1
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
2
|
Corroyer-Dulmont A, Falzone N, Kersemans V, Thompson J, Allen DP, Able S, Kartsonaki C, Malcolm J, Kinchesh P, Hill MA, Vojnovic B, Smart SC, Gaze MN, Vallis KA. Improved outcome of 131I-mIBG treatment through combination with external beam radiotherapy in the SK-N-SH mouse model of neuroblastoma. Radiother Oncol 2017; 124:488-495. [PMID: 28595752 PMCID: PMC5636618 DOI: 10.1016/j.radonc.2017.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/03/2022]
Abstract
PURPOSE To assess the efficacy of different schedules for combining external beam radiotherapy (EBRT) with molecular radiotherapy (MRT) using 131I-mIBG in the management of neuroblastoma. MATERIALS AND METHODS BALB/c nu/nu mice bearing SK-N-SH neuroblastoma xenografts were assigned to five treatment groups: 131I-mIBG 24h after EBRT, EBRT 6days after 131I-mIBG, EBRT alone, 131I-mIBG alone and control (untreated). A total of 56 mice were assigned to 3 studies. Study 1: Vessel permeability was evaluated using dynamic contrast-enhanced (DCE)-MRI (n=3). Study 2: Tumour uptake of 131I-mIBG in excised lesions was evaluated by γ-counting and autoradiography (n=28). Study 3: Tumour volume was assessed by longitudinal MR imaging and survival was analysed (n=25). Tumour dosimetry was performed using Monte Carlo simulations of absorbed fractions with the radiation transport code PENELOPE. RESULTS Given alone, both 131I-mIBG and EBRT resulted in a seven-day delay in tumour regrowth. Following EBRT, vessel permeability was evaluated by DCE-MRI and showed an increase at 24h post irradiation that correlated with an increase in 131I-mIBG tumour uptake, absorbed dose and overall survival in the case of combined treatment. Similarly, EBRT administered seven days after MRT to coincide with tumour regrowth, significantly decreased the tumour volume and increased overall survival. CONCLUSIONS This study demonstrates that combining EBRT and MRT has an enhanced therapeutic effect and emphasizes the importance of treatment scheduling according to pathophysiological criteria such as tumour vessel permeability and tumour growth kinetics.
Collapse
Affiliation(s)
| | - Nadia Falzone
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - Veerle Kersemans
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - James Thompson
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - Danny P Allen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - Sarah Able
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | | | - Javian Malcolm
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - Paul Kinchesh
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - Mark A Hill
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - Boris Vojnovic
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - Sean C Smart
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK
| | - Mark N Gaze
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Katherine A Vallis
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, UK.
| |
Collapse
|
3
|
Phaëton R, Gutierrez J, Jiang Z, Karabakhtsian RG, Albanese J, Sunkara J, Fisher DR, Goldberg GL, Dadachova E. Naive and radiolabeled antibodies to E6 and E7 HPV-16 oncoproteins show pronounced antitumor activity in experimental cervical cancer. Immunotherapy 2015; 7:631-40. [PMID: 26098137 PMCID: PMC4524293 DOI: 10.2217/imt.15.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND In spite of profound reduction in incidence, cervical cancer claims >275,000 lives annually. Previously we demonstrated efficacy and safety of radioimmunotherapy directed at HPV16 E6 oncoprotein in experimental cervical cancer. MATERIALS & METHODS We undertook a direct comparison of targeting E7 and E6 oncoproteins with specific (188)Rhenium-labeled monoclonal antibodies in CasKi subcutaneous xenografts of cervical cancer cells in mice. RESULTS The most significant tumor inhibition was seen in radioimmunotherapy-treated mice, followed by the unlabeled monoclonal antibodies to E6 and E7. No hematological toxicity was observed. Immunohistochemistry suggests that the effect of unlabeled antibodies is C3 complement mediated. CONCLUSION We have demonstrated for the first time that radioimmunotherapy directed toward E7 oncoprotein inhibits experimental tumors growth, decreases E7 expression and may offer a novel approach to cervical cancer therapy.
