1
|
Tang J, Liu C, Liu C, Hu Q, Fang Y, Chen Z. Evaluation of damage discrimination in dopaminergic neurons using dopamine transporter PET tracer [ 18F]FECNT-d 4. EJNMMI Res 2024; 14:78. [PMID: 39210186 PMCID: PMC11362440 DOI: 10.1186/s13550-024-01140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a prevalent neurodegenerative disorder worldwide, diagnosed based on classic symptoms like motor dysfunction and cognitive impairments. With the development of various radioactive ligands, positron emission tomography (PET) imaging combined with specific radiolabelling probes has proven to be effective in aiding clinical PD diagnosis. Among these probes, 2β-Carbomethoxy-3β-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl) nortropane ([18F]FECNT) has been utilized as a PET tracer to image dopamine transporter (DAT) integrity in striatal presynaptic dopaminergic terminals. However, the presence of brain-penetrant radioactive metabolites produced by [18F]FECNT may impact the accuracy of PET imaging. In previous research, we developed 2β-Carbomethoxy-3β-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl-1,1,2,2-d4) nortropane ([18F]FECNT-d4), a deuterated derivative with enhanced stability in plasma and the striatum, along with a slower washout rate. In this study, we further investigated the potential of [18F]FECNT-d4 to detect dopaminergic neuron degeneration in Parkinson's disease. This involved PET imaging in unilaterally-lesioned PD model rats and in vitro autoradiography conducted on postmortem brain sections. RESULTS PET images revealed reduced specific uptake in the ipsilateral striatum of rats stereotactically injected with 6-hydroxydopamine hydrochloride (6-OHDA). Compared to the sham group, the ratio of standardized uptake value (SUV) in the ipsilateral to contralateral striatum decreased by 13%, 23%, and 63% in the mild, moderate, and severe lesioned groups, respectively. Dopaminergic denervation observed in PET imaging was further supported by behavioral assessments, immunostaining, and monoamine concentration tests. Moreover, the microPET results exhibited positive correlations with these measurements, except for the apomorphine-induced rotational behavior test, which showed a negative correlation. Additionally, [18F]FECNT-d4 uptake was approximately 40% lower in the postmortem striatal sections of a PD patient compared to a healthy subject. Furthermore, estimated human dosimetry (effective dose equivalent: 5.06 E-03 mSv/MBq), extrapolated from rat biodistribution data, remained below the current Food and Drug Administration limit for radiation exposure. CONCLUSION Our findings demonstrate that [18F]FECNT-d4 accurately estimates levels of dopaminergic neuron degeneration in the 6-OHDA-induced PD rat model and effectively distinguishes between PD patients and healthy individuals. This highly sensitive and safe PET probe holds promising potential for clinical application in the diagnosis and monitoring of Parkinson's disease.
Collapse
Affiliation(s)
- Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China
| | - Congjin Liu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Jing'an District, Shanghai, 200040, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China
| | - Qianyue Hu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China
| | - Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China
| | - Zhengping Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20 Qianrong Road, Binhu District, Wuxi, 214063, China.
| |
Collapse
|
2
|
Challapalli A, Barwick TD, Dubash SR, Inglese M, Grech-Sollars M, Kozlowski K, Tam H, Patel NH, Winkler M, Flohr P, Saleem A, Bahl A, Falconer A, De Bono JS, Aboagye EO, Mangar S. Bench to Bedside Development of [ 18F]Fluoromethyl-(1,2- 2H 4)choline ([ 18F]D4-FCH). Molecules 2023; 28:8018. [PMID: 38138508 PMCID: PMC10745874 DOI: 10.3390/molecules28248018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Malignant transformation is characterised by aberrant phospholipid metabolism of cancers, associated with the upregulation of choline kinase alpha (CHKα). Due to the metabolic instability of choline radiotracers and the increasing use of late-imaging protocols, we developed a more stable choline radiotracer, [18F]fluoromethyl-[1,2-2H4]choline ([18F]D4-FCH). [18F]D4-FCH has improved protection against choline oxidase, the key choline catabolic enzyme, via a 1H/2D isotope effect, together with fluorine substitution. Due to the promising mechanistic and safety profiles of [18F]D4-FCH in vitro and preclinically, the radiotracer has transitioned to clinical development. [18F]D4-FCH is a safe positron emission tomography (PET) tracer, with a favourable radiation dosimetry profile for clinical imaging. [18F]D4-FCH PET/CT in lung and prostate cancers has shown highly heterogeneous intratumoral distribution and large lesion variability. Treatment with abiraterone or enzalutamide in metastatic castrate-resistant prostate cancer patients elicited mixed responses on PET at 12-16 weeks despite predominantly stable radiological appearances. The sum of the weighted tumour-to-background ratios (TBRs-wsum) was associated with the duration of survival.
Collapse
Affiliation(s)
- Amarnath Challapalli
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; (A.C.); (T.D.B.); (S.R.D.); (M.I.); (M.G.-S.); (K.K.)
- Department of Clinical Oncology, Bristol Haematology and Oncology Center, Horfield Road, Bristol BS2 8ED, UK;
| | - Tara D. Barwick
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; (A.C.); (T.D.B.); (S.R.D.); (M.I.); (M.G.-S.); (K.K.)
- Department of Radiology & Nuclear Medicine, Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK; (H.T.); (N.H.P.)
| | - Suraiya R. Dubash
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; (A.C.); (T.D.B.); (S.R.D.); (M.I.); (M.G.-S.); (K.K.)
| | - Marianna Inglese
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; (A.C.); (T.D.B.); (S.R.D.); (M.I.); (M.G.-S.); (K.K.)
| | - Matthew Grech-Sollars
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; (A.C.); (T.D.B.); (S.R.D.); (M.I.); (M.G.-S.); (K.K.)
| | - Kasia Kozlowski
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; (A.C.); (T.D.B.); (S.R.D.); (M.I.); (M.G.-S.); (K.K.)
| | - Henry Tam
- Department of Radiology & Nuclear Medicine, Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK; (H.T.); (N.H.P.)
| | - Neva H. Patel
- Department of Radiology & Nuclear Medicine, Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK; (H.T.); (N.H.P.)
| | - Mathias Winkler
- Department of Urology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK; (M.W.); (A.F.)
| | - Penny Flohr
- Division of Clinical Studies, The Institute of Cancer Research and Royal Marsden Hospital, Cotswold Road, Sutton SM2 5NG, UK; (P.F.); (J.S.D.B.)
| | - Azeem Saleem
- Invicro, A Konica Minolta Company, Burlington Danes Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK;
- Hull York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Amit Bahl
- Department of Clinical Oncology, Bristol Haematology and Oncology Center, Horfield Road, Bristol BS2 8ED, UK;
| | - Alison Falconer
- Department of Urology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK; (M.W.); (A.F.)
| | - Johann S. De Bono
- Division of Clinical Studies, The Institute of Cancer Research and Royal Marsden Hospital, Cotswold Road, Sutton SM2 5NG, UK; (P.F.); (J.S.D.B.)
| | - Eric O. Aboagye
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; (A.C.); (T.D.B.); (S.R.D.); (M.I.); (M.G.-S.); (K.K.)
| | - Stephen Mangar
- Department of Urology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London W6 8RF, UK; (M.W.); (A.F.)
