1
|
Ghazanfari N, van Waarde A, Doorduin J, Sijbesma JWA, Kominia M, Koelewijn M, Attia K, Willemsen ATM, Visser TJ, Heeres A, Dierckx RAJO, de Vries EFJ, Elsinga PH. Pharmacokinetic Modeling of [ 11C]GSK-189254, PET Tracer Targeting H 3 Receptors, in Rat Brain. Mol Pharm 2022; 19:918-928. [PMID: 35170965 PMCID: PMC8905578 DOI: 10.1021/acs.molpharmaceut.1c00889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/22/2022]
Abstract
The histamine H3 receptor has been considered as a target for the treatment of various central nervous system diseases. Positron emission tomography (PET) studies with the radiolabeled potent and selective histamine H3 receptor antagonist [11C]GSK-189254 in rodents could be used to examine the mechanisms of action of novel therapeutic drugs or to assess changes of regional H3 receptor density in animal models of neurodegenerative disease. [11C]GSK-189254 was intravenously administered to healthy Wistar rats (n = 10), and a 60 min dynamic PET scan was carried out. Arterial blood samples were obtained during the scan to generate a metabolite-corrected plasma input function. PET data were analyzed using a one-tissue compartment model (1T2k), irreversible (2T3k) or reversible two-tissue compartment models (2T4k), graphical analysis (Logan and Patlak), reference tissue models (SRTM and SRTM2), and standard uptake values (SUVs). The Akaike information criterion and the standard error of the estimated parameters were used to select the most optimal quantification method. This study demonstrated that the 2T4k model with a fixed blood volume fraction and Logan graphical analysis can best describe the kinetics of [11C]GSK-189254 in the rat brain. SUV40-60 and the reference tissue-based measurements DVR(2T4k), BPND(SRTM), and SUV ratio could also be used as a simplified method to estimate H3 receptor availability in case blood sampling is not feasible.
Collapse
Affiliation(s)
- Nafiseh Ghazanfari
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Aren van Waarde
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Janine Doorduin
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Jürgen W. A. Sijbesma
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Maria Kominia
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | | | - Khaled Attia
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Antoon T. M. Willemsen
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | | | | | - Rudi A. J. O. Dierckx
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Erik F. J. de Vries
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| | - Philip H. Elsinga
- University
Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, University of Groningen, Groningen 9700 RB, The Netherlands
| |
Collapse
|
2
|
Takamura Y, Kakuta H. In Vivo Receptor Visualization and Evaluation of Receptor Occupancy with Positron Emission Tomography. J Med Chem 2021; 64:5226-5251. [PMID: 33905258 DOI: 10.1021/acs.jmedchem.0c01714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Positron emission tomography (PET) is useful for noninvasive in vivo visualization of disease-related receptors, for evaluation of receptor occupancy to determine an appropriate drug dosage, and for proof-of-concept of drug candidates in translational research. For these purposes, the specificity of the PET tracer for the target receptor is critical. Here, we review work in this area, focusing on the chemical structures of reported PET tracers, their Ki/Kd values, and the physical properties relevant to target receptor selectivity. Among these physical properties, such as cLogP, cLogD, molecular weight, topological polar surface area, number of hydrogen bond donors, and pKa, we focus especially on LogD and LogP as important physical properties that can be easily compared across a range of studies. We discuss the success of PET tracers in evaluating receptor occupancy and consider likely future developments in the field.
Collapse
Affiliation(s)
- Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
3
|
Schou M, Varnäs K, Jureus A, Ahlgren C, Malmquist J, Häggkvist J, Tari L, Wesolowski SS, Throner SR, Brown DG, Nilsson M, Johnström P, Finnema SJ, Nakao R, Amini N, Takano A, Farde L. Discovery and Preclinical Validation of [(11)C]AZ13153556, a Novel Probe for the Histamine Type 3 Receptor. ACS Chem Neurosci 2016; 7:177-84. [PMID: 26529287 DOI: 10.1021/acschemneuro.5b00268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED The histamine type 3 receptor (H3) is a G protein-coupled receptor implicated in several disorders of the central nervous system. Herein, we describe the radiolabeling and preclinical evaluation of a candidate radioligand for the H3 receptor, 4-(1S,2S)-2-(4-cyclobutylpiperazine-1-carbonyl)cyclopropyl]-N-methyl-benzamide (5), and its comparison with one of the frontrunner radioligands for H3 imaging, namely, GSK189254 (1). Compounds 1 and 5 were radiolabeled with tritium and carbon-11 for in vitro and in vivo imaging experiments. The in vitro binding of [(3)H]1 and [(3)H]5 was examined by (i) saturation binding to rat and nonhuman primate brain tissue homogenate and (ii) in vitro autoradiography on tissue sections from rat, guinea pig, and human brain. The in vivo binding of [(11)C]1 and [(11)C]5 was examined by PET imaging in mice and nonhuman primates. Bmax values obtained from Scatchard analysis of [(3)H]1 and [(3)H]5 binding were in good agreement. Autoradiography with [(3)H]5 on rat, guinea pig, and human brain slices showed specific binding in regions known to be enhanced in H3 receptors, a high degree of colocalization with [(3)H]1, and virtually negligible nonspecific binding in tissue. PET measurements in mice and nonhuman primates demonstrated that [(11)C]5 binds specifically and reversibly to H3 receptors in vivo with low nonspecific binding in brain tissue. Whereas [(11)C]1 showed similar binding characteristics in vivo, the binding kinetics appeared faster for [(11)C]5 than for [(11)C]1. CONCLUSIONS [(11)C]5 has suitable properties for quantification of H3 receptors in nonhuman primate brain and has the potential to offer improved binding kinetics in man compared to [(11)C]1.
