R but not A2AR ligands. [11C]22b is the first BBB-permeable A1R partial agonist PET radiotracer with the promise of detecting endogenous adenosine fluctuations.
Collapse
Affiliation(s)
- Min Guo
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-1013, United States
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Ryan Tyler
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-1013, United States
| | - Tyler Stodden
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-1013, United States
| | - Yang Li
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-1013, United States
| | - Joseph Ramsey
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-1013, United States
| | - Wen-Jing Zhao
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-1013, United States
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-1013, United States
| | - Corinde E. Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-1013, United States
| | - Joanna S. Fowler
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-1013, United States
| | - Kenner C. Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Sung Won Kim
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-1013, United States
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-1013, United States
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892-1013, United States
| |
Collapse
|
3
|
Hayashi S, Inaji M, Nariai T, Oda K, Sakata M, Toyohara J, Ishii K, Ishiwata K, Maehara T. Increased Binding Potential of Brain Adenosine A1 Receptor in Chronic Stages of Patients with Diffuse Axonal Injury Measured with [1-methyl-11C] 8-dicyclopropylmethyl-1-methyl-3-propylxanthine Positron Emission Tomography Imaging. J Neurotrauma 2018; 35:25-31. [DOI: 10.1089/neu.2017.5006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Shihori Hayashi
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiichi Oda
- Department of Radiological Technology, Faculty of Health Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
- Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
4
|
Mishina M, Kimura Y, Sakata M, Ishii K, Oda K, Toyohara J, Kimura K, Ishiwata K. Age-Related Decrease in Male Extra-Striatal Adenosine A 1 Receptors Measured Using11C-MPDX PET. Front Pharmacol 2017; 8:903. [PMID: 29326588 PMCID: PMC5741655 DOI: 10.3389/fphar.2017.00903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2017] [Indexed: 11/15/2022] Open
Abstract
Adenosine A1 receptors (A1Rs) are widely distributed throughout the entire human brain, while adenosine A2A receptors (A2ARs) are present in dopamine-rich areas of the brain, such as the basal ganglia. A past study using autoradiography reported a reduced binding ability of A1R in the striatum of old rats. We developed positron emission tomography (PET) ligands for mapping the adenosine receptors and we successfully visualized the A1Rs using 8-dicyclopropylmethyl-1-11C-methyl-3-propylxanthine (11C-MPDX). We previously reported that the density of A1Rs decreased with age in the human striatum, although we could not observe an age-related change in A2ARs. The aim of this study was to investigate the age-related change of the density of A1Rs in the thalamus and cerebral cortices of healthy participants using 11C-MPDX PET. We recruited eight young (22.0 ± 1.7 years) and nine elderly healthy male volunteers (65.7 ± 8.0 years). A dynamic series of decay-corrected PET scans was performed for 60 min starting with the injection of 11C-MPDX. We placed the circular regions of interest of 10 mm in diameter in 11C-MPDX PET images. The values for the binding potential (BPND) of 11C-MPDX in the thalamus, and frontal, temporal, occipital, and parietal cortices were calculated using a graphical analysis, wherein the reference region was the cerebellum. BPND of 11C-MPDX was significantly lower in elderly participants than young participants in the thalamus, and frontal, temporal, occipital, and parietal cortices. In the human brain, we could observe the age-related decrease in the distribution of A1Rs.
