1
|
Site-specific conjugation of recognition tags to trastuzumab for peptide nucleic acid-mediated radionuclide HER2 pretargeting. Biomaterials 2019; 203:73-85. [PMID: 30877838 DOI: 10.1016/j.biomaterials.2019.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 01/11/2023]
Abstract
Pretargeting is a promising strategy to reach high imaging contrast in a shorter time than by targeting with directly radiolabeled monoclonal antibodies (mAbs). One of problems in pretargeting is a site-specific, reproducible and uniform conjugation of recognition tags to mAbs. To solve this issue we propose a photoconjugation to covalently couple a recognition tag to a mAb via a photoactivatable Z domain. The Z-domain, a 58-amino acid protein derived from the IgG-binding B-domain of Staphylococcus aureus protein A, has a well-characterized binding site in the Fc portion of IgG. We tested the feasibility of this approach using pretargeting based on hybridization between peptide nucleic acids (PNAs). We have used photoconjugation to couple trastuzumab with the PNA-based hybridization probe, HP1. A complementary [57Co]Co-labeled PNA hybridization probe ([57Co]Co-HP2) was used as the secondary targeting probe. In vitro studies demonstrated that trastuzumab-ZHP1 bound specifically to human epidermal growth factor receptor 2 (HER2)-expressing cells with nanomolar affinity. The binding of the secondary [57Co]Co-HP2 probe to trastuzumab-PNA-pretreated cells was in the picomolar affinity range. A two-fold increase in SKOV-3 tumor targeting was achieved when [57Co]Co-HP2 (0.7 nmol) was injected 48 h after injection of trastuzumab-ZHP1 (0.5 nmol) compared with trastuzumab-ZHP1 alone (0.8 ± 0.2 vs. 0.33 ± 0.06 %ID/g). Tumor accumulation of [57Co]Co-HP2 was significantly reduced by pre-saturation with trastuzumab or when no trastuzumab-ZHP1 was preinjected. A tumor-to-blood uptake ratio of 1.5 ± 0.3 was achieved resulting in a clear visualization of HER2-expressing xenografts as confirmed by SPECT imaging. In conclusion, the feasibility of stable site-specific coupling of a PNA-based recognition tag to trastuzumab and successful pretargeting has been demonstrated. This approach can hopefully be used for a broad range of mAbs and recognition tags.
Collapse
|
2
|
Liu G. A Revisit to the Pretargeting Concept-A Target Conversion. Front Pharmacol 2018; 9:1476. [PMID: 30618765 PMCID: PMC6304396 DOI: 10.3389/fphar.2018.01476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/03/2018] [Indexed: 01/22/2023] Open
Abstract
Pretargeting is often used as a tumor targeting strategy that provides much higher tumor to non-tumor ratios than direct-targeting using radiolabeled antibody. Due to the multiple injections, pretargeting is investigated less than direct targeting, but the high T/NT ratios have rendered it more useful for therapy. While the progress in using this strategy for tumor therapy has been regularly reviewed in the literature, this review focuses on the nature and quantitative understanding of the pretargeting concept. By doing so, it is the goal of this review to accelerate pretargeting development and translation to the clinic and to prepare the researchers who are not familiar with the pretargeting concept but are interested in applying it. The quantitative understanding is presented in a way understandable to the average researchers in the areas of drug development and clinical translation who have the basic concept of calculus and general chemistry.
Collapse
Affiliation(s)
- Guozheng Liu
- Department of Radiology, University of Massachusetts Medical School Worcester, MA, United States
| |
Collapse
|
3
|
Abstract
Differing from the conventional direct-targeting strategy in which a probe or payload is directly loaded onto a targeting molecule that binds to the native target, pretargeting is an improved targeting strategy. It converts the native target to an artificial target specific for a secondary targeting molecule loaded with the probe or payload (effector). The effector is small and does not accumulate in normal tissues, which accelerates the targeting process and generates high target to nontarget ratios. DNA/cDNA analogs can serve as the recognition pair, i.e., the artificial target and the secondary targeting effector. Morpholino oligomers are so far the most investigated and the most successful DNA/cDNA analog recognition pairs for pretargeting. Herein, we describe the pretargeting principles, the pretargeting strategy using Morpholino oligomers, and the preclinical success so far achieved.