| |
Collapse
|
3
|
Sun Y, Ramos-Torres KM, Brugarolas P. Metabolic Stability of the Demyelination Positron Emission Tomography Tracer [ 18F]3-Fluoro-4-Aminopyridine and Identification of Its Metabolites. J Pharmacol Exp Ther 2023; 386:93-101. [PMID: 37024145 PMCID: PMC10289238 DOI: 10.1124/jpet.122.001462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
[18F]3-fluoro-4-aminopyridine ([18F]3F4AP) is a positron emission tomography (PET) tracer for imaging demyelination based on the multiple sclerosis drug 4-aminopyridine (4AP, dalfampridine). This radiotracer was found to be stable in rodents and nonhuman primates imaged under isoflurane anesthesia. However, recent findings indicate that its stability is greatly decreased in awake humans and mice. Since both 4AP and isoflurane are metabolized primarily by cytochrome P450 enzymes, particularly cytochrome P450 family 2 subfamily E member 1 (CYP2E1), we postulated that this enzyme may be responsible for the metabolism of 3F4AP. Here, we investigated the metabolism of [18F]3F4AP by CYP2E1 and identified its metabolites. We also investigated whether deuteration, a common approach to increase the stability of drugs, could improve its stability. Our results demonstrate that CYP2E1 readily metabolizes 3F4AP and its deuterated analogs and that the primary metabolites are 5-hydroxy-3F4AP and 3F4AP N-oxide. Although deuteration did not decrease the rate of the CYP2E1-mediated oxidation, our findings explain the diminished in vivo stability of 3F4AP compared with 4AP and further our understanding of when deuteration may improve the metabolic stability of drugs and PET ligands. SIGNIFICANCE STATEMENT: The demyelination tracer [18F]3F4AP was found to undergo rapid metabolism in humans, which could compromise its utility. Understanding the enzymes and metabolic products involved may offer strategies to reduce metabolism. Using a combination of in vitro assays and chemical syntheses, this report shows that cytochrome P450 enzyme CYP2E1 is likely responsible for [18F]3F4AP metabolism, that 4-amino-5-fluoroprydin-3-ol (5-hydroxy-3F4AP, 5OH3F4AP) and 4-amino-3-fluoropyridine 1-oxide (3F4AP N-oxide) are the main metabolites, and that deuteration is unlikely to improve the stability of the tracer in vivo.
Collapse
Affiliation(s)
- Yang Sun
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Karla M Ramos-Torres
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Li Y, Inglese M, Dubash S, Barnes C, Brickute D, Braga MC, Wang N, Beckley A, Heinzmann K, Allott L, Lu H, Chen C, Fu R, Carroll L, Aboagye EO. Consideration of Metabolite Efflux in Radiolabelled Choline Kinetics. Pharmaceutics 2021; 13:1246. [PMID: 34452207 PMCID: PMC8400349 DOI: 10.3390/pharmaceutics13081246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is a complex microenvironmental condition known to regulate choline kinase α (CHKA) activity and choline transport through transcription factor hypoxia-inducible factor-1α (HIF-1α) and, therefore, may confound the uptake of choline radiotracer [18F]fluoromethyl-[1,2-2H4]-choline ([18F]-D4-FCH). The aim of this study was to investigate how hypoxia affects the choline radiotracer dynamics. Three underlying mechanisms by which hypoxia could potentially alter the uptake of the choline radiotracer, [18F]-D4-FCH, were investigated: 18F-D4-FCH import, CHKA phosphorylation activity, and the efflux of [18F]-D4-FCH and its phosphorylated product [18F]-D4-FCHP. The effects of hypoxia on [18F]-D4-FCH uptake were studied in CHKA-overexpressing cell lines of prostate cancer, PC-3, and breast cancer MDA-MB-231 cells. The mechanisms of radiotracer efflux were assessed by the cell uptake and immunofluorescence in vitro and examined in vivo (n = 24). The mathematical modelling methodology was further developed to verify the efflux hypothesis using [18F]-D4-FCH dynamic PET scans from non-small cell lung cancer (NSCLC) patients (n = 17). We report a novel finding involving the export of phosphorylated [18F]-D4-FCH and [18F]-D4-FCHP via HIF-1α-responsive efflux transporters, including ABCB4, when the HIF-1α level is augmented. This is supported by a graphical analysis of human data with a compartmental model (M2T6k + k5) that accounts for the efflux. Hypoxia/HIF-1α increases the efflux of phosphorylated radiolabelled choline species, thus supporting the consideration of efflux in the modelling of radiotracer dynamics.
Collapse
Affiliation(s)
- Yunqing Li
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Marianna Inglese
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Suraiya Dubash
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Chris Barnes
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Diana Brickute
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Marta Costa Braga
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Ning Wang
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Alice Beckley
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Kathrin Heinzmann
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Louis Allott
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Haonan Lu
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Cen Chen
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Ruisi Fu
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| | - Laurence Carroll
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric O. Aboagye
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK; (Y.L.); (M.I.); (S.D.); (C.B.); (D.B.); (M.C.B.); (N.W.); (A.B.); (K.H.); (L.A.); (H.L.); (C.C.); (R.F.); (L.C.)
| |
Collapse
|
5
|
Klenner MA, Pascali G, Fraser BH, Darwish TA. Kinetic isotope effects and synthetic strategies for deuterated carbon-11 and fluorine-18 labelled PET radiopharmaceuticals. Nucl Med Biol 2021; 96-97:112-147. [PMID: 33892374 DOI: 10.1016/j.nucmedbio.2021.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022]
Abstract
The deuterium labelling of pharmaceuticals is a useful strategy for altering pharmacokinetic properties, particularly for improving metabolic resistance. The pharmacological effects of such metabolites are often assumed to be negligible during standard drug discovery and are factored in later at the clinical phases of development, where the risks and benefits of the treatment and side-effects can be wholly assessed. This paradigm does not translate to the discovery of radiopharmaceuticals, however, as the confounding effects of radiometabolites can inevitably show in preliminary positron emission tomography (PET) scans and thus complicate interpretation. Consequently, the formation of radiometabolites is crucial to take into consideration, compared to non-radioactive metabolites, and the application of deuterium labelling is a particularly attractive approach to minimise radiometabolite formation. Herein, we provide a comprehensive overview of the deuterated carbon-11 and fluorine-18 radiopharmaceuticals employed in PET imaging experiments. Specifically, we explore six categories of deuterated radiopharmaceuticals used to investigate the activities of monoamine oxygenase (MAO), choline, translocator protein (TSPO), vesicular monoamine transporter 2 (VMAT2), neurotransmission and the diagnosis of Alzheimer's disease; from which we derive four prominent deuteration strategies giving rise to a kinetic isotope effect (KIE) for reducing the rate of metabolism. Synthetic approaches for over thirty of these deuterated radiopharmaceuticals are discussed from the perspective of deuterium and radioisotope incorporation, alongside an evaluation of the deuterium labelling and radiolabelling efficacies across these independent studies. Clinical and manufacturing implications are also discussed to provide a more comprehensive overview of how deuterated radiopharmaceuticals may be introduced to routine practice.
Collapse
Affiliation(s)
- Mitchell A Klenner
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia; Department of Nuclear Medicine and PET, Liverpool Hospital, Liverpool, NSW 2170, Australia.
| | - Giancarlo Pascali
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia; Department of Nuclear Medicine and PET, Prince of Wales Hospital, Randwick, NSW 2031, Australia; School of Chemistry, University of New South Wales (UNSW), Kensington, NSW 2052, Australia
| | - Benjamin H Fraser
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Tamim A Darwish
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| |
Collapse
|
6
|
Ghosh KK, Padmanabhan P, Yang CT, Mishra S, Halldin C, Gulyás B. Dealing with PET radiometabolites. EJNMMI Res 2020; 10:109. [PMID: 32997213 PMCID: PMC7770856 DOI: 10.1186/s13550-020-00692-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Abstract Positron emission tomography (PET) offers the study of biochemical,
physiological, and pharmacological functions at a cellular and molecular level.