Collapse
Affiliation(s)
- Masahiro Mishina
- Department of Neuro-pathophysiological Imaging, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuichi Kimura
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Computational Systems Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Keiichi Oda
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Radiological Technology, Faculty of Health Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan.,Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
5
|
Mishina M, Ishii K, Kimura Y, Suzuki M, Kitamura S, Ishibashi K, Sakata M, Oda K, Kobayashi S, Kimura K, Ishiwata K. Adenosine A1receptors measured with11C-MPDX PET in early Parkinson's disease. Synapse 2017; 71. [DOI: 10.1002/syn.21979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Masahiro Mishina
- Department of Neuro-pathophysiological Imaging, Graduate School of Medicine; Nippon Medical School; 1-396 Kosugi, Nakahara Kawasaki Kanagawa 211-8533 Japan
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
- Department of Neurology; Nippon Medical School, Musashi Kosugi Hospital; 1-396 Kosugi, Nakahara Kawasaki Kanagawa 211-8533 Japan
| | - Kenji Ishii
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
| | - Yuichi Kimura
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
- Department of Computational Systems Biology, Faculty of Biology-Oriented Science and Technology; Kinki University; 930 Nishimitani Kinokawa Wakayama 649-6493 Japan
| | - Masahiko Suzuki
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
- Department of Neurology; Katsushika Medical Center, The Jikei University School of Medicine; 6-41-2 Aoto Katsushika Tokyo 125-850 Japan
| | - Shin Kitamura
- Department of Neurology; Nippon Medical School, Musashi Kosugi Hospital; 1-396 Kosugi, Nakahara Kawasaki Kanagawa 211-8533 Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
| | - Muneyuki Sakata
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
| | - Keiichi Oda
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
- Department of Radiological Technology, Faculty of Health Sciences; Hokkaido University of Science; 7-Jo 15-4-1 Maeda, Teine Sapporo Hokkaido 006-8585 Japan
| | - Shiro Kobayashi
- Department of Neurosurgery; Nippon Medical School, Chiba Hokusoh Hospital; 1715 Kamagari Inzai Chiba 270-1694 Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine; Nippon Medical School; 1-1-5 Sendagi Bunkyo Tokyo 113-8602 Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
- Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience; 7-1 15 Yatsuyamada Koriyama Fukushima 963-8563 Japan
- Department of Biofunctional Imaging; Fukushima Medical University; 1 Hikariga-oka Fukushima Fukushima 960-1295 Japan
| |
Collapse
|
6
|
Tonietto M, Rizzo G, Veronese M, Fujita M, Zoghbi SS, Zanotti-Fregonara P, Bertoldo A. Plasma radiometabolite correction in dynamic PET studies: Insights on the available modeling approaches. J Cereb Blood Flow Metab 2016; 36:326-39. [PMID: 26661202 PMCID: PMC4759680 DOI: 10.1177/0271678x15610585] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/09/2015] [Indexed: 11/17/2022]
Abstract
Full kinetic modeling of dynamic PET images requires the measurement of radioligand concentrations in the arterial plasma. The unchanged parent radioligand must, however, be separated from its radiometabolites by chromatographic methods. Thus, only few samples can usually be analyzed and the resulting measurements are often noisy. Therefore, the measurements must be fitted with a mathematical model. This work presents a comprehensive analysis of the different models proposed in the literature to describe the plasma parent fraction (PPf) and of the alternative approaches for radiometabolite correction. Finally, we used a dataset of [(11)C]PBR28 brain PET data as a case study to guide the reader through the PPf model selection process.
Collapse
Affiliation(s)
- Matteo Tonietto
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Gaia Rizzo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Mattia Veronese
- Department of Neuroimaging, IoPPN, King's College London, London, UK
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA INCIA UMR-CNRS 5287, Université de Bordeaux, Bordeaux, France
| | | |
Collapse
|
7
|
Faria DDP, Copray S, Buchpiguel C, Dierckx R, de Vries E. PET imaging in multiple sclerosis. J Neuroimmune Pharmacol 2014; 9:468-82. [PMID: 24809810 DOI: 10.1007/s11481-014-9544-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/21/2014] [Indexed: 01/03/2023]
Abstract
Positron emission tomography (PET) is a non-invasive technique for quantitative imaging of biochemical and physiological processes in animals and humans. PET uses probes labeled with a radioactive isotope, called PET tracers, which can bind to or be converted by a specific biological target and thus can be applied to detect and monitor different aspects of diseases. The number of applications of PET imaging in multiple sclerosis is still limited. Clinical studies using PET are basically focused on monitoring changes in glucose metabolism and the presence of activated microglia/macrophages in sclerotic lesions. In preclinical studies, PET imaging of targets for other processes, like demyelination and remyelination, has been investigated and may soon be translated to clinical applications. Moreover, more PET tracers that could be relevant for MS are available now, but have not been studied in this context yet. In this review, we summarize the PET imaging studies performed in multiple sclerosis up to now. In addition, we will identify potential applications of PET imaging of processes or targets that are of interest to MS research, but have yet remained largely unexplored.