Collapse
Affiliation(s)
- Magnus Schou
- AstraZeneca Translational
Science Centre at Karolinska Institutet, PET Centre of Excellence,
Department of Clinical Neuroscience, S-17176 Stockholm, Sweden
| | - Katarina Varnäs
- Department
of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Anders Jureus
- AstraZeneca, Research & Development, Innovative Medicines, S-151 85 Södertälje, Sweden
| | - Charlotte Ahlgren
- AstraZeneca, Research & Development, Innovative Medicines, S-151 85 Södertälje, Sweden
| | - Jonas Malmquist
- AstraZeneca, Research & Development, Innovative Medicines, S-151 85 Södertälje, Sweden
| | - Jenny Häggkvist
- Department
of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Lenke Tari
- Department
of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Steven S. Wesolowski
- AstraZeneca, Research & Development, Innovative Medicines, Cambridge, Massachusetts 02451, United States
| | - Scott R. Throner
- AstraZeneca, Research & Development, Innovative Medicines, Waltham, Massachusetts 02139, United States
| | - Dean G. Brown
- AstraZeneca, Research & Development, Innovative Medicines, Waltham, Massachusetts 02139, United States
| | - Maria Nilsson
- AstraZeneca, Research & Development, Innovative Medicines, S-151 85 Södertälje, Sweden
| | - Peter Johnström
- AstraZeneca Translational
Science Centre at Karolinska Institutet, PET Centre of Excellence,
Department of Clinical Neuroscience, S-17176 Stockholm, Sweden
| | - Sjoerd J. Finnema
- Department
of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Ryuji Nakao
- Department
of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Nahid Amini
- Department
of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Akihiro Takano
- Department
of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Lars Farde
- AstraZeneca Translational
Science Centre at Karolinska Institutet, PET Centre of Excellence,
Department of Clinical Neuroscience, S-17176 Stockholm, Sweden
| |
Collapse
|
4
|
Lewis DY, Champion S, Wyper D, Dewar D, Pimlott S. Assessment of [125I]WYE-230949 as a novel histamine H3 receptor radiopharmaceutical. PLoS One 2014; 9:e115876. [PMID: 25542008 PMCID: PMC4277420 DOI: 10.1371/journal.pone.0115876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/02/2014] [Indexed: 12/15/2022] Open
Abstract
Histamine H3 receptor therapeutics have been proposed for several diseases such as schizophrenia, attention deficit hyperactivity disorder, Alzheimer's disease and obesity. We set out to evaluate the novel compound, [125I]WYE-230949, as a potential radionuclide imaging agent for the histamine H3 receptor in brain. [125I]WYE-230949 had a high in vitro affinity for the rat histamine H3 receptor (Kd of 6.9 nM). The regional distribution of [125I]WYE-230949 binding sites in rat brain, demonstrated by in vitro autoradiography, was consistent with the known distribution of the histamine H3 receptor. Rat brain uptake of intravenously injected [125I]WYE-230949 was low (0.11 %ID/g) and the ratio of specific: non-specific binding was less than 1.4, as determined by ex vivo autoradiography. In plasma, metabolism of [125I]WYE-230949 into a less lipophilic species occurred, such that less than 38% of the parent compound remained 30 minutes after injection. Brain uptake and metabolism of [125I]WYE-230949 were increased and specific binding was reduced in anaesthetised compared to conscious rats. [125I]WYE230949 is not a potential radiotracer for imaging rat histamine H3 receptors in vivo due to low brain uptake, in vivo metabolism of the parent compound and low specific binding.