The performance of a PET study mostly depends on the used radiotracer of
interest. However, the development of a novel PET tracer is very difficult, as
it is required to fulfill a lot of important criteria. PET radiotracers usually
encounter different chemical modifications including redox reaction, hydrolysis,
decarboxylation, and various conjugation processes within living organisms. Due
to this biotransformation, different chemical entities are produced, and the
amount of the parent radiotracer is declined. Consequently, the signal measured
by the PET scanner indicates the entire amount of radioactivity deposited in the
tissue; however, it does not offer any indication about the chemical disposition
of the parent radiotracer itself. From a radiopharmaceutical perspective, it is
necessary to quantify the parent radiotracer’s fraction present in the tissue.
Hence, the identification of radiometabolites of the radiotracers is vital for
PET imaging. There are mainly two reasons for the chemical identification of PET
radiometabolites: firstly, to determine the amount of parent radiotracers in
plasma, and secondly, to rule out (if a radiometabolite enters the brain) or
correct any radiometabolite accumulation in peripheral tissue. Besides,
radiometabolite formations of the tracer might be of concern for the PET study,
as the radiometabolic products may display considerably contrasting distribution
patterns inside the body when compared with the radiotracer itself. Therefore,
necessary information is needed about these biochemical transformations to
understand the distribution of radioactivity throughout the body. Various
published review articles on PET radiometabolites mainly focus on the sample
preparation techniques and recently available technology to improve the
radiometabolite analysis process. This article essentially summarizes the
chemical and structural identity of the radiometabolites of various radiotracers
including [11C]PBB3,
[11C]flumazenil,
[18F]FEPE2I, [11C]PBR28,
[11C]MADAM, and
(+)[18F]flubatine. Besides, the importance of
radiometabolite analysis in PET imaging is also briefly summarized. Moreover,
this review also highlights how a slight chemical modification could reduce the
formation of radiometabolites, which could interfere with the results of PET
imaging. Graphical abstract ![]()
Collapse
Affiliation(s)
- Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore.
| | - Chang-Tong Yang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore.,Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.,Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Christer Halldin
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore.,Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore. .,Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
7
|
Reichel M, Karaghiosoff K. Reagents for Selective Fluoromethylation: A Challenge in Organofluorine Chemistry. Angew Chem Int Ed Engl 2020; 59:12268-12281. [PMID: 32022357 PMCID: PMC7383490 DOI: 10.1002/anie.201913175] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Indexed: 01/09/2023]
Abstract
The introduction of a monofluoromethyl moiety has undoubtedly become a very important area of research in recent years. Owing to the beneficial properties of organofluorine compounds, such as their metabolic stability, the incorporation of the CH2 F group as a bioisosteric substitute for various functional groups is an attractive strategy for the discovery of new pharmaceuticals. Furthermore, the monofluoromethyl unit is also widely used in agrochemistry, in pharmaceutical chemistry, and in fine chemicals. The problems associated with climate change and the growing need for environmentally friendly industrial processes mean that alternatives to the frequently used CFC and HFBC fluoromethylating agents (CH2 FCl and CH2 FBr) are urgently needed and also required by the Montreal Protocol. This has recently prompted many researchers to develop alternative fluoromethylation agents. This Minireview summarizes both the classical and new generation of fluoromethylating agents. Reagents that act via electrophilic, nucleophilic, and radical pathways are discussed, in addition to their precursors.
Collapse
Affiliation(s)
- Marco Reichel
- Department of ChemistryLudwig-Maximilian UniversityButenandstr. 5–1381377MunichGermany
| | | |
Collapse
|
8
|
Dubash S, Inglese M, Mauri F, Kozlowski K, Trivedi P, Arshad M, Challapalli A, Barwick T, Al-Nahhas A, Stanbridge R, Lewanski C, Berry M, Bowen F, Aboagye EO. Spatial heterogeneity of radiolabeled choline positron emission tomography in tumors of patients with non-small cell lung cancer: first-in-patient evaluation of [ 18F]fluoromethyl-(1,2- 2H 4)-choline. Theranostics 2020; 10:8677-8690. [PMID: 32754271 PMCID: PMC7392021 DOI: 10.7150/thno.47298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose: The spatio-molecular distribution of choline and its metabolites in tumors is highly heterogeneous. Due to regulation of choline metabolism by hypoxic transcriptional signaling and other survival factors, we envisage that detection of such heterogeneity in patient tumors could provide the basis for advanced localized therapy. However, non-invasive methods to assess this phenomenon in patients are limited. We investigated such heterogeneity in Non-Small Cell Lung Cancer (NSCLC) with [18F]fluoromethyl-(1,2-2H4) choline ([18F]D4-FCH) and positron emission tomography/computed tomography (PET/CT). Experimental design: [18F]D4-FCH (300.5±72.9MBq [147.60-363.6MBq]) was administered intravenously to 17 newly diagnosed NSCLC patients. PET/CT scans were acquired concurrently with radioactive blood sampling to permit mathematical modelling of blood-tissue transcellular rate constants. Comparisons were made with biopsy-derived choline kinase-α (CHKα) expression and diagnostic [18F]fluorodeoxyglucose ([18F]FDG) scans. Results: Oxidation of [18F]D4-FCH to [18F]D4-fluorobetaine was suppressed (48.58±0.31% parent at 60 min) likely due to the deuterium isotope effect embodied within the design of the radiotracer. Early (5 min) and late (60 min) images showed specific uptake of tracer in all 51 lesions (tumors, lymph nodes and metastases) from 17 patients analyzed. [18F]D4-FCH-derived uptake (SUV60max) in index primary lesions (n=17) ranged between 2.87-10.13; lower than that of [18F]FDG PET [6.89-22.64]. Mathematical modelling demonstrated net irreversible uptake of [18F]D4-FCH at steady-state, and parametric mapping of the entire tumor showed large intratumorally heterogeneity in radiotracer retention, which is likely to have influenced correlations with biopsy-derived CHKα expression. Conclusions: [18F]D4-FCH is detectable in NSCLC with large intratumorally heterogeneity, which could be exploited in the future for targeting localized therapy.
