1
|
Bauer D, De Gregorio R, Pratt EC, Bell A, Michel A, Lewis JS. Examination of the PET in vivo generator 134Ce as a theranostic match for 225Ac. Eur J Nucl Med Mol Imaging 2024; 51:4015-4025. [PMID: 38940841 DOI: 10.1007/s00259-024-06811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE The radionuclide pair cerium-134/lanthanum-134 (134Ce/134La) was recently proposed as a suitable diagnostic counterpart for the therapeutic alpha-emitter actinium-225 (225Ac). The unique properties of 134Ce offer perspectives for developing innovative in vivo investigations that are not possible with 225Ac. In this work, 225Ac- and 134Ce-labelled tracers were directly compared using internalizing and slow-internalizing cancer models to evaluate their in vivo comparability, progeny meandering, and potential as a matched theranostic pair for clinical translation. Despite being an excellent chemical match, 134Ce/134La has limitations to the setting of quantitative positron emission tomography imaging. METHODS The precursor PSMA-617 and a macropa-based tetrazine-conjugate (mcp-PEG8-Tz) were radiolabelled with 225Ac or 134Ce and compared in vitro and in vivo using standard (radio)chemical methods. Employing biodistribution studies and positron emission tomography (PET) imaging in athymic nude mice, the radiolabelled PSMA-617 tracers were evaluated in a PC3/PIP (PC3 engineered to express a high level of prostate-specific membrane antigen) prostate cancer mouse model. The 225Ac and 134Ce-labelled mcp-PEG8-Tz were investigated in a BxPC-3 pancreatic tumour model harnessing the pretargeting strategy based on a trans-cyclooctene-modified 5B1 monoclonal antibody. RESULTS In vitro and in vivo studies with both 225Ac and 134Ce-labelled tracers led to comparable results, confirming the matching pharmacokinetics of this theranostic pair. However, PET imaging of the 134Ce-labelled precursors indicated that quantification is highly dependent on tracer internalization due to the redistribution of 134Ce's PET-compatible daughter 134La. Consequently, radiotracers based on internalizing vectors like PSMA-617 are suited for this theranostic pair, while slow-internalizing 225Ac-labelled tracers are not quantitatively represented by 134Ce PET imaging. CONCLUSION When employing slow-internalizing vectors, 134Ce might not be an ideal match for 225Ac due to the underestimation of tumour uptake caused by the in vivo redistribution of 134La. However, this same characteristic makes it possible to estimate the redistribution of 225Ac's progeny noninvasively. In future studies, this unique PET in vivo generator will further be harnessed to study tracer internalization, trafficking of receptors, and the progression of the tumour microenvironment.
Collapse
Affiliation(s)
- David Bauer
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Roberto De Gregorio
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Edwin C Pratt
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Abram Bell
- Brigham Young University-Idaho, Rexburg, ID, 83440, USA
| | - Alexa Michel
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jason S Lewis
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Wang Y, Zhou Y, Zhai D, Deng H, Chen X. Design and in vitro evaluation of 223Ra/ 99mTc-loaded spherical nano-hydroxyapatite in bone tumor therapy. Nanomedicine (Lond) 2024; 19:1557-1567. [PMID: 39011932 PMCID: PMC11321400 DOI: 10.1080/17435889.2024.2365127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: Nano-hydroxyapatite (nHA) is a good nanocarrier to load 223Ra, but the low specific activity (sp.act.) of 223Ra@nHA limits its application in medicine. Methods: We proposed a method for preparing nHA using PEG as a template, which significantly increases the sp.act of 223Ra@nHA and a new method to loaded 99mTc for in vivo tracking. Results: The nHA synthesized using PEG as a template was associated with higher sp.act for 223Ra in comparison to nHA with identical particle size and without PEG. The nHA load 99mTc-MDP was associated with higher labeling rate and stability in comparison to 99mTc. Conclusion: All these findings suggest that using PEG as a template and 99mTc-MDP could be the most effective of synthetic 223Ra/99mTc@nHA.