Collapse
Affiliation(s)
- Daniele de Paula Faria
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Paul S, Khanapur S, Sijbesma JW, Ishiwata K, Elsinga PH, Meerlo P, Dierckx RA, van Waarde A. Use of 11C-MPDX and PET to Study Adenosine A1 Receptor Occupancy by Nonradioactive Agonists and Antagonists. J Nucl Med 2014; 55:315-20. [DOI: 10.2967/jnumed.113.130294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Mishina M, Ishiwata K. Adenosine Receptor PET Imaging in Human Brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:51-69. [DOI: 10.1016/b978-0-12-801022-8.00002-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Increased Adenosine A1 Receptor Levels in Hemianopia Patients After Cerebral Injury. Clin Nucl Med 2012; 37:1146-51. [DOI: 10.1097/rlu.0b013e31826392a7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Kimura Y, Naganawa M. Imaging detailed glucose metabolism in the brain using MAP estimation in Positron Emission Tomography. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2012; 2005:4477-9. [PMID: 17281231 DOI: 10.1109/iembs.2005.1615461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, maximize a posterior approach (MAP) was applied for detailed imaging of the glucose metabolism in the brain using PET and <sup>18</sup>F-FDG. FDG is a glucose analog and it can investigate a glucose metabolism. In PET studies, glucose metabolism can be measured to estimate a compartment model which describes the behavior of glucose in the brain. We applied the MAP approach to a voxel-by-voxel compartment model estimation in order to visualize a net amount of glucose, glucose transportation, and glucose phosphorylation because a MAP approach is advantageous for robust model estimation against noise existence. When the algorithm was applied to Alzheimer patients, the images had different patterns depending on severity of the disease. We conclude that the proposed MAP-based algorithm is useful for detail imaging of glucose metabolism in the brain.
Collapse
Affiliation(s)
- Yuichi Kimura
- Positron Med. Center, Tokyo Metropolitan Inst. of Gerontology
| | | |
Collapse
|
12
|
Mishina M, Kimura Y, Naganawa M, Ishii K, Oda K, Sakata M, Toyohara J, Kobayashi S, Katayama Y, Ishiwata K. Differential effects of age on human striatal adenosine A₁ and A(2A) receptors. Synapse 2012; 66:832-9. [PMID: 22623181 DOI: 10.1002/syn.21573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/01/2012] [Accepted: 05/14/2012] [Indexed: 01/19/2023]
Abstract
The aim of this study was to investigate the effect of age on the distribution of adenosine A₁ receptors (A₁Rs) and adenosine A(2A) receptors (A(2A)Rs) in the striatum of healthy subjects using PET imaging with 8-dicyclopropylmethyl-1-[¹¹C]methyl-3-propylxanthine ([¹¹C]MPDX) and [7-methyl-¹¹C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([¹¹C]TMSX), respectively. We recruited 8 young (22.0 ± 1.7 years) and 10 elderly (65.4 ± 7.6 years) volunteers to undergo [¹¹C]MPDX PET scanning, and 11 young (22.7 ± 2.7 years) and six elderly (60.7 ± 8.5 years) volunteers to undergo [¹¹C]TMSX PET scanning. A dynamic series of decay-corrected PET scans was performed for 60 min following injection of [¹¹C]MPDX or [¹¹C]TMSX. We calculated the binding potential (BP(ND) ) of [¹¹C]MPDX and distribution volume ratio (DVR) of [¹¹C]TMSX in the striatum. The BP(ND) of [¹¹C]MPDX was significantly lower in elderly than in young subjects, both in the putamen and head of the caudate nucleus. The BP(ND) was negatively correlated with age in both the putamen and the head of the caudate nucleus. However, no difference was found between the DVR of [¹¹C]TMSX in the striata of young and elderly subjects, nor was there a correlation between age and the DVR of [¹¹C]TMSX. The effect of age on the distribution of A₁Rs in the human striatum described herein is similar to previous reports of age-related decreases in dopamine D₁ and D₂ receptors. Unlike A₁Rs, however, this study suggests that the distribution of A(2A) Rs does not change with age.