Collapse
Affiliation(s)
- Suraiya Dubash
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Marianna Inglese
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Francesco Mauri
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Kasia Kozlowski
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Pritesh Trivedi
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Mubarik Arshad
- Department of Surgery and Cancer, Imperial College London, United Kingdom
- Department of Radiology/Nuclear Medicine, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Tara Barwick
- Department of Surgery and Cancer, Imperial College London, United Kingdom
- Department of Radiology/Nuclear Medicine, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Adil Al-Nahhas
- Department of Radiology/Nuclear Medicine, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Rex Stanbridge
- Department of Surgery and Cancer, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Conrad Lewanski
- Department of Surgery and Cancer, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Matthew Berry
- Department of Medicine and Integrated Care, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Frances Bowen
- Department of Medicine and Integrated Care, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Eric O. Aboagye
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| |
Collapse
|
9
|
Reichel M, Karaghiosoff K. Reagenzien für die selektive Fluormethylierung: Herausforderungen der Organofluorchemie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913175] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Reichel
- Department Chemie Ludwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Deutschland
| | - Konstantin Karaghiosoff
- Department Chemie Ludwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Deutschland
| |
Collapse
|
10
|
Villar M, Valiente M, Toscano M, Galmés M, González C, Ortiz M, Vega F, Oporto M, Bibiloni P, Chinchilla JL, Molina J, Ríos Á, Peña C, Rubí S. Development of a thin layer chromatography method for plasma correction of [ 18F]fluorocholine metabolites in positron emission tomography quantification studies in humans. Nucl Med Biol 2019; 74-75:34-40. [PMID: 31473490 DOI: 10.1016/j.nucmedbio.2019.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 11/27/2022]
Abstract
INTRODUCTION After its intravenous injection, [18F]fluorocholine is oxidized by choline-oxidase into its main plasma metabolite, [18F]fluorobetaine. If PET kinetic modeling quantification of [18F]fluorocholine uptake is intended, the plasma input time-activity-curve of the parent tracer must be obtained, i.e., the fraction of the total plasma radioactivity corresponding to the nonmetabolized [18F]fluorocholine at each time has to be known. Hence our aim was to develop an easy-routine Thin-Layer-Chromatography (TLC) method to separate and quantify the relative fractions of [18F]fluorocholine and [18F]fluorobetaine as a function of time during PET imaging in humans. METHODS First, we tested several combinations of solvents systems and layers to select the one showing the best resolution on non-radioactive standards. Thereafter, [18F]fluorobetaine was obtained through chemical oxidation of an [18F]fluorocholine sample at diferent incubation times and we applied the selected TLC-system to aliquots of this oxidation solution, both in a saline and in human deproteinized plasma matrices. The plates were detected by a radio-TLC-scanner. This TLC-system was finally applied to arterial plasma samples from 9 patients with high-grade-glioma undergoing brain PET imaging and a parent fraction curve was obtained in each of them. RESULTS A TLC-system based on Silica-Gel-60//MeOH-NH3 was selected from the choline/betaine non-radioactive standards assay. Radiochromatograms of [18F]fluorocholine oxidation solution yielded two separated and well-defined peaks, Rf = 0,03 ([18F]fluorocholine) and Rf = 0.78 (18F]fluorobetaine) consistent with those observed on non-radioactive standards. During the oxidation, the [18F]fluorocholine radioactivity peak decreased progressively at several incubation times, while the other peak ([18F]fluorobetaine) increased accordingly. The mean values of the parent fraction of [18F]fluorocholine of the 9 patients studied (mean+/-SD) were 94% ± 6%, 58% ± 15%, 43% ± 10%, 39% ± 6% and 37% ± 6% at 2.8 min, 5.8 min, 8.8 min, 11.7 min and 14.7 min post-injection, respectively. CONCLUSIONS We have developed a TLC-system, easy to perform in a standard radiopharmacy unit, that enables the metabolite correction of arterial input function of [18F]fluorocholine in patients undergoing PET oncologic quantitative imaging.
Collapse
Affiliation(s)
- Marina Villar
- Radiopharmacy Unit, Hospital Universitari Son Espases, Palma, Spain
| | - Manuel Valiente
- Radiopharmacy Unit, Hospital Universitari Son Espases, Palma, Spain
| | - María Toscano
- Radiopharmacy Unit, Hospital Universitari Son Espases, Palma, Spain
| | - Margalida Galmés
- Radiopharmacy Unit, Hospital Universitari Son Espases, Palma, Spain
| | - Carlos González
- SCOPIA Research Group, Universitat de les Illes Balears, Palma, Spain
| | - Marta Ortiz
- Department of Hospital Pharmacy, Hospital Universitari Son Espases, Palma, Spain
| | - Fernando Vega
- Radiopharmacy Unit, Hospital Universitari Son Espases, Palma, Spain
| | - Magdalena Oporto
- Department of Nuclear Medicine, Hospital Universitari Son Espases, Palma, Spain
| | - Pedro Bibiloni
- SCOPIA Research Group, Universitat de les Illes Balears, Palma, Spain
| | | | - Jesús Molina
- Department of Nuclear Medicine, Hospital Universitari Son Espases, Palma, Spain
| | - Ángel Ríos
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Spain
| | - Cristina Peña
- Department of Nuclear Medicine, Hospital Universitari Son Espases, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Spain
| | - Sebastià Rubí
- Department of Nuclear Medicine, Hospital Universitari Son Espases, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma, Spain.
| |
Collapse
|
11
|
Stimson DHR, Qiao Z, Reutens DC, Venkatachalam TK, Bhalla R. Investigation on the impact of three different quaternary methyl ammonium cartridges on the radiosynthetic yields of [ 18 F]fluoromethyl tosylate. J Labelled Comp Radiopharm 2019; 62:588-595. [PMID: 31236995 DOI: 10.1002/jlcr.3781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 11/09/2022]
Abstract
Our recent investigations for the radiosynthesis of [18 F]fluoromethyl tosylate have highlighted that choice of quaternary methyl ammonium (QMA) cartridge used during the radiosynthesis can significantly impact the radiochemical yields. Often the details of the QMA cartridge used in fluourine-18 syntheses are not fully described. However, our studies demonstrate that the type, the size, and nature (method by which it has been conditioned) of the QMA cartridge used during the radiosynthesis can make a significant impact in the labelling efficiency. This paper investigates the use of three QMA cartridges and demonstrates that radiochemical yield (decay corrected) of [18 F]fluoromethyl tosylate can increase from 46% to 60% by simply changing the QMA cartridge (and leaving all other reagents and labelling conditions exactly the same). These learnings may be applied to improve the radiochemical yields of a number of [18 F]-fluorinated tracers (and synthons), where the labelling step is base-sensitive to increase the radiochemical yield, thereby significantly benefiting the radiochemistry and nuclear medicine community. This paper also highlights the necessity of the radiochemistry community to ensure the details of QMA cartridges used in fluorine-18 chemistry are fully and accurately described, since this will improve the translation of radiochemical methods from one laboratory to another.
Collapse
Affiliation(s)
- Damion H R Stimson
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Zheng Qiao
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - David C Reutens
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | | | - Rajiv Bhalla
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Lu Y, Choi JY, Kim SE, Lee BC. HPLC-free in situ18F-fluoromethylation of bioactive molecules by azidation and MTBD scavenging. Chem Commun (Camb) 2019; 55:11798-11801. [DOI: 10.1039/c9cc04901k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequential usage of azide and MTBD, which generates pure [18F]fluoromethyl tosylate and scavenges unreacted desmethyl precursors, provided an efficient HPLC-free strategy for the radio-synthesis of 18F-fluoromethylated compounds.
Collapse
Affiliation(s)
- Yingqing Lu
- Department of Nuclear Medicine
- Seoul National University College of Medicine
- Seoul National University Bundang Hospital
- Seongnam
- Republic of Korea
| | - Ji Young Choi
- Department of Nuclear Medicine
- Seoul National University College of Medicine
- Seoul National University Bundang Hospital
- Seongnam
- Republic of Korea
| | - Sang Eun Kim
- Department of Nuclear Medicine
- Seoul National University College of Medicine
- Seoul National University Bundang Hospital
- Seongnam
- Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine
- Seoul National University College of Medicine
- Seoul National University Bundang Hospital
- Seongnam
- Republic of Korea
| |
Collapse
|
13
|
Improving metabolic stability of fluorine-18 labeled verapamil analogs. Nucl Med Biol 2018; 64-65:47-56. [DOI: 10.1016/j.nucmedbio.2018.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 11/22/2022]
|
14
|
Huang X, Pan Z, Doligalski ML, Xiao X, Ruiz E, Budzevich MM, Tian H. Evaluation of radiofluorinated carboximidamides as potential IDO-targeted PET tracers for cancer imaging. Oncotarget 2018; 8:46900-46914. [PMID: 28159919 PMCID: PMC5564531 DOI: 10.18632/oncotarget.14898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023] Open
Abstract
IDO1 is an enzyme catalyzing the initial and rate-limiting step in the catabolism of tryptophan along the kynurenine pathway. IDO1 expression could suppress immune responses by blocking T-lymphocyte proliferation locally, suggesting a role of IDO in the regulation of immune responses. The goal of this study was to evaluate the potential of radiofluorinated carboximidamides as selective PET radioligands for IDO1. Specific binding correlated with IDO1 expression as measured through in vitro, microPET experiments. Specific accumulation of the new radiotracer [18F]IDO49 was observed in IDO1-expressing tumors and confirmed by Western blot and IHC analyses. These results suggest that [18F]IDO49 has substantial potential as an imaging agent that targets IDO1 in tumors, and therefore may be utilized as a companion diagnostic for IDO1 targeted therapies.
