1
|
Zhou YP, Wilks MQ, Dhaynaut M, Guehl NJ, Vesper DR, Moon SH, Rice PA, El Fakhri G, Normandin MD, Brugarolas P. Radiosynthesis automation, non-human primate biodistribution and dosimetry of K + channel tracer [ 11C]3MeO4AP. EJNMMI Res 2024; 14:43. [PMID: 38683467 PMCID: PMC11058135 DOI: 10.1186/s13550-024-01092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/04/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND 4-Aminopyridine (4AP) is a medication for the symptomatic treatment of multiple sclerosis. Several 4AP-based PET tracers have been developed for imaging demyelination. In preclinical studies, [11C]3MeO4AP has shown promise due to its high brain permeability, high metabolic stability, high plasma availability, and high in vivo binding affinity. To prepare for the translation to human studies, we developed a cGMP-compatible automated radiosynthesis protocol and evaluated the whole-body biodistribution and radiation dosimetry of [11C]3MeO4AP in non-human primates (NHPs). METHODS Automated radiosynthesis was carried out using a GE TRACERlab FX-C Pro synthesis module. One male and one female adult rhesus macaques were used in the study. A high-resolution CT from cranial vertex to knee was acquired. PET data were collected using a dynamic acquisition protocol with four bed positions and 13 passes over a total scan time of ~ 150 min. Based on the CT and PET images, volumes of interest (VOIs) were manually drawn for selected organs. Non-decay corrected time-activity curves (TACs) were extracted for each VOI. Radiation dosimetry and effective dose were calculated from the integrated TACs using OLINDA software. RESULTS Fully automated radiosynthesis of [11C]3MeO4AP was achieved with 7.3 ± 1.2% (n = 4) of non-decay corrected radiochemical yield within 38 min of synthesis and purification time. [11C]3MeO4AP distributed quickly throughout the body and into the brain. The organs with highest dose were the kidneys. The average effective dose of [11C]3MeO4AP was 4.0 ± 0.6 μSv/MBq. No significant changes in vital signs were observed during the scan. CONCLUSION A cGMP-compatible automated radiosynthesis of [11C]3MeO4AP was developed. The whole-body biodistribution and radiation dosimetry of [11C]3MeO4AP was successfully evaluated in NHPs. [11C]3MeO4AP shows lower average effective dose than [18F]3F4AP and similar average effective dose as other carbon-11 tracers.
Collapse
Affiliation(s)
- Yu-Peng Zhou
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA
| | - Moses Q Wilks
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA
| | - Maeva Dhaynaut
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA
| | - Nicolas J Guehl
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Danielle R Vesper
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Sung-Hyun Moon
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA
| | - Peter A Rice
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA
| | - Georges El Fakhri
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Marc D Normandin
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA.
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Pedro Brugarolas
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Bulfinch 051, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
Cheng K, Webb EW, Bowden GD, Wright JS, Shao X, Sanford MS, Scott PJH. Photo- and Cu-Mediated 11C Cyanation of (Hetero)Aryl Thianthrenium Salts. Org Lett 2024; 26:3419-3423. [PMID: 38630573 PMCID: PMC11099534 DOI: 10.1021/acs.orglett.4c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
We present a photo- and Cu-mediated 11C cyanation of bench-stable (hetero)aryl thianthrenium salts via an aryl radical addition pathway. The thianthrenium substrates can be readily accessed via C-H functionalization, and the radiocyanation protocol proceeds under mild conditions (<50 °C, 5 min) and can be automated using open-source, readily accessible augmentations to existing radiochemistry equipment.
Collapse
Affiliation(s)
- Kevin Cheng
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
| | - E. William Webb
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
| | - Gregory D. Bowden
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, Tuebingen, Germany
| | - Jay S. Wright
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
| | - Xia Shao
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
| | | | - Peter J. H. Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, United States
| |
Collapse
|
3
|
Horikawa M, Joy ST, Sharninghausen LS, Shao X, Mapp AK, Scott PJH, Sanford MS. C-H radiocyanation of bioactive molecules via sequential iodination/copper-mediated cross-coupling. Chem Sci 2023; 14:12068-12072. [PMID: 37969612 PMCID: PMC10631240 DOI: 10.1039/d3sc03948j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023] Open
Abstract
This report describes a net C-H radiocyanation reaction for the transformation of electron rich (hetero)aromatic substrates into 11CN-labeled products. Electrophilic C(sp2)-H iodination of the (hetero)arene with N-iodosuccinimide is followed by Cu-mediated radiocyanation with K11CN. This sequence is applied to a variety of substrates, including the nucleobases uracil and cytosine, the amino acids tyrosine and tryptophan, and the peptide LYRAGWRAFS, which undergoes selective C-H radiocyanation at the tryptophan (W) residue.