Collapse
Affiliation(s)
- Yumei Wang
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, No 181 HanYu St, Shapingba District400030, P.R. China
| | - Yue Zhou
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, No 181 HanYu St, Shapingba District400030, P.R. China
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing100037, China
| | - Dongliang Zhai
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, No 181 HanYu St, Shapingba District400030, P.R. China
| | - Hao Deng
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, No 181 HanYu St, Shapingba District400030, P.R. China
| | - Xiaoliang Chen
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, No 181 HanYu St, Shapingba District400030, P.R. China
| |
Collapse
|
3
|
Bauer D, De Gregorio R, Pratt EC, Bell A, Michel A, Lewis JS. Exploring the PET in vivo generator 134Ce as a theranostic match for 225Ac. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591165. [PMID: 38712285 PMCID: PMC11071455 DOI: 10.1101/2024.04.25.591165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Purpose The radionuclide pair cerium-134/lanthanum-134 (134Ce/134La) was recently proposed as a suitable diagnostic counterpart for the therapeutic alpha-emitter actinium-225 (225Ac). The unique properties of 134Ce offer perspectives for developing innovative in vivo investigations not possible with 225Ac. In this work, 225Ac- and 134Ce-labeled tracers were directly compared using internalizing and slow-internalizing cancer models to evaluate their in vivo comparability, progeny meandering, and potential as a matched theranostic pair for clinical translation. Despite being an excellent chemical match, 134Ce/134La has limitations to the setting of quantitative positron emission tomography imaging. Methods The precursor PSMA-617 and a macropa-based tetrazine-conjugate (mcp-PEG8-Tz) were radiolabelled with 225Ac or 134Ce and compared in vitro and in vivo using standard (radio)chemical methods. Employing biodistribution studies and positron emission tomography (PET) imaging in athymic nude mice, the radiolabelled PSMA-617 tracers were evaluated in a PC3/PIP (PC3 engineered to express a high level of prostate-specific membrane antigen) prostate cancer mouse model. The 225Ac and 134Ce-labeled mcp-PEG8-Tz were investigated in a BxPC-3 pancreatic tumour model harnessing the pretargeting strategy based on a trans-cyclooctene-modified 5B1 monoclonal antibody. Results In vitro and in vivo studies with both 225Ac and 134Ce-labelled tracers led to comparable results, confirming the matching pharmacokinetics of this theranostic pair. However, PET imaging of the 134Ce-labelled precursors indicated that quantification is highly dependent on tracer internalization due to the redistribution of 134Ce's PET-compatible daughter 134La. Consequently, radiotracers based on internalizing vectors like PSMA-617 are suited for this theranostic pair, while slow-internalizing 225Ac-labelled tracers are not quantitatively represented by 134Ce PET imaging. Conclusion When employing slow-internalizing vectors, 134Ce might not be an ideal match for 225Ac due to the underestimation of tumour uptake caused by the in vivo redistribution of 134La. However, this same characteristic makes it possible to estimate the redistribution of 225Ac's progeny noninvasively. In future studies, this unique PET in vivo generator will further be harnessed to study tracer internalization, trafficking of receptors, and the progression of the tumour microenvironment.
Collapse
Affiliation(s)
- David Bauer
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roberto De Gregorio
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edwin C. Pratt
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Abram Bell
- Brigham Young University-Idaho, Rexburg, ID 83440, USA
| | - Alexa Michel
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason S. Lewis
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
4
|
Jalloul W, Ghizdovat V, Stolniceanu CR, Ionescu T, Grierosu IC, Pavaleanu I, Moscalu M, Stefanescu C. Targeted Alpha Therapy: All We Need to Know about 225Ac's Physical Characteristics and Production as a Potential Theranostic Radionuclide. Pharmaceuticals (Basel) 2023; 16:1679. [PMID: 38139806 PMCID: PMC10747780 DOI: 10.3390/ph16121679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The high energy of α emitters, and the strong linear energy transfer that goes along with it, lead to very efficient cell killing through DNA damage. Moreover, the degree of oxygenation and the cell cycle state have no impact on these effects. Therefore, α radioisotopes can offer a treatment choice to individuals who are not responding to β- or gamma-radiation therapy or chemotherapy drugs. Only a few α-particle emitters are suitable for targeted alpha therapy (TAT) and clinical applications. The majority of available clinical research involves 225Ac and its daughter nuclide 213Bi. Additionally, the 225Ac disintegration cascade generates γ decays that can be used in single-photon emission computed tomography (SPECT) imaging, expanding the potential theranostic applications in nuclear medicine. Despite the growing interest in applying 225Ac, the restricted global accessibility of this radioisotope makes it difficult to conduct extensive clinical trials for many radiopharmaceutical candidates. To boost the availability of 225Ac, along with its clinical and potential theranostic applications, this review attempts to highlight the fundamental physical properties of this α-particle-emitting isotope, as well as its existing and possible production methods.