Collapse
Affiliation(s)
- Masahiro Mishina
- The Second Department of Internal Medicine, Nippon Medical School, Bunkyo-Ku, Tokyo, Japan; Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-Ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shook BC, Rassnick S, Wallace N, Crooke J, Ault M, Chakravarty D, Barbay JK, Wang A, Powell MT, Leonard K, Alford V, Scannevin RH, Carroll K, Lampron L, Westover L, Lim HK, Russell R, Branum S, Wells KM, Damon S, Youells S, Li X, Beauchamp DA, Rhodes K, Jackson PF. Design and characterization of optimized adenosine A₂A/A₁ receptor antagonists for the treatment of Parkinson's disease. J Med Chem 2012; 55:1402-17. [PMID: 22239465 DOI: 10.1021/jm201640m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The design and characterization of two, dual adenosine A(2A)/A(1) receptor antagonists in several animal models of Parkinson's disease is described. Compound 1 was previously reported as a potential treatment for Parkinson's disease. Further characterization of 1 revealed that it was metabolized to reactive intermediates that caused the genotoxicity of 1 in the Ames and mouse lymphoma L51784 assays. The identification of the metabolites enabled the preparation of two optimized compounds 13 and 14 that were devoid of the metabolic liabilities associated with 1. Compounds 13 and 14 are potent dual A(2A)/A(1) receptor antagonists that have excellent activity, after oral administration, across a number of animal models of Parkinson's disease including mouse and rat models of haloperidol-induced catalepsy, mouse and rat models of reserpine-induced akinesia, and the rat 6-hydroxydopamine (6-OHDA) lesion model of drug-induced rotation.
Collapse
Affiliation(s)
- Brian C Shook
- Janssen Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zanotti-Fregonara P, Chen K, Liow JS, Fujita M, Innis RB. Image-derived input function for brain PET studies: many challenges and few opportunities. J Cereb Blood Flow Metab 2011; 31:1986-98. [PMID: 21811289 PMCID: PMC3208145 DOI: 10.1038/jcbfm.2011.107] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantitative positron emission tomography (PET) brain studies often require that the input function be measured, typically via arterial cannulation. Image-derived input function (IDIF) is an elegant and attractive noninvasive alternative to arterial sampling. However, IDIF is also a very challenging technique associated with several problems that must be overcome before it can be successfully implemented in clinical practice. As a result, IDIF is rarely used as a tool to reduce invasiveness in patients. The aim of the present review was to identify the methodological problems that hinder widespread use of IDIF in PET brain studies. We conclude that IDIF can be successfully implemented only with a minority of PET tracers. Even in those cases, it only rarely translates into a less-invasive procedure for the patient. Finally, we discuss some possible alternative methods for obtaining less-invasive input function.
Collapse
|
15
|
Paul S, Khanapur S, Rybczynska AA, Kwizera C, Sijbesma JW, Ishiwata K, Willemsen AT, Elsinga PH, Dierckx RA, van Waarde A. Small-Animal PET Study of Adenosine A1 Receptors in Rat Brain: Blocking Receptors and Raising Extracellular Adenosine. J Nucl Med 2011; 52:1293-300. [DOI: 10.2967/jnumed.111.088005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
16
|
Zanotti-Fregonara P, Liow JS, Fujita M, Dusch E, Zoghbi SS, Luong E, Boellaard R, Pike VW, Comtat C, Innis RB. Image-derived input function for human brain using high resolution PET imaging with [C](R)-rolipram and [C]PBR28. PLoS One 2011; 6:e17056. [PMID: 21364880 PMCID: PMC3045425 DOI: 10.1371/journal.pone.0017056] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/13/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The aim of this study was to test seven previously published image-input methods in state-of-the-art high resolution PET brain images. Images were obtained with a High Resolution Research Tomograph plus a resolution-recovery reconstruction algorithm using two different radioligands with different radiometabolite fractions. Three of the methods required arterial blood samples to scale the image-input, and four were blood-free methods. METHODS All seven methods were tested on twelve scans with [(11)C](R)-rolipram, which has a low radiometabolite fraction, and on nineteen scans with [(11)C]PBR28 (high radiometabolite fraction). Logan V(T) values for both blood and image inputs were calculated using the metabolite-corrected input functions. The agreement of image-derived Logan V(T) values with the reference blood-derived Logan V(T) values was quantified using a scoring system. Using the image input methods that gave the most accurate results with Logan analysis, we also performed kinetic modelling with a two-tissue compartment model. RESULTS For both radioligands the highest scores were obtained with two blood-based methods, while the blood-free methods generally performed poorly. All methods gave higher scores with [(11)C](R)-rolipram, which has a lower metabolite fraction. Compartment modeling gave less reliable results, especially for the estimation of individual rate constants. CONCLUSION OUR STUDY SHOWS THAT: 1) Image input methods that are validated for a specific tracer and a specific machine may not perform equally well in a different setting; 2) despite the use of high resolution PET images, blood samples are still necessary to obtain a reliable image input function; 3) the accuracy of image input may also vary between radioligands depending on the magnitude of the radiometabolite fraction: the higher the metabolite fraction of a given tracer (e.g., [(11)C]PBR28), the more difficult it is to obtain a reliable image-derived input function; and 4) in association with image inputs, graphical analyses should be preferred over compartmental modelling.
