1
|
Tada M, Kaizuka Y, Kannaka K, Suzuki H, Joho T, Takahashi K, Uehara T, Tanaka H. Development of a Neopentyl 211At-Labeled Activated Ester Providing In Vivo Stable 211At-Labeled Antibodies for Targeted Alpha Therapy. ChemMedChem 2024; 19:e202400369. [PMID: 38847493 DOI: 10.1002/cmdc.202400369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Indexed: 08/10/2024]
Abstract
In this study we developed a neopentyl 211At-labeled activated ester that incorporates a triazole spacer and applied it to the synthesis of an 211At-labeled cetuximab. The activated ester was synthesized via the nucleophilic 211At-astatination of a neopentyl sulfonate carrying two long alkyl chains that serve as a lipid tag, which was followed by the hydrolysis of an acetal. Additionally, we developed a novel Resin-Assisted Purification and Deprotection (RAPD) protocol involving a solid-phase extraction of the protected 211At-labeled compound from the mixture of the labeling reaction, hydrolysis of the acetal on the resin, and finally an elution of the 211At-labeled activator from the resin. This method allows the synthesis of an 211At-labeled activated ester with high purity through a simplified procedure that circumvents the need for HPLC purification. Using this 211At-labeled activated ester, we efficiently synthesized 211At-labeled cetuximab in 27±1 % radiochemical yield with 95 % radiochemical purity. This 211At-activated ester demonstrated high reactivity, and enabled the completion of the reaction with the antibody within 10 min. In comparative biodistribution studies between 211At-labeled cetuximab and the corresponding 125I-labeled cetuximab in normal mice, both the thyroid and stomach showed radioactivity levels that were less than 1.0 % of the injected dose.
Collapse
Affiliation(s)
- Masatoshi Tada
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 12-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Yuta Kaizuka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Kento Kannaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Hiroyuki Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Taiki Joho
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan
| | - Tomoya Uehara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Hiroshi Tanaka
- Faculty of Pharmacy, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba, 279-0013, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 12-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan
| |
Collapse
|
2
|
Tesse G, Tolomeo A, De Filippis B, Giampietro L. Radiolabeled Probes from Derivatives of Natural Compounds Used in Nuclear Medicine. Molecules 2024; 29:4260. [PMID: 39275108 PMCID: PMC11396893 DOI: 10.3390/molecules29174260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
Natural compounds are important precursors for the synthesis of new drugs. The development of novel molecules that are useful for various diseases is the main goal of researchers, especially for the diagnosis and treatment of many diseases. Some pathologies need to be treated with radiopharmaceuticals, and, for this reason, radiopharmaceuticals that use the radiolabeling of natural derivates molecules are arousing more and more interest. Radiopharmaceuticals can be used for both diagnostic and therapeutic purposes depending on the radionuclide. β+- and gamma-emitting radionuclides are used for diagnostic use for PET or SPECT imaging techniques, while α- and β--emitting radionuclides are used for in metabolic radiotherapy. Based on these assumptions, the purpose of this review is to highlight the studies carried out in the last ten years, to search for potentially useful radiopharmaceuticals for nuclear medicine that use molecules of natural origin as lead structures. In this context, the main radiolabeled compounds containing natural products as scaffolds are analyzed, in particular curcumin, stilbene, chalcone, and benzofuran. Studies on structural and chemical modifications are emphasized in order to obtain a collection of potential radiopharmaceuticals that exploit the biological properties of molecules of natural origin. The radionuclides used to label these compounds are 68Ga, 44Sc, 18F, 64Cu, 99mTc, and 125I for diagnostic imaging.