Collapse
Affiliation(s)
- Wael Jalloul
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| | - Teodor Ionescu
- Department of Morpho-Functional Sciences (Pathophysiology), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Irena Cristina Grierosu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ioana Pavaleanu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| |
Collapse
|
5
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
6
|
Bobba KN, Bidkar AP, Meher N, Fong C, Wadhwa A, Dhrona S, Sorlin A, Bidlingmaier S, Shuere B, He J, Wilson DM, Liu B, Seo Y, VanBrocklin HF, Flavell RR. Evaluation of 134Ce/ 134La as a PET Imaging Theranostic Pair for 225Ac α-Radiotherapeutics. J Nucl Med 2023; 64:1076-1082. [PMID: 37201957 PMCID: PMC10315697 DOI: 10.2967/jnumed.122.265355] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/07/2023] [Indexed: 05/20/2023] Open
Abstract
225Ac-targeted α-radiotherapy is a promising approach to treating malignancies, including prostate cancer. However, α-emitting isotopes are difficult to image because of low administered activities and a low fraction of suitable γ-emissions. The in vivo generator 134Ce/134La has been proposed as a potential PET imaging surrogate for the therapeutic nuclides 225Ac and 227Th. In this report, we detail efficient radiolabeling methods using the 225Ac-chelators DOTA and MACROPA. These methods were applied to radiolabeling of prostate cancer imaging agents, including PSMA-617 and MACROPA-PEG4-YS5, for evaluation of their in vivo pharmacokinetic characteristics and comparison to the corresponding 225Ac analogs. Methods: Radiolabeling was performed by mixing DOTA/MACROPA chelates with 134Ce/134La in NH4OAc, pH 8.0, at room temperature, and radiochemical yields were monitored by radio-thin-layer chromatography. In vivo biodistributions of 134Ce-DOTA/MACROPA.NH2 complexes were assayed through dynamic small-animal PET/CT imaging and ex vivo biodistribution studies over 1 h in healthy C57BL/6 mice, compared with free 134CeCl3 In vivo, preclinical imaging of 134Ce-PSMA-617 and 134Ce-MACROPA-PEG4-YS5 was performed on 22Rv1 tumor-bearing male nu/nu-mice. Ex vivo biodistribution was performed for 134Ce/225Ac-MACROPA-PEG4-YS5 conjugates. Results: 134Ce-MACROPA.NH2 demonstrated near-quantitative labeling with 1:1 ligand-to-metal ratios at room temperature, whereas a 10:1 ligand-to-metal ratio and elevated temperatures were required for DOTA. Rapid urinary excretion and low liver and bone uptake were seen for 134Ce/225Ac-DOTA/MACROPA. NH2 conjugates in comparison to free 134CeCl3 confirmed high in vivo stability. An interesting observation during the radiolabeling of tumor-targeting vectors PSMA-617 and MACROPA-PEG4-YS5-that the daughter 134La was expelled from the chelate after the decay of parent 134Ce-was confirmed through radio-thin-layer chromatography and reverse-phase high-performance liquid chromatography. Both conjugates, 134Ce-PSMA-617 and 134Ce-MACROPA-PEG4-YS5, displayed tumor uptake in 22Rv1 tumor-bearing mice. The ex vivo biodistribution of 134Ce-MACROPA.NH2, 134Ce-DOTA and 134Ce-MACROPA-PEG4-YS5 corroborated well with the respective 225Ac-conjugates. Conclusion: These results demonstrate the PET imaging potential for 134Ce/134La-labeled small-molecule and antibody agents. The similar 225Ac and 134Ce/134La-chemical and pharmacokinetic characteristics suggest that the 134Ce/134La pair may act as a PET imaging surrogate for 225Ac-based radioligand therapies.