Collapse
Affiliation(s)
- Mami Horikawa
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Stephen T Joy
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Liam S Sharninghausen
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Xia Shao
- Department of Radiology, University of Michigan 1301 Catherine Ann Arbor Michigan 48109 USA
| | - Anna K Mapp
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan 1301 Catherine Ann Arbor Michigan 48109 USA
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor Michigan 48109 USA
| |
Collapse
|
4
|
Webb EW, Cheng K, Wright JS, Cha J, Shao X, Sanford MS, Scott PJH. Room-Temperature Copper-Mediated Radiocyanation of Aryldiazonium Salts and Aryl Iodides via Aryl Radical Intermediates. J Am Chem Soc 2023; 145:6921-6926. [PMID: 36917154 PMCID: PMC10065967 DOI: 10.1021/jacs.3c00422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Radiocyanation is an attractive strategy for incorporating carbon-11 into radiotracer targets, particularly given the broad scope of acyl moieties accessible from nitriles. Most existing methods for aromatic radiocyanation require elevated temperatures (Cu-mediated reactions of aryl halides or organometallics) or involve expensive and toxic palladium complexes (Pd-mediated reactions of aryl halides). The current report discloses a complementary approach that leverages the capture of aryl radical intermediates by a Cu-11CN complex to achieve rapid and mild (5 min, room temperature) radiocyanation. In a first example, aryl radicals are generated via the reaction of a CuI mediator with an aryldiazonium salt (a Sandmeyer-type reaction) followed by radiocyanation with Cu-11CN. In a second example, aryl radicals are formed from aryl iodides via visible-light photocatalysis and then captured by a Cu-11CN species to achieve aryl-11CN coupling. This approach provides access to radiocyanated products that are challenging to access using other methods (e.g., ortho-disubstituted aryl nitriles).
Collapse
Affiliation(s)
- E. William Webb
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Kevin Cheng
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jay S. Wright
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jocelyn Cha
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Xia Shao
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Zhou YP, Wilks MQ, Dhaynaut M, Guehl NJ, Moon SH, Fakhri GE, Normandin MD, Brugarolas P. Radiosynthesis automation, non-human primate biodistribution and dosimetry of K + channel tracer [ 11 C]3MeO4AP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534386. [PMID: 37034655 PMCID: PMC10081174 DOI: 10.1101/2023.03.28.534386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Purpose 4-Aminopyridine (4AP) is a medication for the symptomatic treatment of multiple sclerosis. Several 4AP-based PET tracers have been developed for imaging demyelination. In preclinical studies, [ 11 C]3MeO4AP has shown promise due to its high brain permeability, high metabolic stability, high plasma availability, and high in vivo binding affinity. To prepare for the translation to human studies, we developed a cGMP-compliant automated radiosynthesis protocol and evaluated the whole-body biodistribution and radiation dosimetry of [ 11 C]3MeO4AP in non-human primates (NHPs). Methods Automated radiosynthesis was carried out using a GE TRACERlab FX-C Pro synthesis module. One male and one female adult rhesus macaques were used in the study. A high-resolution CT from cranial vertex to knee was acquired. PET data were collected using a dynamic acquisition protocol with 4 bed positions and 13 passes over a total scan time of ∼150 minutes. Based on the CT and PET images, volumes of interest (VOIs) were manually drawn for selected organs. Non-decay corrected time-activity curves (TACs) were extracted for each VOI. Radiation dosimetry and effective dose were calculated from the integrated TACs using OLINDA software. Results Fully automated radiosynthesis of [ 11 C]3MeO4AP was achieved with 7.3 ± 1.2 % (n = 4) of non-decay corrected radiochemical yield within 38 min of synthesis and purification time. [ 11 C]3MeO4AP distributed quickly throughout the body and into the brain. The organs with highest dose were the kidneys. The average effective dose of [ 11 C]3MeO4AP was 4.27 ± 0.57 μSv/MBq. No significant changes in vital signs were observed during the scan. Conclusion The cGMP compliant automated radiosynthesis of [ 11 C]3MeO4AP was developed. The whole-body biodistribution and radiation dosimetry of [ 11 C]3MeO4AP was successfully evaluated in NHPs. [ 11 C]3MeO4AP shows lower average effective dose than [ 18 F]3F4AP and similar average effective dose as other carbon-11 tracers.