Collapse
Affiliation(s)
- Giuseppe Tesse
- Radiopharma Division, ITEL Telecomunicazioni s.r.l., 70037 Ruvo di Puglia, BA, Italy
| | - Anna Tolomeo
- Radiopharma Division, ITEL Telecomunicazioni s.r.l., 70037 Ruvo di Puglia, BA, Italy
| | - Barbara De Filippis
- Department of Pharmacy, Università degli Studi G. d'Annunzio, 66100 Chieti, CH, Italy
| | - Letizia Giampietro
- Department of Pharmacy, Università degli Studi G. d'Annunzio, 66100 Chieti, CH, Italy
| |
Collapse
|
3
|
Suzuki H, Kannaka K, Hirayama M, Yamashita T, Kaizuka Y, Kobayashi R, Yasuda T, Takahashi K, Uehara T. In vivo stable 211At-labeled prostate-specific membrane antigen-targeted tracer using a neopentyl glycol structure. EJNMMI Radiopharm Chem 2024; 9:48. [PMID: 38884866 PMCID: PMC11183015 DOI: 10.1186/s41181-024-00278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Prostate cancer is a common cancer among men worldwide that has a very poor prognosis, especially when it progresses to metastatic castration-resistant prostate cancer (mCRPC). Therefore, novel therapeutic agents for mCRPC are urgently required. Because prostate-specific membrane antigen (PSMA) is overexpressed in mCRPC, targeted alpha therapy (TAT) for PSMA is a promising treatment for mCRPC. Astatine-211 (211At) is a versatile α-emitting radionuclide that can be produced using a cyclotron. Therefore, 211At-labeled PSMA compounds could be useful for TAT; however, 211At-labeled compounds are unstable against deastatination in vivo. In this study, to develop in vivo stable 211At-labeled PSMA derivatives, we designed and synthesized 211At-labeled PSMA derivatives using a neopentyl glycol (NpG) structure that can stably retain 211At in vivo. We also evaluated their biodistribution in normal and tumor-bearing mice. RESULTS We designed and synthesized 211At-labeled PSMA derivatives containing two glutamic acid (Glu) linkers between the NpG structure and asymmetric urea (NpG-L-PSMA ((L-Glu)2 linker used) and NpG-D-PSMA ((D-Glu)2 linker used)). First, we evaluated the characteristics of 125I-labeled NpG derivatives because 125I was readily available. [125I]I-NpG-L-PSMA and [125I]I-NpG-D-PSMA showed low accumulation in the stomach and thyroid, indicating their high in vivo stability against deiodination. [125I]I-NpG-L-PSMA was excreted in urine as hydrophilic radiometabolites in addition to the intact form. Meanwhile, [125I]I-NpG-D-PSMA was excreted in urine in an intact form. In both cases, no radioactivity was observed in the free iodine fraction. [125I]I-NpG-D-PSMA showed higher tumor accumulation than [125I]I-NpG-L-PSMA. We then developed 211At-labeled PSMA using the NpG-D-PSMA structure. [211At]At-NpG-D-PSMA showed low accumulation in the stomach and thyroid in normal mice, indicating its high stability against deastatination in vivo. Moreover, [211At]At-NpG-D-PSMA showed high accumulation in tumor similar to that of [125I]I-NpG-D-PSMA. CONCLUSIONS [211At]At-NpG-D-PSMA showed high in vivo stability against deastatination and high tumor accumulation. [211At]At-NpG-D-PSMA should be considered as a potential new TAT for mCRPC.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Chuo-Ku, Inohana, Chiba, 260-8675, Japan
| | - Kento Kannaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Chuo-Ku, Inohana, Chiba, 260-8675, Japan
| | - Mizuki Hirayama
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Chuo-Ku, Inohana, Chiba, 260-8675, Japan
| | - Tomoki Yamashita
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Chuo-Ku, Inohana, Chiba, 260-8675, Japan
| | - Yuta Kaizuka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Chuo-Ku, Inohana, Chiba, 260-8675, Japan
| | - Ryota Kobayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Chuo-Ku, Inohana, Chiba, 260-8675, Japan
| | - Takahiro Yasuda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Chuo-Ku, Inohana, Chiba, 260-8675, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Medical University, 1 Hikariga-Oka, Fukushima, 960-12195, Japan
| | - Tomoya Uehara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Chuo-Ku, Inohana, Chiba, 260-8675, Japan.