Collapse
Affiliation(s)
- Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Anil P Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Cyril Fong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Anju Wadhwa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Suchi Dhrona
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Alex Sorlin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Scott Bidlingmaier
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Becka Shuere
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia;
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Bin Liu
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California; and
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California;
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California; and
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California; and
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| |
Collapse
|
7
|
Zhang Y, Li F, Cui Z, Li K, Guan J, Tian L, Wang Y, Liu N, Wu W, Chai Z, Wang S. A Radioluminescent Metal-Organic Framework for Monitoring 225Ac in Vivo. J Am Chem Soc 2023. [PMID: 37366004 DOI: 10.1021/jacs.3c02325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
225Ac is considered as one of the most promising radioisotopes for alpha-therapy because its emitted high-energy α-particles can efficiently damage tumor cells. However, it also represents a significant threat to healthy tissues owing to extremely high radiotoxicity if targeted therapy fails. This calls for a pressing requirement of monitoring the biodistribution of 225Ac in vivo during the treatment of tumors. However, the lack of imageable photons or positrons from therapeutic doses of 225Ac makes this task currently quite challenging. We report here a nanoscale luminescent europium-organic framework (EuMOF) that allows for fast, simple, and efficient labeling of 225Ac in its crystal structure with sufficient 225Ac-retention stability based on similar coordination behaviors between Ac3+ and Eu3+. After labeling, the short distance between 225Ac and Eu3+ in the structure leads to exceedingly efficient energy transduction from225Ac-emitted α-particles to surrounding Eu3+ ions, which emits red luminescence through a scintillation process and produces sufficient photons for clearcut imaging. The in vivo intensity distribution of radioluminescence signal originating from the 225Ac-labeled EuMOF is consistent with the dose of 225Ac dispersed among the various organs determined by the radioanalytical measurement ex vivo, certifying the feasibility of in vivo directly monitoring 225Ac using optical imaging for the first time. In addition, 225Ac-labeled EuMOF displays notable efficiency in treating the tumor. These results provide a general design principle for fabricating 225Ac-labeled radiopharmaceuticals with imaging photons and propose a simple way to in vivo track radionuclides with no imaging photons, including but not limited to 225Ac.
Collapse
Affiliation(s)
- Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Zhencun Cui
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Kai Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jingwen Guan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Longlong Tian
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Wangsuo Wu
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Rubira L, Deshayes E, Santoro L, Kotzki PO, Fersing C. 225Ac-Labeled Somatostatin Analogs in the Management of Neuroendocrine Tumors: From Radiochemistry to Clinic. Pharmaceutics 2023; 15:1051. [PMID: 37111537 PMCID: PMC10146019 DOI: 10.3390/pharmaceutics15041051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The widespread use of peptide receptor radionuclide therapy (PRRT) represents a major therapeutic breakthrough in nuclear medicine, particularly since the introduction of 177Lu-radiolabeled somatostatin analogs. These radiopharmaceuticals have especially improved progression-free survival and quality of life in patients with inoperable metastatic gastroenteropancreatic neuroendocrine tumors expressing somatostatin receptors. In the case of aggressive or resistant disease, the use of somatostatin derivatives radiolabeled with an alpha-emitter could provide a promising alternative. Among the currently available alpha-emitting radioelements, actinium-225 has emerged as the most suitable candidate, especially regarding its physical and radiochemical properties. Nevertheless, preclinical and clinical studies on these radiopharmaceuticals are still few and heterogeneous, despite the growing momentum for their future use on a larger scale. In this context, this report provides a comprehensive and extensive overview of the development of 225Ac-labeled somatostatin analogs; particular emphasis is placed on the challenges associated with the production of 225Ac, its physical and radiochemical properties, as well as the place of 225Ac-DOTATOC and 225Ac-DOTATATE in the management of patients with advanced metastatic neuroendocrine tumors.
Collapse
Affiliation(s)
- Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Lore Santoro
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Pierre Olivier Kotzki
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
9
|
Lengacher R, Marlin A, Śmiłowicz D, Boros E. Medicinal inorganic chemistry - challenges, opportunities and guidelines to develop the next generation of radioactive, photoactivated and active site inhibiting metal-based medicines. Chem Soc Rev 2022; 51:7715-7731. [PMID: 35942718 DOI: 10.1039/d2cs00407k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Medicinal inorganic chemistry is a burgeoning subfield of medicinal chemistry that focuses on the development of metal-based diagnostic and therapeutic agents. This tutorial review aims to provide an introductory primer, present a timely overview of recent discoveries and identify current challenges and opportunities of the field. Three specific areas of discovery are highlighted herein. The first part focuses on metal-based radiopharmaceuticals for diagnostic and therapeutic purposes and specific design criteria for the development of radiopharmaceuticals that combine fundamental aqueous coordination chemistry with elucidation of pharmacokinetics. The second part describes approaches to photodynamic therapy with metal complexes. Here, photophysical characterization, combined with the challenge of careful control of the chemical behavior and selective biological deposition of transition metals with significant off-target toxicity, is discussed. In the third part, we summarize emerging strategies to modulate enzyme inhibition with coordination chemistry, while also highlighting the utility of the unique properties of metal ions for the characterization of mechanisms of action of these emerging diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- Raphael Lengacher
- Department of Chemistry, Stony Brook University, Stony Brook, 11790 New York, USA.
| | - Axia Marlin
- Department of Chemistry, Stony Brook University, Stony Brook, 11790 New York, USA.
| | - Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, Stony Brook, 11790 New York, USA.
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, 11790 New York, USA.
| |
Collapse
|