Collapse
Affiliation(s)
- Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | | | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Elise Luong
- Molecular Imaging Branch, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Ronald Boellaard
- Department of Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | | | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| |
Collapse
|
17
|
Ishiwata K, Kimura Y, Oda K, Ishii K, Sakata M, Kawasaki K, Nariai T, Suzuki Y, Ishibashi K, Mishina M, Hashimoto M, Ishikawa M, Toyohara J. Development of PET radiopharmaceuticals and their clinical applications at the Positron Medical Center. Geriatr Gerontol Int 2010; 10 Suppl 1:S180-96. [PMID: 20590833 DOI: 10.1111/j.1447-0594.2010.00594.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Positron Medical Center has developed a large number of radiopharmaceuticals and 36 radiopharmaceuticals have been approved for clinical use for studying aging and geriatric diseases, especially brain functions. Positron emission tomography (PET) has been used to provide a highly advanced PET-based diagnosis. The current status of the development of radiopharmaceuticals, and representative clinical and methodological results are reviewed.
Collapse
Affiliation(s)
- Kiichi Ishiwata
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Adenosine A1 receptors using 8-dicyclopropylmethyl-1-[11C]methyl-3-propylxanthine PET in Alzheimer’s disease. Ann Nucl Med 2009; 22:841-7. [DOI: 10.1007/s12149-008-0185-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 06/19/2008] [Indexed: 01/18/2023]
|
19
|
Abstract
Advances in radiotracer chemistry have resulted in the development of novel molecular imaging probes for adenosine receptors (ARs). With the availability of these molecules, the function of ARs in human pathophysiology as well as the safety and efficacy of approaches to the different AR targets can now be determined. Molecular imaging is a rapidly growing field of research that allows the identification of molecular targets and functional processes in vivo. It is therefore gaining increasing interest as a tool in drug development because it permits the process of evaluating promising therapeutic targets to be stratified. Further, molecular imaging has the potential to evolve into a useful diagnostic tool, particularly for neurological and psychiatric disorders. This chapter focuses on currently available AR ligands that are suitable for molecular neuroimaging and describes first applications in healthy subjects and patients using positron emission tomography (PET).
Collapse
Affiliation(s)
- Andreas Bauer
- Institute of Neuroscience and Biophysics (INB-3), Research Center Jülich, 52425 Jülich, Germany.
| | | |
Collapse
|
20
|
Affiliation(s)
- Masahiro Mishina
- Department of Neurological, Nephrological and Rheumatological Science, Graduate School of Medicine, Nippon Medical School
- Neurological Institute, Nippon Medical School Chiba Hokusoh Hospital
| |
Collapse
|
21
|
Mishina M, Ishiwata K, Kimura Y, Naganawa M, Oda K, Kobayashi S, Katayama Y, Ishii K. Evaluation of distribution of adenosine A2A receptors in normal human brain measured with [11C]TMSX PET. Synapse 2007; 61:778-84. [PMID: 17568431 DOI: 10.1002/syn.20423] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adenosine A(2A) receptor (A2AR) is thought to interact with dopamine D(2) receptor. Selective A2AR antagonists have attracted attention as the treatment of Parkinson's disease. In this study, we investigated the distribution of the A2ARs in the living human brain using positron emission tomography (PET) and [7-methyl-(11)C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([(11)C]TMSX). We recruited five normal male subjects. A dynamic series of PET scans was performed for 60 min, and the arterial blood was sampled during the scan to measure radioactivity of the parent compound and labeled metabolites. Circular regions of interest of 10-mm diameter were placed in the PET images over the cerebellum, brainstem, thalamus, head of caudate nucleus, anterior and posterior putamen, frontal lobe, temporal lobe, parietal lobe, occipital lobe, and posterior cingulate gyrus for each subject. A two-tissue, three-compartment model was used to estimate K(1), k(2), k(3), and k(4) between metabolite-corrected plasma and tissue time activity of [(11)C]TMSX. The binding potential (BP) was the largest in the anterior (1.25) and posterior putamen (1.20), was next largest in the head of caudate nucleus (1.05) and thalamus (1.03), and was small in the cerebral cortex, especially frontal lobe (0.46). [(11)C]TMSX PET showed the largest BP in the striatum in which A2ARs were enriched as in postmortem and nonhuman studies reported, but that the binding of [(11)C]TMSX was relatively larger in the thalamus to compare with other mammals. To date, [(11)C]TMSX is the only promising PET ligand, which is available to clinical use for mapping the A2ARs in the living human brain.