Collapse
Affiliation(s)
- Xuan Huang
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Zhongjie Pan
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.,Department of Vascular Medicine, Tianjin Union Medicine Center, Tianjin, China
| | - Michael L Doligalski
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Xia Xiao
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.,Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Epifanio Ruiz
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Mikalai M Budzevich
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Haibin Tian
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
15
|
Brocklesby KL, Waby JS, Cawthorne C, Smith G. A practical microwave method for the synthesis of fluoromethy 4-methylbenzenesulfonate in tert-amyl alcohol. Tetrahedron Lett 2018; 59:1635-1637. [PMID: 29706675 PMCID: PMC5896226 DOI: 10.1016/j.tetlet.2018.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Significantly improved yield of fluoromethyl 4-methylbenzenesulfonate. Reaction carried out using inexpensive reagents and short reaction time. Methodology demonstrated on a preparative scale.
Fluorine substitution is an established tool in medicinal chemistry to favourably alter the molecular properties of a lead compound of interest. However, gaps still exist in the library of synthetic methods for accessing certain fluorine-substituted motifs. One such area is the fluoromethyl group, particularly when required in a fluoroalkylating capacity. The cold fluorination of methylene ditosylate is under evaluated in the literature, often proceeding with low yields or harsh conditions. This report describes a novel microwave method for the rapid nucleophilic fluorination of methylene ditosylate using inexpensive reagents in good isolated yield (65%).
Collapse
Affiliation(s)
- Kayleigh L Brocklesby
- Hull-York Medical School, University of York, Heslington, York YO10 5DD, UK.,Division of Radiotherapy and Imaging, Institute of Cancer Research, London SW7 3RP, UK
| | - Jennifer S Waby
- Faculty of Life Sciences, Richmond Building Room H15, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK
| | | | - Graham Smith
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London SW7 3RP, UK
| |
Collapse
|
16
|
Heinzmann K, Carter LM, Lewis JS, Aboagye EO. Multiplexed imaging for diagnosis and therapy. Nat Biomed Eng 2017; 1:697-713. [PMID: 31015673 DOI: 10.1038/s41551-017-0131-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Abstract
Complex molecular and metabolic phenotypes depict cancers as a constellation of different diseases with common themes. Precision imaging of such phenotypes requires flexible and tunable modalities capable of identifying phenotypic fingerprints by using a restricted number of parameters while ensuring sensitivity to dynamic biological regulation. Common phenotypes can be detected by in vivo imaging technologies, and effectively define the emerging standards for disease classification and patient stratification in radiology. However, for the imaging data to accurately represent a complex fingerprint, the individual imaging parameters need to be measured and analysed in relation to their wider spatial and molecular context. In this respect, targeted palettes of molecular imaging probes facilitate the detection of heterogeneity in oncogene-driven alterations and their response to treatment, and lead to the expansion of rational-design elements for the combination of imaging experiments. In this Review, we evaluate criteria for conducting multiplexed imaging, and discuss its opportunities for improving patient diagnosis and the monitoring of therapy.
Collapse
Affiliation(s)
- Kathrin Heinzmann
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
17
|
Huang YY, Tsai CL, Wen HP, Tzen KY, Yen RF, Shiue CY. High yield one-pot production of [ 18F]FCH via a modified TRACERlab Fx FN module. Appl Radiat Isot 2017; 128:190-198. [PMID: 28734194 DOI: 10.1016/j.apradiso.2017.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION [18F]Fluoromethylcholine ([18F]FCH) is a potent tumors imaging agent. In order to fulfill the demand of pre-clinical and clinical studies, we have developed an automated high yield one-pot synthesis of this potent tumors imaging agent. METHODS [18F]FCH was synthesized using a modified TRACERlab FxFN module. Briefly, dibromomethane (10% in CH3CN) was fluorinated with K[18F]/K 2.2.2 in a glassy carbon reaction vessel at 120°C for about 5min to generate [18F]fluorobromomethane ([18F]FBM). The resulting [18F]FBM was then bubbling (He, 700mL/min) through four Sep-Pak® Silica Plus Long cartridges to react with dimethylaminoethanol (10% DMAE in 0.3mL DMSO) which was pre-loaded on Sep-Pak® C18 Plus Short cartridge. The [18F]FCH was purified by solid-phase extraction (SPE) using one Sep-Pak® C18 Plus Short and one Sep-Pak® CM Plus Short in series. The quality of [18F]FCH synthesized by this method was verified by HPLC and TLC as compared to authentic sample. RESULTS Using this improved one-pot method, the RCY of [18F]FCH was 18.8 ± 2.1% (EOB, n = 27) in a synthesis time of 49 ± 5min from EOB. The radiochemical purity of [18F]FCH was greater than 90% and the residual DMAE concentration in the final product was less than 10ppm. CONCLUSIONS This optimized method could fulfill the demand of [18F]FCH for both pre-clinical and clinical studies, especially for nearby study sites without a cyclotron.
Collapse
Affiliation(s)
- Ya-Yao Huang
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, 7, Chung Shan S. Rd., Taipei 10002, Taiwan.
| | - Chia-Ling Tsai
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, 7, Chung Shan S. Rd., Taipei 10002, Taiwan
| | - Hsiang-Ping Wen
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, 7, Chung Shan S. Rd., Taipei 10002, Taiwan
| | - Kai-Yuan Tzen
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, 7, Chung Shan S. Rd., Taipei 10002, Taiwan; Molecular Imaging Center, National Taiwan University, 81, Changxing St., Taipei 10672, Taiwan
| | - Ruoh-Fen Yen
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, 7, Chung Shan S. Rd., Taipei 10002, Taiwan; Molecular Imaging Center, National Taiwan University, 81, Changxing St., Taipei 10672, Taiwan
| | - Chyng-Yann Shiue
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, 7, Chung Shan S. Rd., Taipei 10002, Taiwan; Molecular Imaging Center, National Taiwan University, 81, Changxing St., Taipei 10672, Taiwan.
| |
Collapse
|
18
|
van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev 2017; 46:4709-4773. [DOI: 10.1039/c6cs00492j] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a comprehensive overview of the synthesis and application of fluorine-18 labelled building blocks since 2010.
Collapse
Affiliation(s)
- Dion van der Born
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Anna Pees
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Alex J. Poot
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules
- Medicines & Systems (AIMMS)
- VU University Amsterdam
- Amsterdam
- The Netherlands
| | - Albert D. Windhorst
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Danielle J. Vugts
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| |
Collapse
|
19
|
Challapalli A, Aboagye EO. Positron Emission Tomography Imaging of Tumor Cell Metabolism and Application to Therapy Response Monitoring. Front Oncol 2016; 6:44. [PMID: 26973812 PMCID: PMC4770188 DOI: 10.3389/fonc.2016.00044] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/12/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer cells do reprogram their energy metabolism to enable several functions, such as generation of biomass including membrane biosynthesis, and overcoming bioenergetic and redox stress. In this article, we review both established and evolving radioprobes developed in association with positron emission tomography (PET) to detect tumor cell metabolism and effect of treatment. Measurement of enhanced tumor cell glycolysis using 2-deoxy-2-[(18)F]fluoro-D-glucose is well established in the clinic. Analogs of choline, including [(11)C]choline and various fluorinated derivatives are being tested in several cancer types clinically with PET. In addition to these, there is an evolving array of metabolic tracers for measuring intracellular transport of glutamine and other amino acids or for measuring glycogenesis, as well as probes used as surrogates for fatty acid synthesis or precursors for fatty acid oxidation. In addition to providing us with opportunities for examining the complex regulation of reprogramed energy metabolism in living subjects, the PET methods open up opportunities for monitoring pharmacological activity of new therapies that directly or indirectly inhibit tumor cell metabolism.