| |
Collapse
|
4
|
Sasaki I, Tada M, Liu Z, Tatsuta M, Okura T, Aoki M, Takahashi K, Ishioka NS, Watanabe S, Tanaka H. 1-( N, N-Dialkylcarbamoyl)-1,1-difluoromethanesulfonyl ester as a stable and effective precursor for a neopentyl labeling group with astatine-211. Org Biomol Chem 2023; 21:7467-7472. [PMID: 37670575 DOI: 10.1039/d3ob00944k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Radiohalogens with a short half-life are useful radioisotopes for radiotheranostics. Astatine-211 is an α-emitting radiohalogen and is expected to be applicable to targeted α therapy. A neopentyl labeling group is an effective hydrophilic labeling unit for various radiohalogens, which includes 211At. In this study, a 1-(N,N-dialkylcarbamoyl)-1,1-difluoromethanesulfonyl (CDf) ester was developed as a stable precursor for labeling with 211At, 77Br and 125I through a neopentyl labeling group. The CDf ester remained stable in an acetonitrile solution at room temperature and enabled the successful syntheses of 211At-labeled compounds in a highly radiochemical conversion in the presence of K2CO3. 77Br- and 125I-labeled compounds can be prepared from the CDf ester without a base. The utility of the CDf ester was demonstrated in the synthesis of a benzylguanidine with a neopentyl 211At-labeling group. The developed method afforded a 32% radiochemical yield of 211At-labeled benzylguanidine. However, a partial deastatination was observed under acidic conditions during the removal of an N-Boc protecting group. Deprotecting these groups under milder acidic conditions may improve the radiochemical yield. In conclusion, the CDf ester facilitates the syntheses of 211At, 125I and 77Br-labeled compounds that use a neopentyl labeling group for radiotheranostic applications. Further optimization of protecting groups and reaction conditions should enhance the total radiochemical yield of the 211At-labeled compounds.
Collapse
Affiliation(s)
- Ichiro Sasaki
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Masatoshi Tada
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 12-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan.
| | - Ziyun Liu
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 12-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan.
| | - Maho Tatsuta
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 12-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan.
| | - Takeru Okura
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 12-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan.
| | - Miho Aoki
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima 960-1295, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima 960-1295, Japan
| | - Noriko S Ishioka
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Shigeki Watanabe
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 12-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan.
| |
Collapse
|
5
|
Li S, Chu T. Improving tumor/muscle and tumor/blood ratios of 99mTc-labeled nitroimidazole propylene amine oxime (PnAO) complexes with ethylene glycol linkers. Bioorg Med Chem Lett 2023; 82:129154. [PMID: 36736496 DOI: 10.1016/j.bmcl.2023.129154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/02/2023]
Abstract
Three nitroimidazole propylene amine oxime (PnAO) derivatives with different lengths of ethylene glycol chain were synthesized and radiolabeled with 99mTc. The radiochemical purities of three 99mTc-labeled complexes, oxo[[6,6,12,12-tetramethyl-1,17-bis(2-nitro-1H-imidazol-1-yl)-3,15-dioxa-7,11-diazaheptadecane-5, 13-dione dioximato] (3-)-N,N',N'',N''']-technetium-99m (99mTc-2P2O1), oxo[[9,9,15,15-tetramethyl-1,23-bis(2-nitro-1H-imidazol-1-yl)-3,6,18,21-tetraoxa-10, 14-diazatricosane-8,16-dione dioximato] (3-)-N,N',N'',N''']-technetium-99m (99mTc-2P2O2) and oxo[[15,15,21,21-tetramethyl-1,35-bis(2-nitro-1H-imidazol-1-yl)-3,6,9,12,24,27,30,33-octaoxa-16,20-diazapentatriacontane-14,22-dione dioximato] (3-)-N,N',N'',N''']-technetium-99m (99mTc-2P2O4), were above 90%, and they were all stable both in vitro and in vivo. The hypoxia/normoxia uptake ratios of the three complexes were 2.92 ± 0.61, 2.63 ± 0.64 and 2.29 ± 0.67 in S180 cellular uptake assay (4 h). All of these complexes presented good hypoxia selectivity. The results of biodistribution studies in S180 tumor-bearing mice revealed that the tumor/muscle (T/M) ratios (7.20 ± 2.37, 7.19 ± 1.75, 5.56 ± 1.10) and tumor/blood (T/B) ratios (1.66 ± 0.34, 1.73 ± 0.25, 2.13 ± 0.19) at 4 h of three complexes were significantly higher than those of 99mTc-2P2 (3.24 ± 0.65, 0.81 ± 0.34) without the ethylene glycol chains. Among them, 99mTc-2P2O4 had the best T/B ratio. The new complexes have higher tumor/blood and tumor/muscle ratios by adding suitable length of ethylene glycol chain. It is helpful for the design and optimization of hypoxic imaging agents.