Collapse
Affiliation(s)
- Guozheng Liu
- Department of Radiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA.
| |
Collapse
|
4
|
Dong C, Yang S, Shi J, Zhao H, Zhong L, Liu Z, Jia B, Wang F. SPECT/NIRF Dual Modality Imaging for Detection of Intraperitoneal Colon Tumor with an Avidin/Biotin Pretargeting System. Sci Rep 2016; 6:18905. [PMID: 26732543 PMCID: PMC4702112 DOI: 10.1038/srep18905] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/30/2015] [Indexed: 01/24/2023] Open
Abstract
We describe herein dual-modality imaging of intraperitoneal colon tumor using an avidin/biotin pretargeting system. A novel dual-modality probe, 99mTc-HYNIC-lys(Cy5.5)-PEG4-biotin, was designed, synthesized and characterized. Single-photon emission computed tomography/ computed tomography (SPECT/CT) imaging and near infrared fluorescence (NIRF) imaging were developed using intraperitoneal LS180 human colon adenocarcinoma xenografts. Following avidin preinjection for 4 hours, 99mTc-HYNIC-lys(Cy5.5)-PEG4-biotin could successfully detect colon tumors of different sizes inside the abdominal region using both modalities, and the imaging results showed no differences. Biodistribution studies demonstrated that the tumors had a very high uptake of the probe 99mTc-HYNIC-lys(Cy5.5)-PEG4-biotin (12.74 ± 1.89% ID/g at 2 h p.i.), and the clearance from blood and other normal tissues occured very fast. The low tumor uptake in the non-pretargeted mice (1.63 ± 0.50% ID/g at 2 h p.i.) and tumor cell staining results showed excellent tumor binding specificity of the pretargeting system. The ability of the novel probe to show excellent imaging quality with high tumor-to-background contrast, a high degree of binding specificity with tumors and excellent in vivo biodistribution pharmacokinetics should prove that the avidin/biotin based dual-modality pretargeting probe is a promising imaging tool during the entire period of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Chengyan Dong
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sujuan Yang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiyun Shi
- Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huiyun Zhao
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Medical and Healthy Analytical Center, Peking University, Beijing 100191, China
| | - Lijun Zhong
- Medical and Healthy Analytical Center, Peking University, Beijing 100191, China
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Natural and Biomimetic Drugs, Center for Molecular and Translational Medicine, Peking University, Beijing 100191, China
| |
Collapse
|
5
|
Dou S, Virostko J, Rusckowski M, Greiner DL, Powers AC, Liu G. Differentiation between temporary and real non-clearability of biotinylated IgG antibody by avidin in mice. Front Pharmacol 2014; 5:172. [PMID: 25104938 PMCID: PMC4109569 DOI: 10.3389/fphar.2014.00172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/02/2014] [Indexed: 11/23/2022] Open
Abstract
Although an increasing number of antibody conjugates are being used in the clinic, there remain many unmet needs in antibody targeting. Normal tissue background is one of the key issues that limits the therapeutic efficacy and the detection sensitivity. Background reduction coupled with dose increase may provide the required target accumulation of the label or toxin at an acceptable normal tissue background. However, the knowledge about the in vivo interaction between antibody and a clearing agent is currently inadequate for designing a rational clearance regimen or system. The current investigation focuses on the clearability of antibody for background reduction, an important topic to antibody targeting in general. The investigation employs pretargeting as a research tool and avidin as a model clearing agent. By comparing the effects of natural clearance at a longer post-injection time and avidin clearance, we demonstrated that avidin clearance is much more effective. By directly attaching avidin to a biotinylated antibody prior to injection, we found that the biotinylated antibody in blood, once bound to the clearing agent, can be removed from the circulation immediately and completely, while the real non-clearable antibody without biotin stays. The study of multiple avidin injections confirmed that the presence of clearable biotinylated antibodies after an avidin injection is due to their temporary inaccessibility and subsequent return from tissue compartments. The collective clearance efficiency of 91% by three avidin injections indicates a continuous IV infusion would be recommended to remove all of the biotinylated IgG molecules. In conclusion, the use of antibody pretargeting as a tool in this study has improved understanding of the incomplete clearance by avidin and can aid in overcoming this obstacle.
Collapse
Affiliation(s)
- Shuping Dou
- Department of Radiology, University of Massachusetts Medical School Worcester, MA, USA
| | - John Virostko
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Nashville, TN, USA
| | - Mary Rusckowski
- Department of Radiology, University of Massachusetts Medical School Worcester, MA, USA
| | - Dale L Greiner
- Department of Molecular Medicine, University of Massachusetts Medical School Worcester, MA, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Nashville, TN, USA ; Department of Molecular Physiology and Biophysics, Vanderbilt University Nashville, TN, USA ; Veterans Affairs Tennessee Valley Healthcare System Nashville, TN, USA
| | - Guozheng Liu
- Department of Radiology, University of Massachusetts Medical School Worcester, MA, USA
| |
Collapse
|
6
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|