Collapse
Affiliation(s)
| | - Eric O. Aboagye
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
20
|
Methods to Increase the Metabolic Stability of (18)F-Radiotracers. Molecules 2015; 20:16186-220. [PMID: 26404227 PMCID: PMC6332123 DOI: 10.3390/molecules200916186] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/20/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022] Open
Abstract
The majority of pharmaceuticals and other organic compounds incorporating radiotracers that are considered foreign to the body undergo metabolic changes in vivo. Metabolic degradation of these drugs is commonly caused by a system of enzymes of low substrate specificity requirement, which is present mainly in the liver, but drug metabolism may also take place in the kidneys or other organs. Thus, radiotracers and all other pharmaceuticals are faced with enormous challenges to maintain their stability in vivo highlighting the importance of their structure. Often in practice, such biologically active molecules exhibit these properties in vitro, but fail during in vivo studies due to obtaining an increased metabolism within minutes. Many pharmacologically and biologically interesting compounds never see application due to their lack of stability. One of the most important issues of radiotracers development based on fluorine-18 is the stability in vitro and in vivo. Sometimes, the metabolism of 18F-radiotracers goes along with the cleavage of the C-F bond and with the rejection of [18F]fluoride mostly combined with high background and accumulation in the skeleton. This review deals with the impact of radiodefluorination and with approaches to stabilize the C-F bond to avoid the cleavage between fluorine and carbon.
Collapse
|
21
|
Alam IS, Arshad MA, Nguyen QD, Aboagye EO. Radiopharmaceuticals as probes to characterize tumour tissue. Eur J Nucl Med Mol Imaging 2015; 42:537-61. [PMID: 25647074 DOI: 10.1007/s00259-014-2984-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/06/2023]
Abstract
Tumour cells exhibit several properties that allow them to grow and divide. A number of these properties are detectable by nuclear imaging methods. We discuss crucial tumour properties that can be described by current radioprobe technologies, further discuss areas of emerging radioprobe development, and finally articulate need areas that our field should aspire to develop. The review focuses largely on positron emission tomography and draws upon the seminal 'Hallmarks of Cancer' review article by Hanahan and Weinberg in 2011 placing into context the present and future roles of radiotracer imaging in characterizing tumours.
Collapse
Affiliation(s)
- Israt S Alam
- Comprehensive Cancer Imaging Centre, Imperial College London, London, W12 0NN, UK
| | | | | | | |
Collapse
|
22
|
Bertolini R, Goepfert C, Andrieu T, Nichols S, Walter MA, Frey FJ, McCammon JA, Frey BM. 18F-RB390: innovative ligand for imaging the T877A androgen receptor mutant in prostate cancer via positron emission tomography (PET). Prostate 2015; 75:348-59. [PMID: 25358634 DOI: 10.1002/pros.22919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 09/17/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Detecting prostate cancer before spreading or predicting a favorable therapy are challenging issues for impacting patient's survival. Presently, 2-[(18) F]-fluoro-2-deoxy-D-glucose ((18) F-FDG) and/or (18) F-fluorocholine ((18) F-FCH) are the generally used PET-tracers in oncology yet do not emphasize the T877A androgen receptor (AR) mutation being exclusively present in cancerous tissue and escaping androgen deprivation treatment. METHODS We designed and synthesized fluorinated 5α-dihydrotestosterone (DHT) derivatives to target T877A-AR. We performed binding assays to select suitable candidates using COS-7 cells transfected with wild-type or T877A AR (WT-AR, T877A-AR) expressing plasmids and investigated cellular uptake of candidate (18) F-RB390. Stability, biodistribution analyses and PET-Imaging were assessed by injecting (18) F-RB390 (10MBq), with and without co-injection of an excess of unlabeled DHT in C4-2 and PC-3 tumor bearing male SCID mice (n = 12). RESULTS RB390 presented a higher relative binding affinity (RBA) (28.1%, IC50 = 32 nM) for T877A-AR than for WT-AR (1.7%, IC50 = 357 nM) related to DHT (RBA = 100%). A small fraction of (18) F-RB390 was metabolized when incubated with murine liver homogenate or human blood for 3 hr. The metabolite of RB390, 3-hydroxysteroid RB448, presented similar binding characteristics as RB390. (18) F-RB390 but not (18) F-FDG or (18) F-FCH accumulated 2.5× more in COS-7 cells transfected with pSG5AR-T877A than with control plasmid. Accumulation was reduced with an excess of DHT. PET/CT imaging and biodistribution studies revealed a significantly higher uptake of (18) F-RB390 in T877A mutation positive xenografts compared to PC-3 control tumors. This effect was blunted with DHT. CONCLUSION Given the differential binding capacity and the favorable radioactivity pattern, (18) F-RB390 represents the portrayal of the first imaging ligand with predictive potential for mutant T877A-AR in prostate cancer for guiding therapy. Prostate 75:348-359, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Reto Bertolini
- Department of Nephrology & Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Positron emission tomography (PET) is an extraordinarily sensitive clinical imaging modality for interrogating tumor metabolism. Radiolabeled PET substrates can be traced at subphysiological concentrations, allowing noninvasive imaging of metabolism and intratumoral heterogeneity in systems ranging from advanced cancer models to patients in the clinic. There are a wide range of novel and more established PET radiotracers, which can be used to investigate various aspects of the tumor, including carbohydrate, amino acid, and fatty acid metabolism. In this review, we briefly discuss the more established metabolic tracers and describe recent work on the development of new tracers. Some of the unanswered questions in tumor metabolism are considered alongside new technical developments, such as combined PET/magnetic resonance imaging scanners, which could provide new imaging solutions to some of the outstanding diagnostic challenges facing modern cancer medicine.
Collapse
Affiliation(s)
- David Y. Lewis
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Dmitry Soloviev
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Kevin M. Brindle
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| |
Collapse
|
24
|
Witney TH, Pisaneschi F, Alam IS, Trousil S, Kaliszczak M, Twyman F, Brickute D, Nguyen QD, Schug Z, Gottlieb E, Aboagye EO. Preclinical evaluation of 3-18F-fluoro-2,2-dimethylpropionic acid as an imaging agent for tumor detection. J Nucl Med 2014; 55:1506-12. [PMID: 25012458 DOI: 10.2967/jnumed.114.140343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Deregulated cellular metabolism is a hallmark of many cancers. In addition to increased glycolytic flux, exploited for cancer imaging with (18)F-FDG, tumor cells display aberrant lipid metabolism. Pivalic acid is a short-chain, branched carboxylic acid used to increase oral bioavailability of prodrugs. After prodrug hydrolysis, pivalic acid undergoes intracellular metabolism via the fatty acid oxidation pathway. We have designed a new probe, 3-(18)F-fluoro-2,2-dimethylpropionic acid, also called (18)F-fluoro-pivalic acid ((18)F-FPIA), for the imaging of aberrant lipid metabolism and cancer detection. METHODS Cell intrinsic uptake of (18)F-FPIA was measured in murine EMT6 breast adenocarcinoma cells. In vivo dynamic imaging, time course biodistribution, and radiotracer stability testing were performed. (18)F-FPIA tumor retention was further compared in vivo to (18)F-FDG uptake in several xenograft models and inflammatory tissue. RESULTS (18)F-FPIA rapidly accumulated in EMT6 breast cancer cells, with retention of intracellular radioactivity predicted to occur via a putative (18)F-FPIA carnitine-ester. The radiotracer was metabolically stable to degradation in mice. In vivo imaging of implanted EMT6 murine and BT474 human breast adenocarcinoma cells by (18)F-FPIA PET showed rapid and extensive tumor localization, reaching 9.1% ± 0.5% and 7.6% ± 1.2% injected dose/g, respectively, at 60 min after injection. Substantial uptake in the cortex of the kidney was seen, with clearance primarily via urinary excretion. Regarding diagnostic utility, uptake of (18)F-FPIA was comparable to that of (18)F-FDG in EMT6 tumors but superior in the DU145 human prostate cancer model (54% higher uptake; P = 0.002). Furthermore, compared with (18)F-FDG, (18)F-FPIA had lower normal-brain uptake resulting in a superior tumor-to-brain ratio (2.5 vs. 1.3 in subcutaneously implanted U87 human glioma tumors; P = 0.001), predicting higher contrast for brain cancer imaging. Both radiotracers showed increased localization in inflammatory tissue. CONCLUSION (18)F-FPIA shows promise as an imaging agent for cancer detection and warrants further investigation.