Collapse
|
6
|
Ishii H, Yamasaki T, Okamura T, Zhang Y, Kurihara Y, Ogawa M, Nengaki N, Zhang MR. Evaluation and improvement of CuI-mediated 11 C-cyanation. J Labelled Comp Radiopharm 2023; 66:95-107. [PMID: 36791689 DOI: 10.1002/jlcr.4016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
CuI-mediated 11 C-cyanation was evaluated by synthesizing [11 C]perampanel ([11 C]5) as a model compound and compared with previous reports. To a DMF solution with 5'-(2-bromophenyl)-1'-phenyl-[2,3'-bipyridin]-6'(1'H)-one (4) and CuI, [11 C]NH4 CN in a stream of ammonia/nitrogen (5:95, v/v) gas was bubbled. Subsequently, the reaction mixture was heated at 180°C for 5 min. After HPLC purification, [11 C]5 was obtained in 7.2 ± 1.0% (n = 4) non-decay corrected radiochemical yield with >99% radiochemical purity and a molar activity of 98 ± 28 GBq/μmol. In vivo evaluations of [11 C]5 were performed using small animals. PET scans to check the kinetics of [11 C]5 in the whole body of mice suggested that [11 C]5 spreads rapidly into the brain, heart, and lungs and then accumulates in the small intestine. To evaluate the performance of CuI-mediated 11 C-cyanation reaction, bromobenzene (6a) was selected as the model compound; however, it failed. Therefore, optimization of the reaction conditions has been performed, and consequently, the addition of K2 CO3 and prolonging the reaction time improved the radiochemical yield about double. With this improved method, CuI-mediated 11 C-cyanation of various (hetero)aromatic bromides was performed to exhibit the tolerance of most functional groups and to provide 11 C-cyanated products in good to moderate radiochemical yields.
Collapse
Affiliation(s)
- Hideki Ishii
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Toshimitsu Okamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yusuke Kurihara
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- SHI Accelerator Service Ltd., Tokyo, Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- SHI Accelerator Service Ltd., Tokyo, Japan
| | - Nobuki Nengaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- SHI Accelerator Service Ltd., Tokyo, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
7
|
Pees A, Chassé M, Lindberg A, Vasdev N. Recent Developments in Carbon-11 Chemistry and Applications for First-In-Human PET Studies. Molecules 2023; 28:931. [PMID: 36770596 PMCID: PMC9920299 DOI: 10.3390/molecules28030931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Positron emission tomography (PET) is a molecular imaging technique that makes use of radiolabelled molecules for in vivo evaluation. Carbon-11 is a frequently used radionuclide for the labelling of small molecule PET tracers and can be incorporated into organic molecules without changing their physicochemical properties. While the short half-life of carbon-11 (11C; t½ = 20.4 min) offers other advantages for imaging including multiple PET scans in the same subject on the same day, its use is limited to facilities that have an on-site cyclotron, and the radiochemical transformations are consequently more restrictive. Many researchers have embraced this challenge by discovering novel carbon-11 radiolabelling methodologies to broaden the synthetic versatility of this radionuclide. This review presents new carbon-11 building blocks and radiochemical transformations as well as PET tracers that have advanced to first-in-human studies over the past five years.
Collapse
Affiliation(s)
- Anna Pees
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Melissa Chassé
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
8
|
Chen W, Wu X, McManus JB, Bida GT, Li KP, Wu Z, Nicewicz DA, Li Z. Direct C-H Radiocyanation of Arenes via Organic Photoredox Catalysis. Org Lett 2022; 24:9316-9321. [PMID: 36507797 DOI: 10.1021/acs.orglett.2c03940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Innovative labeling methods to incorporate the short-lived positron emitter carbon-11(11C) into bioactive molecules are attractive for positron emission tomography (PET) tracer discovery. Herein, we report a direct C-H radiocyanation method that incorporates [11C]cyanide (11CN-) to a series of functional electron-rich arenes via photoredox catalysis. This photoredox-mediated radiocyanation can proceed in an aerobic environment and is not moisture sensitive, which allows for ease of reaction setup and for scalable synthesis of 11C-aryl nitriles from readily available precursors.