Collapse
Affiliation(s)
- Masahiro Mishina
- Neurological Institute, Nippon Medical School Chiba-Hokusoh Hospital, Imba-gun, Chiba-ken 270-1694, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sakata M, Kimura Y, Naganawa M, Oda K, Ishii K, Chihara K, Ishiwata K. Mapping of human cerebral sigma1 receptors using positron emission tomography and [11C]SA4503. Neuroimage 2007; 35:1-8. [PMID: 17240168 DOI: 10.1016/j.neuroimage.2006.11.055] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 10/20/2006] [Accepted: 11/27/2006] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to establish the kinetic analysis for mapping sigma(1) receptors (sigma1Rs) in the human brain by positron emission tomography (PET) with [(11)C]SA4503. The sigma1Rs are considered to be involved in various neurological and psychiatric diseases. [(11)C]SA4503 is a recently developed radioligand with high and selective affinity for sigma1Rs, and we have first applied it to clinical studies. Nine healthy male subjects each underwent a dynamic 90-min PET scan after injection of [(11)C]SA4503. In addition to the baseline measurement, three of the nine subjects underwent a second [(11)C]SA4503-PET after partial blockade of sigma1Rs by oral administration of haloperidol, a sigma receptor antagonist. Full kinetic analysis using two times nonlinear estimations was applied for fitting a two-tissue three-compartment model to determine the binding potential (BP) and total distribution volume (tDV) of [(11)C]SA4503. Graphical analysis with a Logan plot was also applied for estimations of tDV. The regional distribution patterns of BP and tDV in 11 regions were compatible with those of previously reported sigma1Rs in vitro. The reduced binding sites of sigma1Rs by haloperidol were appropriately evaluated. The tDVs derived from the two methods matched each other well. The Logan plot offered images of the tDV, which reflected sigma1R densities, and the tDV in the images decreased after haloperidol loading. Moreover, comparison of BPs calculated with and without metabolite correction for plasma input function indicated that the metabolite correction could be omitted. We concluded that this method enables the quantitative analysis of sigma1Rs in the human brain.
Collapse
Affiliation(s)
- Muneyuki Sakata
- Graduate School of Information Science, Nara Institute of Science and Technology, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Naganawa M, Kimura Y, Mishina M, Manabe Y, Chihara K, Oda K, Ishii K, Ishiwata K. Quantification of adenosine A2A receptors in the human brain using [11C]TMSX and positron emission tomography. Eur J Nucl Med Mol Imaging 2006; 34:679-687. [PMID: 17171358 DOI: 10.1007/s00259-006-0294-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 09/20/2006] [Indexed: 11/27/2022]
Abstract
PURPOSE [7-methyl-(11)C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([(11)C]TMSX) is a positron-emitting adenosine A(2A) receptor (A2AR) antagonist for visualisation of A2AR distribution by positron emission tomography (PET). The aims of this paper were to use a kinetic model to analyse the behaviour of [(11)C]TMSX in the brain and to examine the applicability of the Logan plot. We also studied the applicability of a simplified Logan plot by omitting metabolite correction and arterial blood sampling. METHODS The centrum semiovale was used as a reference region on the basis of a post-mortem study showing that it has a negligibly low density of A2ARs. Compartmental analysis was performed in five normal subjects. Parametric images of A2AR binding potential (BP) were also generated using a Logan plot with or without metabolite correction and with or without arterial blood sampling. To omit arterial blood sampling, we applied a method to extract the plasma-related information using independent component analysis (EPICA). RESULTS The estimated K (1)/k (2) was confirmed to be common in the centrum semiovale and main cortices. The three-compartment model was well fitted to the other regions using the fixed value of K (1)/k (2) estimated from the centrum semiovale. The estimated BPs using the Logan plot matched those derived from compartment analysis. Without the metabolite correction, the estimate of BP underestimated the true value by 5%. The estimated BPs agreed regardless of arterial blood sampling. CONCLUSION A three-compartment model with a reference region, the centrum semiovale, describes the kinetic behaviour of [(11)C]TMSX PET images. A2ARs in the human brain can be visualised as a BP image using [(11)C]TMSX PET without arterial blood sampling.