Collapse
Affiliation(s)
- Timothy H Witney
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| | - Federica Pisaneschi
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| | - Israt S Alam
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| | - Sebastian Trousil
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| | - Maciej Kaliszczak
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| | - Frazer Twyman
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| | - Diana Brickute
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| | - Quang-Dé Nguyen
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| | - Zachary Schug
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Eyal Gottlieb
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| |
Collapse
|
25
|
Friesen-Waldner LJ, Wade TP, Thind K, Chen AP, Gomori JM, Sosna J, McKenzie CA, Katz-Brull R. Hyperpolarized choline as an MR imaging molecular probe: feasibility of in vivo imaging in a rat model. J Magn Reson Imaging 2014; 41:917-23. [PMID: 24862837 DOI: 10.1002/jmri.24659] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To assess the feasibility of choline MRI using a new choline molecular probe for dynamic nuclear polarization (DNP) hyperpolarized MRI. MATERIALS AND METHODS Male Sprague-Dawley rats with an average weight of 400 ± 20 g (n = 5), were anesthetized and injection tubing was placed in the tail vein. [1,1,2,2-D4 , 1-(13) C]choline chloride (CMP1) was hyperpolarized by DNP and injected into rats at doses ranging from 12.6 to 50.0 mg/kg. Coronal projection (13) C imaging was performed on a 3 Tesla clinical MRI scanner (bore size 60 cm) using a variable flip angle gradient echo sequence. Images were acquired 15 to 45 s after the start of bolus injection. Signal intensities in regions of interest were determined at each time point and compared. RESULTS (13) C MRI images of hyperpolarized CMP1 at a 50 mg/kg dose showed time-dependent organ distribution patterns. At 15 s, high intensities were observed in the inferior vena cava, heart, aorta, and kidneys. At 30 s, most of the signal intensity was localized to the kidneys. These distribution patterns were reproduced using 12.6 and 25 mg/kg doses. At 45 s, only signal in the kidneys was detected. CONCLUSION Hyperpolarized choline imaging with MRI is feasible using a stable-isotope labeled choline analog (CMP1). Nonradioactive imaging of choline accumulation may provide a new investigatory dimension for kidney physiology. J. Magn. Reson. Imaging 2015;41:917-923. © 2014 Wiley Periodicals, Inc.
Collapse
|
26
|
Challapalli A, Sharma R, Hallett WA, Kozlowski K, Carroll L, Brickute D, Twyman F, Al-Nahhas A, Aboagye EO. Biodistribution and radiation dosimetry of deuterium-substituted 18F-fluoromethyl-[1, 2-2H4]choline in healthy volunteers. J Nucl Med 2014; 55:256-63. [PMID: 24492392 DOI: 10.2967/jnumed.113.129577] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED (11)C-choline and (18)F-fluoromethylcholine ((18)F-FCH) have been used in patients to study tumor metabolic activity in vivo; however, both radiotracers are readily oxidized to respective betaine analogs, with metabolites detectable in plasma soon after injection of the radiotracer. A more metabolically stable FCH analog, (18)F-fluoromethyl-[1,2-(2)H4]choline ((18)F-D4-FCH), based on the deuterium isotope effect, has been developed. We report the safety, biodistribution, and internal radiation dosimetry profiles of (18)F-D4-FCH in 8 healthy human volunteers. METHODS (18)F-D4-FCH was intravenously administered as a bolus injection (mean ± SD, 161 ± 2.17 MBq; range, 156-163 MBq) to 8 healthy volunteers (4 men, 4 women). Whole-body (vertex to mid thigh) PET/CT scans were acquired at 6 time points, up to 4 h after tracer injection. Serial whole-blood, plasma, and urine samples were collected for radioactivity measurement and plasma radiotracer metabolites. Tissue (18)F radioactivities were determined from quantitative analysis of the images, and time-activity curves were generated. The total numbers of disintegrations in each organ normalized to injected activity (residence times) were calculated as the area under the curve of the time-activity curve normalized to injected activities and standard organ volumes. Dosimetry calculations were performed using OLINDA/EXM 1.1. RESULTS The injection of (18)F-D4-FCH was well tolerated in all subjects, with no radiotracer-related serious adverse event reported. The mean effective dose averaged over both men and women (± SD) was estimated to be 0.025 ± 0.004 (men, 0.022 ± 0.002; women, 0.027 ± 0.002) mSv/MBq. The 5 organs receiving the highest absorbed dose (mGy/MBq) were the kidneys (0.106 ± 0.03), liver (0.094 ± 0.03), pancreas (0.066 ± 0.01), urinary bladder wall (0.047 ± 0.02), and adrenals (0.046 ± 0.01). Elimination was through the renal and hepatic systems. CONCLUSION (18)F-D4-FCH is a safe PET radiotracer with a dosimetry profile comparable to other common (18)F PET tracers. These data support the further development of (18)F-D4-FCH for clinical imaging of choline metabolism.
Collapse
Affiliation(s)
- Amarnath Challapalli
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Merchant S, Witney TH, Aboagye EO. Imaging as a pharmacodynamic and response biomarker in cancer. Clin Transl Imaging 2014. [DOI: 10.1007/s40336-014-0049-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Abstract
Over recent years, there has been a rapid expansion in our knowledge of the factors that regulate tumor growth; this has resulted in the identification of new therapeutic targets and improvements in the long-term survival of cancer patients. New noninvasive biomarkers of drug targets and pathway modulation in vivo are needed to guide therapy selection and detect drug resistance early so that alternative, more effective treatments can be offered. The translation of new therapeutics into the clinic is disappointingly slow, expensive, and subject to high rates of attrition often occurring at late stages (phase 3) of development. In an attempt to mitigate these delays and failures, there has been resurgence in the development of new molecular imaging probes for studies with positron emission tomography (PET) to characterize tumor biology. In the assessment of therapeutic effects, PET allows imaging of entire tumor burden in a noninvasive repeatable manner. This chapter focuses on the clinical translation of PET imaging agents from bench to bedside. New probes are being used to study a diverse range of processes such as angiogenesis, apoptosis, fatty acid metabolism, and growth factor receptor expression. In the future, validation of these novel imaging probes could allow more innovative therapies to be adapted earlier in the clinic leading to improved patient outcomes.