Collapse
Affiliation(s)
- Wei Chen
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xuedan Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joshua B McManus
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald T Bida
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kang-Po Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhanhong Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Lindberg A, Vasdev N. Ring-opening of non-activated aziridines with [ 11C]CO 2 via novel ionic liquids. RSC Adv 2022; 12:21417-21421. [PMID: 35975081 PMCID: PMC9345297 DOI: 10.1039/d2ra03966d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Novel ionic liquids based on DBU and DBN halide salts were developed as a catalytic system for ring-opening of non-activated aziridines with [11C]CO2. The ability of ionic liquids to activate aziridines represents a simple methodology for the synthesis of 11C-carbamates and can be extended for CO2-fixation in organic and radiochemistry. Novel ionic liquids based on DBU and DBN halide salts were developed as a catalytic system for ring-opening of non-activated aziridines with [11C]CO2.![]()
Collapse
Affiliation(s)
- Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health Toronto ON M5T 1R8 Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health Toronto ON M5T 1R8 Canada .,Department of Psychiatry, University of Toronto Toronto ON M5T 1R8 Canada
| |
Collapse
|
10
|
Sharninghausen LS, Preshlock S, Joy ST, Horikawa M, Shao X, Winton WP, Stauff J, Kaur T, Koeppe RA, Mapp AK, Scott PJH, Sanford MS. Copper-Mediated Radiocyanation of Unprotected Amino Acids and Peptides. J Am Chem Soc 2022; 144:7422-7429. [PMID: 35437016 PMCID: PMC9887455 DOI: 10.1021/jacs.2c01959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This report describes a copper-mediated radiocyanation of aryl halides that is applicable to complex molecules. This transformation tolerates an exceptionally wide range of functional groups, including unprotected amino acids. As such, it enables the site-specific introduction of [11C]CN into peptides at an iodophenylalanine residue. The use of a diamine-ligated copper(I) mediator is crucial for achieving high radiochemical yield under relatively mild conditions, thus limiting racemization and competing side reactions of other amino acid side chains. The reaction has been scaled and automated to deliver radiolabeled peptides, including analogues of adrenocorticotropic hormone 1-27 (ACTH) and nociceptin (NOP). For instance, this Cu-mediated radiocyanation was leveraged to prepare >40 mCi of [11C]cyano-NOP to evaluate biodistribution in a primate using positron emission tomography. This investigation provides preliminary evidence that nociceptin crosses the blood-brain barrier and shows uptake across all brain regions (SUV > 1 at 60 min post injection), consistent with the known distribution of NOP receptors in the rhesus brain.
Collapse
Affiliation(s)
- Liam S. Sharninghausen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Sean Preshlock
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Stephen T. Joy
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Mami Horikawa
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Xia Shao
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Wade P. Winton
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Jenelle Stauff
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Tanpreet Kaur
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Anna K. Mapp
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States,Corresponding Author: Peter J. H. Scott. . Melanie S. Sanford. . Anna K. Mapp.
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States,Corresponding Author: Peter J. H. Scott. . Melanie S. Sanford. . Anna K. Mapp.
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States,Corresponding Author: Peter J. H. Scott. . Melanie S. Sanford. . Anna K. Mapp.
| |
Collapse
|
11
|
Kikuchi T, Ogawa M, Okamura T, Gee AD, Zhang MR. Rapid 'on-column' preparation of hydrogen [ 11C]cyanide from [ 11C]methyl iodide via [ 11C]formaldehyde. Chem Sci 2022; 13:3556-3562. [PMID: 35432866 PMCID: PMC8943838 DOI: 10.1039/d1sc07033a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Hydrogen [11C]cyanide ([11C]HCN) is a versatile 11C-labelling agent for the production of 11C-labelled compounds used for positron emission tomography (PET). However, the traditional method for [11C]HCN production requires a dedicated infrastructure, limiting accessibility to [11C]HCN. Herein, we report a simple and efficient [11C]HCN production method that can be easily implemented in 11C production facilities. The immediate production of [11C]HCN was achieved by passing gaseous [11C]methyl iodide ([11C]CH3I) through a small two-layered reaction column. The first layer contained an N-oxide and a sulfoxide for conversion of [11C]CH3I to [11C]formaldehyde ([11C]CH2O). The [11C]CH2O produced was subsequently converted to [11C]HCN in a second layer containing hydroxylamine-O-sulfonic acid. The yield of [11C]HCN produced by the current method was comparable to that of [11C]HCN produced by the traditional method. The use of oxymatrine and diphenyl sulfoxide for [11C]CH2O production prevented deterioration of the molar activity of [11C]HCN. Using this method, compounds labelled with [11C]HCN are now made easily accessible for PET synthesis applications using readily available labware, without the need for the 'traditional' dedicated cyanide synthesis infrastructure.