Collapse
Affiliation(s)
- David Y. Lewis
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| | - Sue Champion
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David Wyper
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Deborah Dewar
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sally Pimlott
- Department of Clinical Physics, Greater Glasgow NHS Trust and University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
5
|
Funke U, Vugts DJ, Janssen B, Spaans A, Kruijer PS, Lammertsma AA, Perk LR, Windhorst AD. 11C-labeled and18F-labeled PET ligands for subtype-specific imaging of histamine receptors in the brain. J Labelled Comp Radiopharm 2013; 56:120-9. [DOI: 10.1002/jlcr.3038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/18/2013] [Accepted: 01/29/2013] [Indexed: 12/13/2022]
Affiliation(s)
| | - Danielle J. Vugts
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| | - Bieneke Janssen
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| | | | - Perry S. Kruijer
- BV Cyclotron VU; De Boelelaan 1081; 1081; HV; Amsterdam; The Netherlands
| | - Adriaan A. Lammertsma
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| | - Lars R. Perk
- BV Cyclotron VU; De Boelelaan 1081; 1081; HV; Amsterdam; The Netherlands
| | - Albert D. Windhorst
- VU University Medical Center, Department of Radiology & Nuclear Medicine; Location Radionuclide Center; De Boelelaan 1085c; 1081; HV; Amsterdam; The Netherlands
| |
Collapse
|
6
|
A new facile synthetic route to [11C]GSK189254, a selective PET radioligand for imaging of CNS histamine H3 receptor. Bioorg Med Chem Lett 2012; 22:4713-8. [DOI: 10.1016/j.bmcl.2012.05.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 11/17/2022]
|
7
|
Selivanova SV, Honer M, Combe F, Isensee K, Stark H, Krämer SD, Schubiger PA, Ametamey SM. Radiofluorinated histamine H3 receptor antagonist as a potential probe for in vivo PET imaging: Radiosynthesis and pharmacological evaluation. Bioorg Med Chem 2012; 20:2889-96. [DOI: 10.1016/j.bmc.2012.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 01/16/2023]
|
8
|
Bao X, Lu S, Liow JS, Zoghbi SS, Jenko KJ, Clark DT, Gladding RL, Innis RB, Pike VW. Radiosynthesis and evaluation of an (18)F-labeled positron emission tomography (PET) radioligand for brain histamine subtype-3 receptors based on a nonimidazole 2-aminoethylbenzofuran chemotype. J Med Chem 2012; 55:2406-15. [PMID: 22313227 PMCID: PMC3303611 DOI: 10.1021/jm201690h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A known chemotype of H(3) receptor ligand was explored for development of a radioligand for imaging brain histamine subtype 3 (H(3)) receptors in vivo with positron emission tomography (PET), namely nonimidazole 2-aminoethylbenzofurans, represented by the compound (R)-(2-(2-(2-methylpyrrolidin-1-yl)ethyl)benzofuran-5-yl)(4-fluorophenyl)methanone (9). Compound 9 was labeled with fluorine-18 (t(1/2) = 109.7 min) in high specific activity by treating the prepared nitro analogue (12) with cyclotron-produced [(18)F]fluoride ion. [(18)F]9 was studied with PET in mouse and in monkey after intravenous injection. [(18)F]9 showed favorable properties as a candidate PET radioligand, including moderately high brain uptake with a high proportion of H(3) receptor-specific signal in the absence of radiodefluorination. The nitro compound 12 was found to have even higher H(3) receptor affinity, indicating the potential of this chemotype for the development of further promising PET radioligands.