Collapse
Affiliation(s)
- Laura M Kenny
- Comprehensive Cancer Imaging Centre, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery & Cancer, Imperial College London, London, United Kingdom.
| |
Collapse
|
29
|
Beyerlein F, Piel M, Höhnemann S, Rösch F. Automated synthesis and purification of [18F]fluoro-[di-deutero]methyl tosylate. J Labelled Comp Radiopharm 2013; 56:360-3. [DOI: 10.1002/jlcr.3043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/23/2013] [Accepted: 02/23/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Friederike Beyerlein
- Institute of Nuclear Chemistry; Johannes Gutenberg-University; Fritz-Strassmann-Weg 2; 55128; Mainz; Germany
| | - Markus Piel
- Institute of Nuclear Chemistry; Johannes Gutenberg-University; Fritz-Strassmann-Weg 2; 55128; Mainz; Germany
| | - Sabine Höhnemann
- Institute of Nuclear Chemistry; Johannes Gutenberg-University; Fritz-Strassmann-Weg 2; 55128; Mainz; Germany
| | - Frank Rösch
- Institute of Nuclear Chemistry; Johannes Gutenberg-University; Fritz-Strassmann-Weg 2; 55128; Mainz; Germany
| |
Collapse
|
30
|
|
31
|
Carroll L, Witney TH, Aboagye EO. Design and synthesis of novel 18F-radiolabelled glucosamine derivatives for cancer imaging. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00023k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Fortt R, Smith G, Awais RO, Luthra SK, Aboagye EO. Automated GMP synthesis of [(18)F]ICMT-11 for in vivo imaging of caspase-3 activity. Nucl Med Biol 2012; 39:1000-5. [PMID: 22575271 DOI: 10.1016/j.nucmedbio.2012.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/21/2012] [Accepted: 03/26/2012] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Isatin-5-sulfonamide ([(18)F]ICMT-11) is a sub-nanomolar inhibitor of caspase-3 previously evaluated as an apoptosis imaging agent. Herein, an alternative radiosynthesis of [(18)F]ICMT-11 with increased purity and specific activity is presented. Finally, a GMP-applicable automated radiosynthesis of [(18)F]ICMT-11 is described. METHODS The preparation of [(18)F]ICMT-11 was evaluated under a variety of reaction conditions, including reaction solvent, by employing alternative phase transfer catalysts and under different deprotection conditions. Following initial investigations, the process was transferred onto a fully automated GE FASTlab synthesis platform for further development and optimisation. RESULTS The synthesis of [(18)F]ICMT-11 was successfully validated under GMP conditions, resulting in a yield of 4.6 ± 0.4 GBq with a radiochemical purity of >98% at EOS and a specific activity of 685 ± 237 GBq/μmol within 90 min. Quality control was carried out in accordance with the European Pharmacopoeia and demonstrated that [(18)F]ICMT-11 can be consistently manufactured on the FASTlab to meet specifications. CONCLUSIONS A simplified methodology for the synthesis of the apoptosis imaging agent, [(18)F]ICMT-11, has been achieved by the S(N)2 displacement of a tosylate leaving group with [(18)F]fluoride ion. This results in an increased purity and specific activity over the original copper catalysed "Click" synthetic stratagem reaction involving 2-[(18)F]fluoroethylazide with an alkyne precursor and is now suitable for routine clinical application.
Collapse
Affiliation(s)
- Robin Fortt
- Hammersmith Imanet Ltd, (part of GE Healthcare), Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | | | | | | | | |
Collapse
|
33
|
Witney TH, Alam IS, Turton DR, Smith G, Carroll L, Brickute D, Twyman FJ, Nguyen QD, Tomasi G, Awais RO, Aboagye EO. Evaluation of deuterated 18F- and 11C-labeled choline analogs for cancer detection by positron emission tomography. Clin Cancer Res 2012; 18:1063-72. [PMID: 22235095 DOI: 10.1158/1078-0432.ccr-11-2462] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE (11)C-Choline-positron emission tomography (PET) has been exploited to detect the aberrant choline metabolism in tumors. Radiolabeled choline uptake within the imaging time is primarily a function of transport, phosphorylation, and oxidation. Rapid choline oxidation, however, complicates interpretation of PET data. In this study, we investigated the biologic basis of the oxidation of deuterated choline analogs and assessed their specificity in human tumor xenografts. EXPERIMENTAL DESIGN (11)C-Choline, (11)C-methyl-[1,2-(2)H(4)]-choline ((11)C-D4-choline), and (18)F-D4-choline were synthesized to permit comparison. Biodistribution, metabolism, small-animal PET studies, and kinetic analysis of tracer uptake were carried out in human colon HCT116 xenograft-bearing mice. RESULTS Oxidation of choline analogs to betaine was highest with (11)C-choline, with reduced oxidation observed with (11)C-D4-choline and substantially reduced with (18)F-D4-choline, suggesting that both fluorination and deuteration were important for tracer metabolism. Although all tracers were converted intracellularly to labeled phosphocholine (specific signal), the higher rate constants for intracellular retention (K(i) and k(3)) of (11)C-choline and (11)C-D4-choline, compared with (18)F-D4-choline, were explained by the rapid conversion of the nonfluorinated tracers to betaine within HCT116 tumors. Imaging studies showed that the uptake of (18)F-D4-choline in three tumors with similar radiotracer delivery (K(1)) and choline kinase α expression-HCT116, A375, and PC3-M-were the same, suggesting that (18)F-D4-choline has utility for cancer detection irrespective of histologic type. CONCLUSION We have shown here that both deuteration and fluorination combine to provide protection against choline oxidation in vivo. (18)F-D4-choline showed the highest selectivity for phosphorylation and warrants clinical evaluation.
Collapse
Affiliation(s)
- Timothy H Witney
- Comprehensive Cancer Imaging Centre at Imperial College, Faculty of Medicine, Imperial College London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Skanjeti A, Pelosi E. Lymph Node Staging with Choline PET/CT in Patients with Prostate Cancer: A Review. ISRN ONCOLOGY 2011; 2011:219064. [PMID: 22220283 PMCID: PMC3246789 DOI: 10.5402/2011/219064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 11/13/2011] [Indexed: 11/23/2022]
Abstract
Due to its prevalence, prostate cancer represents a serious health problem. The treatment, when required, may be local in case of limited disease, locoregional if lymph nodes are involved, and systemic when distant metastases are present. In order to choose the best treatment regimen, an accurate disease staging is mandatory. However, the accuracy of conventional imaging modalities in detecting lymph node and bone metastases is low. In the last decade, molecular imaging, particularly, choline PET-CT has been evaluated in this setting. Choline PET represents the more accurate exam to stage high-risk prostate cancer, and it is useful in staging patients with biochemical relapse, in particular when PSA kinetics is high and/or PSA levels are more than 2 pg/ml. The present paper reports results of available papers on these issues, with particular attention to lymph node staging.
Collapse
Affiliation(s)
- Andrea Skanjeti
- SCDU Medicina Nucleare 2, ASO S. Giovanni Battista, Corso Bramante, 88, 10126 Torino, Italy
| | | |
Collapse
|
35
|
Boubaker A, Houzard C, Zouhair A, Got P, Orcurto M, Giammarile F. Cancer de la prostate : utilité de la TEP-TDM à la 18F-fluorocholine. MÉDECINE NUCLÉAIRE 2011; 35:446-454. [DOI: 10.1016/j.mednuc.2011.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
36
|
Pascali G, Nannavecchia G, Pitzianti S, Salvadori PA. Dose-on-demand of diverse 18F-fluorocholine derivatives through a two-step microfluidic approach. Nucl Med Biol 2011; 38:637-44. [DOI: 10.1016/j.nucmedbio.2011.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/22/2011] [Accepted: 01/23/2011] [Indexed: 10/18/2022]
|