Collapse
MESH Headings
- Animals
- Antibodies, Neoplasm/immunology
- Antibodies, Neoplasm/pharmacology
- Antibodies, Viral/immunology
- Antibodies, Viral/pharmacology
- Female
- Human papillomavirus 16/immunology
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/radiotherapy
- Neoplasms, Experimental/virology
- Oncogene Proteins, Viral/immunology
- Papillomavirus E7 Proteins/immunology
- Papillomavirus Infections/immunology
- Papillomavirus Infections/therapy
- Radioimmunotherapy
- Repressor Proteins/immunology
- Uterine Cervical Neoplasms/immunology
- Uterine Cervical Neoplasms/radiotherapy
- Uterine Cervical Neoplasms/virology
Collapse
Affiliation(s)
- R Phaëton
- Department of Obstetrics & Gynecology, Albert Einstein College of Medicine, NY, USA
| | - J Gutierrez
- Department of Obstetrics & Gynecology, Albert Einstein College of Medicine, NY, USA
| | - Z Jiang
- Department of Radiology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - RG Karabakhtsian
- Department of Pathology, Albert Einstein College of Medicine, NY, USA
| | - J Albanese
- Department of Pathology, Albert Einstein College of Medicine, NY, USA
| | - J Sunkara
- Department of Pathology, Albert Einstein College of Medicine, NY, USA
| | | | - GL Goldberg
- Department of Obstetrics & Gynecology, Albert Einstein College of Medicine, NY, USA
| | - E Dadachova
- Department of Radiology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Dietrich A, Koi L, Zöphel K, Sihver W, Kotzerke J, Baumann M, Krause M. Improving external beam radiotherapy by combination with internal irradiation. Br J Radiol 2015; 88:20150042. [PMID: 25782328 DOI: 10.1259/bjr.20150042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of external beam radiotherapy (EBRT) is dose dependent, but the dose that can be applied to solid tumour lesions is limited by the sensitivity of the surrounding tissue. The combination of EBRT with systemically applied radioimmunotherapy (RIT) is a promising approach to increase efficacy of radiotherapy. Toxicities of both treatment modalities of this combination of internal and external radiotherapy (CIERT) are not additive, as different organs at risk are in target. However, advantages of both single treatments are combined, for example, precise high dose delivery to the bulk tumour via standard EBRT, which can be increased by addition of RIT, and potential targeting of micrometastases by RIT. Eventually, theragnostic radionuclide pairs can be used to predict uptake of the radiotherapeutic drug prior to and during therapy and find individual patients who may benefit from this treatment. This review aims to highlight the outcome of pre-clinical studies on CIERT and resultant questions for translation into the clinic. Few clinical data are available until now and reasons as well as challenges for clinical implementation are discussed.
Collapse
Affiliation(s)
- A Dietrich
- 1 German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,2 OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - L Koi
- 2 OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,3 Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - K Zöphel
- 1 German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,2 OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,4 Clinic and Policlinic for Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - W Sihver
- 5 Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - J Kotzerke
- 1 German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,2 OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,4 Clinic and Policlinic for Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - M Baumann
- 1 German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,2 OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,3 Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,6 Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology, Dresden, Germany
| | - M Krause
- 1 German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,2 OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,3 Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,6 Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology, Dresden, Germany
| |
Collapse
|
5
|
|
6
|
Michalk I, Feldmann A, Koristka S, Arndt C, Cartellieri M, Ehninger A, Ehninger G, Bachmann MP. Characterization of a novel single-chain bispecific antibody for retargeting of T cells to tumor cells via the TCR co-receptor CD8. PLoS One 2014; 9:e95517. [PMID: 24751697 PMCID: PMC3994066 DOI: 10.1371/journal.pone.0095517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/27/2014] [Indexed: 12/28/2022] Open
Abstract
There is currently growing interest in retargeting of effector T cells to tumor cells via bispecific antibodies (bsAbs). Usually, bsAbs are directed on the one hand to the CD3 complex of T cells and on the other hand to a molecule expressed on the surface of the target cell. A bsAb-mediated cross-linkage via CD3 leads to an activation of CD8+ T cells and consequently to killing of the target cells. In parallel, CD4+ T cells including TH1, TH2, TH17 cells and even regulatory T cells (Tregs) will be activated as well. Cytokines produced by CD4+ T cells can contribute to severe side effects e. g. life-threatening cytokine storms and, thinking of the immunosupressive function of Tregs, can even be counterproductive. Therefore, we asked whether or not it is feasible to limit retargeting to CD8+ T cells e. g. via targeting of the co-receptor CD8 instead of CD3. In order to test for proof of concept, a novel bsAb with specificity for CD8 and a tumor-associated surface antigen was constructed. Interestingly, we found that pre-activated (but not freshly isolated) CD8+ T cells can be retargeted via CD8-engaging bsAbs leading to an efficient lysis of target cells.