Collapse
Affiliation(s)
- Tatsuya Kikuchi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage-ku Chiba 263-8555 Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage-ku Chiba 263-8555 Japan
- SHI Accelerator Service, Ltd. 1-17-6 Osaki, Shinagawa-ku Tokyo 141-0032 Japan
| | - Toshimitsu Okamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage-ku Chiba 263-8555 Japan
| | - Antony D Gee
- School of Biomedical Engineering and Imaging Sciences, King's College London 4th Floor Lambeth Wing, St Thomas' Hospital, Lambeth Palace Road London SE1 7EH UK
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage-ku Chiba 263-8555 Japan
| |
Collapse
|
12
|
Kawamura K, Hashimoto H, Ohkubo T, Hanyu M, Ogawa M, Nengaki N, Arashi D, Kurihara Y, Fujishiro T, Togashi T, Sakai T, Muto M, Takei M, Ishii H, Saijo T, Matsumura T, Obokata N, Zhang MR. Automated radiosynthesis of [ 11 C]MTP38-a phosphodiesterase 7 imaging tracer-using [ 11 C]hydrogen cyanide for clinical applications. J Labelled Comp Radiopharm 2022; 65:140-146. [PMID: 35122288 DOI: 10.1002/jlcr.3965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/11/2022]
Abstract
We have developed 8-amino-3-(2S,5R-dimethyl-1-piperidyl)-[1,2,4]triazolo[4,3-a]pyrazine-5-[11 C]carbonitrile ([11 C]MTP38) as a PET tracer for the imaging of phosphodiesterase 7. For the fully automated production of [11 C]MTP38 routinely and efficiently for clinical applications, we determined the radiosynthesis procedure of [11 C]MTP38 using [11 C]hydrogen cyanide ([11 C]HCN) as a PET radiopharmaceutical. Radiosynthesis of [11 C]MTP38 was performed using an automated 11 C-labeling synthesizer developed in-house within 40 min after the end of irradiation. [11 C]MTP38 was obtained with a relatively high radiochemical yield (33 ± 5.5% based on [11 C]CO2 at the end of irradiation, decay-corrected, n = 15), radiochemical purity (>97%, n = 15), and molar activity (47 ± 12 GBq/μmol at the end of synthesis, n = 15). All the results of the quality control (QC) testing for the [11 C]MTP38 injection complied with our in-house QC and quality assurance specifications. We successfully automated the radiosynthesis of [11 C]MTP38 for clinical applications using an 11 C-labeling synthesizer and sterile isolator. Taken together, this protocol provides a new radiopharmaceutical [11 C]MTP38 suitable for clinical applications.
Collapse
Affiliation(s)
- Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroki Hashimoto
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takayuki Ohkubo
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,SHI Accelerator Service Ltd., Tokyo, Japan
| | - Masayuki Hanyu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,SHI Accelerator Service Ltd., Tokyo, Japan
| | - Nobuki Nengaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,SHI Accelerator Service Ltd., Tokyo, Japan
| | - Daisuke Arashi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,Tokyo Nuclear Services Ltd., Tokyo, Japan
| | - Yusuke Kurihara
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,SHI Accelerator Service Ltd., Tokyo, Japan
| | - Tomoya Fujishiro
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,Tokyo Nuclear Services Ltd., Tokyo, Japan
| | - Takahiro Togashi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,Tokyo Nuclear Services Ltd., Tokyo, Japan
| | - Toshiyuki Sakai
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,Tokyo Nuclear Services Ltd., Tokyo, Japan
| | - Masatoshi Muto
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,Tokyo Nuclear Services Ltd., Tokyo, Japan
| | - Makoto Takei
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hideki Ishii
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takeaki Saijo
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Takehiko Matsumura
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Naoyuki Obokata
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|