Collapse
Affiliation(s)
- Mika Naganawa
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Naka, Itabashi, Tokyo, 173-0022, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yuichi Kimura
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Naka, Itabashi, Tokyo, 173-0022, Japan.
| | - Masahiro Mishina
- Neurological Institute, Nippon Medical School Chiba-Hokusoh Hospital, Chiba, Japan
| | - Yoshitsugu Manabe
- Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Kunihiro Chihara
- Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | - Keiichi Oda
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Naka, Itabashi, Tokyo, 173-0022, Japan
| | - Kenji Ishii
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Naka, Itabashi, Tokyo, 173-0022, Japan
| | - Kiichi Ishiwata
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Naka, Itabashi, Tokyo, 173-0022, Japan
| |
Collapse
|
24
|
Meyer PT, Elmenhorst D, Boy C, Winz O, Matusch A, Zilles K, Bauer A. Effect of aging on cerebral A1 adenosine receptors: A [18F]CPFPX PET study in humans. Neurobiol Aging 2006; 28:1914-24. [PMID: 16996650 DOI: 10.1016/j.neurobiolaging.2006.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2006] [Revised: 07/31/2006] [Accepted: 08/15/2006] [Indexed: 11/20/2022]
Abstract
Cerebral A(1) adenosine receptors (A(1)AR) fulfill important neuromodulatory and homeostatic functions. The present study examines possible age-related A(1)AR changes in living humans by positron emission tomography (PET) and the A(1)AR ligand [(18)F]CPFPX. Thirty-six healthy volunteers aged 22-74 years were included. The apparent binding potential (BP'2) of [(18)F]CPFPX in various cerebral regions was calculated non-invasively using the cerebellum as reference region. In addition, the total distribution volume (DV't) was assessed in 10 subjects undergoing arterial blood sampling. There was no significant association between regional DV't and age, gender, caffeine consumption or sleep duration. BP'2 showed a significant age-dependent decrease in all regions except cingulate gyrus (p=0.062). The BP'2 decline ranged from -17% (striatum) to -34% (postcentral gyrus), the average cortical decline being -23%. There was no significant effect of gender, caffeine consumption and sleep duration on BP'2. In line with in vitro animal studies, the present in vivo PET study detected an age-dependent A(1)AR loss in humans that may be of pathophysiological importance in various neurological diseases associated with aging. Because of the discrepant results of the invasive (DV't) and the non-invasive (BP'2) analyses the present study needs further validation.
Collapse
Affiliation(s)
- Philipp T Meyer
- Institute of Medicine/Brain Imaging Center West, Research Center Juelich, 52425 Juelich, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Meyer PT, Elmenhorst D, Matusch A, Winz O, Zilles K, Bauer A. A1 adenosine receptor PET using [18F]CPFPX: Displacement studies in humans. Neuroimage 2006; 32:1100-5. [PMID: 16806981 DOI: 10.1016/j.neuroimage.2006.04.202] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 01/30/2006] [Accepted: 04/25/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Imaging of cerebral A(1) adenosine receptors (A(1)AR) with positron emission tomography (PET) has recently become available for neurological research. To date, it has still not been unraveled if there is a valid reference region without specific radioligand binding that may be used to improve image quantification. We conducted in vivo displacement studies in humans to elucidate this important question using the A(1)AR ligand [(18)F]CPFPX. METHODS Five healthy male volunteers underwent [(18)F]CPFPX bolus/infusion PET with short infusion of unlabelled CPFPX as competitor (n = 4; 0.9 to 4.0 mg) or vehicle (n = 1; control condition) after equilibrium of [(18)F]CPFPX distribution was attained. RESULTS Infusion of CPFPX induced a rapid displacement of [(18)F]CPFPX binding in all regions, including the cerebellum (region with lowest binding). Even at the highest competitor dose, no full displacement was reached. Displacement was dose-dependent in all regions except the cerebellum where floor effects and/or noise might have obscured dose dependency. Specific binding was estimated to account for about one third and two thirds of total equilibrium uptake in cerebellum and cortex, respectively. CONCLUSIONS Although the cerebellum is the region with lowest in vivo [(18)F]CPFPX binding, it is not an ideal reference region devoid of specific binding. Nevertheless, as will be discussed, the use of a reference region analysis may be a useful, non-invasive alternative analysis method in carefully selected applications.