Collapse
Affiliation(s)
- Irene Michalk
- Institute of Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
| | - Anja Feldmann
- Institute of Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
- Helmholtz Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Dresden, Germany
| | - Stefanie Koristka
- Institute of Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
| | - Claudia Arndt
- Institute of Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
| | - Marc Cartellieri
- Institute of Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
- Helmholtz Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Dresden, Germany
| | - Armin Ehninger
- Institute of Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
- Medical Clinic and Polyclinic I, University Hospital ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
| | - Gerhard Ehninger
- Medical Clinic and Polyclinic I, University Hospital ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
| | - Michael P. Bachmann
- Institute of Immunology, Medical Faculty ‘Carl Gustav Carus’, TU Dresden, Dresden, Germany
- Helmholtz Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Dresden, Germany
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
7
|
Ren H, Gao C, Zhou L, Liu M, Xie C, Lu W. EGFR-targeted poly(ethylene glycol)-distearoylphosphatidylethanolamine micelle loaded with paclitaxel for laryngeal cancer: preparation, characterization and in vitro evaluation. Drug Deliv 2014; 22:785-94. [PMID: 24670093 DOI: 10.3109/10717544.2014.896057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The objective of this study was to evaluate the potential of using polymeric micelles modified with a peptide (termed GE11) ligand of epidermal growth factor receptor as the targeted carriers to achieve increased accumulation in laryngeal cancer and enhanced intracellular delivery for the encapsulated anticancer drugs. Poly (ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) micelles containing paclitaxel were prepared via film-hydration method followed by investigation of in vitro release of paclitaxel in phosphate-buffered saline. The average size of GE11-PEG-DSPE/paclitaxel micelle and mPEG-DSPE/paclitaxel were 35 ± 2.8 nm [the polydispersity index (PDI) = 0.207] and 28 ± 2.1 nm (PDI = 0.154), respectively. Micelles with or without GE11-modified had similar physicochemical properties. Transmission electron microscopy showed that the micelles were homogeneous and spherical in shape. Encapsulation efficiency and drug loading of the micelle were 74.11 ± 3.89% and 3.58 ± 2.82%, respectively. The in vitro targeting characteristic of GE11-modified micelles was investigated by observing the level of cellular uptake of fluorescent coumarin-6-loaded micelles on EGFR over-expressed human laryngeal cancer cell line Hep-2 and EGFR low-expressed human leukemic cell line U-937. Hep-2 cell proliferation was significantly inhibited by GE11-PEG-DSPE/paclitaxel micelle compared to mPEG-DSPE/paclitaxel micelle and Taxol in vitro. Our results suggested that GE11-PEG-DSPE micelle could be a promising strategy for enhancing paclitaxel's chemotherapeutic effects on EGFR over-expressed cancer cells.
Collapse
Affiliation(s)
- Henglei Ren
- a Department of Otolaryngology-Head and Neck Surgery , EENT Hospital, Fudan University , Shanghai , China and
| | - Chunli Gao
- a Department of Otolaryngology-Head and Neck Surgery , EENT Hospital, Fudan University , Shanghai , China and
| | - Liang Zhou
- a Department of Otolaryngology-Head and Neck Surgery , EENT Hospital, Fudan University , Shanghai , China and
| | - Min Liu
- b Department of Pharmaceutics , School of Pharmacy, Fudan University , Shanghai , China
| | - Cao Xie
- b Department of Pharmaceutics , School of Pharmacy, Fudan University , Shanghai , China
| | - Weiyue Lu
- b Department of Pharmaceutics , School of Pharmacy, Fudan University , Shanghai , China
| |
Collapse
|