Collapse
Affiliation(s)
- Shuo Li
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Taiwei Chu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
6
|
Bernardes E, Caravan P, van Dam RM, Deuther-Conrad W, Ellis B, Furumoto S, Guillet B, Huang YY, Jia H, Laverman P, Li Z, Liu Z, Lodi F, Miao Y, Perk L, Schirrmacher R, Vercoullie J, Yang H, Yang M, Yang X, Zhang J, Zhang MR, Zhu H. Highlight selection of radiochemistry and radiopharmacy developments by editorial board. EJNMMI Radiopharm Chem 2022; 7:9. [PMID: 35471681 PMCID: PMC9043146 DOI: 10.1186/s41181-022-00162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biyearly highlight commentary to update the readership on trends in the field of radiopharmaceutical development.
Results This commentary of highlights has resulted in 23 different topics selected by each member of the Editorial Board addressing a variety of aspects ranging from novel radiochemistry to first in man application of novel radiopharmaceuticals and also a contribution in relation to MRI-agents is included. Conclusion Trends in (radio)chemistry and radiopharmacy are highlighted demonstrating the progress in the research field being the scope of EJNMMI Radiopharmacy and Chemistry.
Collapse
Affiliation(s)
| | - Peter Caravan
- Massuchusetts General Hospital, Harvard University, Cambridge, USA
| | | | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Leipzig, Germany. .,Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| | - Beverley Ellis
- Manchester University NHS Foundation Trust, Manchester, UK
| | | | | | - Ya-Yao Huang
- National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | - Lars Perk
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Min Yang
- Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, People's Republic of China
| | - Xing Yang
- Peking University First Hospital, Beijing, China
| | | | | | - Hua Zhu
- Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
7
|
Suzuki H, Kaizuka Y, Tatsuta M, Tanaka H, Washiya N, Shirakami Y, Ooe K, Toyoshima A, Watabe T, Teramoto T, Sasaki I, Watanabe S, Ishioka NS, Hatazawa J, Uehara T, Arano Y. Neopentyl Glycol as a Scaffold to Provide Radiohalogenated Theranostic Pairs of High In Vivo Stability. J Med Chem 2021; 64:15846-15857. [PMID: 34708646 DOI: 10.1021/acs.jmedchem.1c01147] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The high in vivo stability of 2,2-dihydroxymethyl-3-[18F]fluoropropyl-2-nitroimidazole ([18F]DiFA) prompted us to evaluate neopentyl as a scaffold to prepare a radiotheranostic system with radioiodine and astatine. Three DiFA analogues with one, two, or without a hydroxyl group were synthesized. While all 125I-labeled compounds remained stable against nucleophilic substitution, only a 125I-labeled neopentyl glycol was stable against cytochrome P450 (CYP)-mediated metabolism and showed high stability against in vivo deiodination. 211At-labeled neopentyl glycol also remained stable against both nucleophilic substitution and CYP-mediated metabolism. 211At-labeled neopentyl glycol showed the biodistribution profiles similar to those of its radioiodinated counterpart in contrast to the 125I/211At-labeled benzoate pair. The urine analyses confirmed that 211At-labeled neopentyl glycol was excreted in the urine as a glucuronide conjugate with the absence of free [211At]At-. These findings indicate that neopentyl glycol would constitute a promising scaffold to prepare a radiotheranostic system with radioiodine and 211At.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yuta Kaizuka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Maho Tatsuta
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Nana Washiya
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yoshifumi Shirakami
- Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kazuhiro Ooe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Toyoshima
- Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Teramoto
- Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ichiro Sasaki
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Shigeki Watanabe
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Noriko S Ishioka
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Jun Hatazawa
- Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomoya Uehara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yasushi Arano
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
8
|
N‐
Alkyl 3‐aminobut‐2‐enenitrile as a Non‐radioactive Side Product in Nucleophilic
18
F‐Fluorination. ChemistrySelect 2021. [DOI: 10.1002/slct.202100723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|