Collapse
Affiliation(s)
- Philipp T Meyer
- Institute of Medicine, Research Center Juelich, 52425 Juelich, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Kimura Y, Naganawa M, Yamaguchi J, Takabayashi Y, Uchiyama A, Oda K, Ishii K, Ishiwata K. MAP-based kinetic analysis for voxel-by-voxel compartment model estimation: Detailed imaging of the cerebral glucose metabolism using FDG. Neuroimage 2006; 29:1203-11. [PMID: 16216532 DOI: 10.1016/j.neuroimage.2005.08.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 08/25/2005] [Accepted: 08/31/2005] [Indexed: 11/28/2022] Open
Abstract
We propose a novel algorithm for voxel-by-voxel compartment model analysis based on a maximum a posteriori (MAP) algorithm. Voxel-by-voxel compartment model analysis can derive functional images of living tissues, but it suffers from high noise statistics in voxel-based PET data and extended calculation times. We initially set up a feature space of the target radiopharmaceutical composed of a measured plasma time activity curve and a set of compartment model parameters, and measured the noise distribution of the PET data. The dynamic PET data were projected onto the feature space, and then clustered using the Mahalanobis distance. Our method was validated using simulation studies, and compared with ROI-based ordinary kinetic analysis for FDG. The parametric images exhibited an acceptable linear relation with the simulations and the ROI-based results, and the calculation time took about 10 min. We therefore concluded that our proposed MAP-based algorithm is practical.
Collapse
Affiliation(s)
- Yuichi Kimura
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Naka, Itabashi, Tokyo 173-0022, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Naganawa M, Kimura Y, Nariai T, Ishii K, Oda K, Manabe Y, Chihara K, Ishiwata K. Omission of serial arterial blood sampling in neuroreceptor imaging with independent component analysis. Neuroimage 2005; 26:885-90. [PMID: 15955498 DOI: 10.1016/j.neuroimage.2005.02.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2004] [Revised: 02/09/2005] [Accepted: 02/17/2005] [Indexed: 11/18/2022] Open
Abstract
We have previously proposed a statistical method for extracting a plasma time-activity curve (pTAC) from dynamic PET images, named EPICA, for kinetic analysis of cerebral glucose metabolism. We assumed that the dynamic PET images consist of a blood-related component and a tissue-related component which are spatially independent in a statistical sense. The aim of this study is to investigate the utility of EPICA in imaging total distribution volume (DVt) and binding potential (BP) with Logan plots in a neuroreceptor mapping study. We applied EPICA to dynamic [(11)C]MPDX PET images in 25 subjects, including healthy subjects and patients with brain diseases, and validated the estimated pTACs. [11C]MPDX is a newly developed radiopharmaceutical for mapping cerebral adenosine A1 receptors. EPICA successfully extracted pTAC for all 25 subjects. Parametric images of DVts were estimated by applying Logan plots with the EPICA-estimated pTAC and then used to define a reference region. The BPs estimated using EPICA were evaluated in 18 subjects by ROI-based comparison with those obtained using the nonlinear least squares method (NLSM). The calculated BPs were identical to the estimates using NLSM in each subject. We conclude that EPICA is a promising technique that generates parametric images of DVt and BP in neuroreceptor mapping without requiring arterial blood sampling.
Collapse
Affiliation(s)
- Mika Naganawa
- Department of Information Processing, Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan
| | | | | | | | | | | | | | | |
Collapse
|