Collapse
Affiliation(s)
- Xiaofeng Bao
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| | - Kimberly J. Jenko
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| | - David T. Clark
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| | - Robert L. Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, Maryland, 20892, United States
| |
Collapse
|
9
|
Slifstein M. When Reversible Ligands Do Not Reverse, and Other Modelers' Dilemmas: FIGURE 1. J Nucl Med 2010; 51:1005-8. [DOI: 10.2967/jnumed.109.073445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Hamill TG, Sato N, Jitsuoka M, Tokita S, Sanabria S, Eng W, Ryan C, Krause S, Takenaga N, Patel S, Zeng Z, Williams D, Sur C, Hargreaves R, Burns HD. Inverse agonist histamine H3 receptor PET tracers labelled with carbon-11 or fluorine-18. Synapse 2009; 63:1122-32. [DOI: 10.1002/syn.20689] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Plisson C, Gunn RN, Cunningham VJ, Bender D, Salinas CA, Medhurst AD, Roberts JC, Laruelle M, Gee AD. 11C-GSK189254: a selective radioligand for in vivo central nervous system imaging of histamine H3 receptors by PET. J Nucl Med 2009; 50:2064-72. [PMID: 19910432 DOI: 10.2967/jnumed.109.062919] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The histamine H(3) receptor is a G-protein-coupled presynaptic auto- and heteroreceptor whose activation leads to a decrease in the release of several neurotransmitters including histamine, acetycholine, noradrenaline, and dopamine. H(3) receptor antagonists such as 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) can increase the release of these neurotransmitters and thus may offer potential therapeutic benefits in diseases characterized by disturbances of neurotransmission. The aim of this study was to synthesize and evaluate (11)C-labeled GSK189254 ((11)C-GSK189254) for imaging the histamine H(3) receptor in vivo by PET. METHODS GSK189254 exhibits high affinity (0.26 nM) and selectivity for the human histamine H(3) receptor. Autoradiography experiments were performed using (3)H-GSK189254 to evaluate its in vitro binding in porcine brain tissues. GSK189254 was labeled by N-alkylation using (11)C-methyl iodide in good yields, radiochemical purity, and specific activity. A series of PET experiments was conducted to investigate (11)C-GSK189254 binding in the porcine brain. RESULTS In vitro autoradiography demonstrated specific (3)H-GSK189254 binding in the porcine brain; therefore, (11)C-GSK189254 was evaluated in vivo in pigs and showed good brain penetration and high uptake in regions such as the striatum and cortices, known to contain high densities of the histamine H(3) receptors. The radioligand kinetics were reversible, and quantitative analysis was achieved with a 2-tissue-compartmental model yielding the distribution volume as the outcome measure of interest. The distribution volume was reduced to a homogeneous level in all regions after blocking by the coadministration of either unlabeled GSK189254 or ciproxifan, a structurally distinct histamine H(3) antagonist. Further coadministration studies allowed for the estimation of the radioligand affinity (0.1 nM) and the density of histamine H(3) receptor sites in the cerebellum (0.74 nM), cortex (2.05 nM), and striatum (2.65 nM). CONCLUSION These findings suggest that (11)C-GSK189254 possesses appropriate characteristics for the in vivo imaging of the histamine H(3) receptor by PET.
Collapse
Affiliation(s)
- Christophe Plisson
- GlaxoSmithKline, Clinical Imaging Centre, Hammersmith Hospital, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Development of a selective and potent radioactive ligand for histamine H3 receptors: A compound potentially useful for receptor occupancy studies. Bioorg Med Chem Lett 2009; 19:4075-8. [DOI: 10.1016/j.bmcl.2009.06.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 11/19/2022]
|
13
|
Miller TR, Milicic I, Bauch J, Du J, Surber B, Browman KE, Marsh K, Cowart M, Brioni JD, Esbenshade TA. Use of the H3 receptor antagonist radioligand [3H]-A-349821 to reveal in vivo receptor occupancy of cognition enhancing H3 receptor antagonists. Br J Pharmacol 2009; 157:139-49. [PMID: 19413577 DOI: 10.1111/j.1476-5381.2009.00239.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The histamine H3 receptor antagonist radioligand [3H]-A-349821 was characterized as a radiotracer for assessing in vivo receptor occupancy by H3 receptor antagonists that affect behaviour. This model was established as an alternative to ex vivo binding methods, for relating antagonist H3 receptor occupancy to blood levels and efficacy in preclinical models. EXPERIMENTAL APPROACH In vivo cerebral cortical H3 receptor occupancy by [3H]-A-349821 was determined in rats from differences in [3H]-A-349821 levels in the isolated cortex and cerebellum, a brain region with low levels of H3 receptors. Comparisons were made to relate antagonist H3 receptor occupancy to blood levels and efficacy in a preclinical model of cognition, the five-trial inhibitory avoidance response in rat pups. KEY RESULTS In adult rats, [3H]-A-349821, 1.5 microg x kg(-1), penetrated into the brain and cleared more rapidly from cerebellum than cortex; optimally, [3H]-A-349821 levels were twofold higher in the latter. With increasing [3H]-A-349821 doses, cortical H3 receptor occupancy was saturable with a binding capacity consistent with in vitro binding in cortex membranes. In studies using tracer [3H]-A-349821 doses, ABT-239 and other H3 receptor antagonists inhibited H3 receptor occupancy by [3H]-A-349821 in a dose-dependent manner. Blood levels of the antagonists corresponding to H3 receptor occupancy were consistent with blood levels associated with efficacy in the five-trial inhibitory avoidance response. CONCLUSIONS AND IMPLICATIONS When employed as an occupancy radiotracer, [3H]-A-349821 provided valid measurements of in vivo H3 receptor occupancy, which may be helpful in guiding and interpreting clinical studies of H3 receptor antagonists.
Collapse
Affiliation(s)
- T R Miller
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|