1
|
Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, Brunelin J, Nakamura-Palacios EM, Marangolo P, Venkatasubramanian G, San-Juan D, Caumo W, Bikson M, Brunoni AR. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int J Neuropsychopharmacol 2021; 24:256-313. [PMID: 32710772 PMCID: PMC8059493 DOI: 10.1093/ijnp/pyaa051] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation has shown promising clinical results, leading to increased demand for an evidence-based review on its clinical effects. OBJECTIVE We convened a team of transcranial direct current stimulation experts to conduct a systematic review of clinical trials with more than 1 session of stimulation testing: pain, Parkinson's disease motor function and cognition, stroke motor function and language, epilepsy, major depressive disorder, obsessive compulsive disorder, Tourette syndrome, schizophrenia, and drug addiction. METHODS Experts were asked to conduct this systematic review according to the search methodology from PRISMA guidelines. Recommendations on efficacy were categorized into Levels A (definitely effective), B (probably effective), C (possibly effective), or no recommendation. We assessed risk of bias for all included studies to confirm whether results were driven by potentially biased studies. RESULTS Although most of the clinical trials have been designed as proof-of-concept trials, some of the indications analyzed in this review can be considered as definitely effective (Level A), such as depression, and probably effective (Level B), such as neuropathic pain, fibromyalgia, migraine, post-operative patient-controlled analgesia and pain, Parkinson's disease (motor and cognition), stroke (motor), epilepsy, schizophrenia, and alcohol addiction. Assessment of bias showed that most of the studies had low risk of biases, and sensitivity analysis for bias did not change these results. Effect sizes vary from 0.01 to 0.70 and were significant in about 8 conditions, with the largest effect size being in postoperative acute pain and smaller in stroke motor recovery (nonsignificant when combined with robotic therapy). CONCLUSION All recommendations listed here are based on current published PubMed-indexed data. Despite high levels of evidence in some conditions, it must be underscored that effect sizes and duration of effects are often limited; thus, real clinical impact needs to be further determined with different study designs.
Collapse
Affiliation(s)
- Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Mirret M El-Hagrassy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Sandra Carvalho
- Neurotherapeutics and experimental Psychopathology Group (NEP), Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Jorge Leite
- I2P-Portucalense Institute for Psychology, Universidade Portucalense, Porto, Portugal
| | - Marcel Simis
- Physical and Rehabilitation Medicine Institute of the University of Sao Paulo Medical School General Hospital, Sao Paulo, Brazil
| | - Jerome Brunelin
- CH Le Vinatier, PSYR2 team, Lyon Neuroscience Research Center, UCB Lyon 1, Bron, France
| | - Ester Miyuki Nakamura-Palacios
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Department of Physiological Sciences, Federal University of Espírito Santo, Espírito Santo, Brasil (Dr Nakamura-Palacios)
| | - Paola Marangolo
- Dipartimento di Studi Umanistici, Università Federico II, Naples, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Daniel San-Juan
- Neurophysiology Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS) Surgery Department, School of Medicine, UFRGS; Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA) Laboratory of Pain and Neuromodulation at HCPA, Porto Alegre, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, New York
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry & Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Transcranial Direct Current Stimulation for the Treatment of Depression: a Comprehensive Review of the Recent Advances. Int J Ment Health Addict 2017. [DOI: 10.1007/s11469-017-9741-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
3
|
San-Juan D, Sarmiento CI, Hernandez-Ruiz A, Elizondo-Zepeda E, Santos-Vázquez G, Reyes-Acevedo G, Zúñiga-Gazcón H, Zamora-Jarquín CM. Transcranial Alternating Current Stimulation: A Potential Risk for Genetic Generalized Epilepsy Patients (Study Case). Front Neurol 2016; 7:213. [PMID: 27965623 PMCID: PMC5124785 DOI: 10.3389/fneur.2016.00213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/11/2016] [Indexed: 12/02/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is a re-emergent neuromodulation technique that consists in the external application of oscillating electrical currents that induces changes in cortical excitability. We present the case of a 16-year-old female with pharmaco-resistant juvenile myoclonic epilepsy to 3 antiepileptic’s drugs characterized by 4 myoclonic and 20 absence seizures monthly. She received tACS at 1 mA at 3 Hz pulse train during 60 min over Fp1–Fp2 (10–20 EEG international system position) during 4 consecutive days using an Endeavor™ IOM Systems device® (Natus Medical Incorporated, Middleton, WI, USA). At the 1-month follow-up, she reported a 75% increase in seizures frequency (only myoclonic and tonic–clonic events) and developed a 24-h myoclonic status epilepticus that resolved with oral clonazepam and intravenous valproate. At the 2-month follow-up, the patient reported a 15-day seizure-free period.
Collapse
Affiliation(s)
- Daniel San-Juan
- Department of Clinical Research, National Institute of Neurology and Neurosurgery , Mexico City , Mexico
| | - Carlos Ignacio Sarmiento
- Department of Clinical Research, National Institute of Neurology and Neurosurgery, Mexico City, Mexico; Department of Basic Sciences and Engineering, Autonomous Metropolitan University Campus Iztapalapa, Mexico City, Mexico
| | - Axel Hernandez-Ruiz
- Department of Clinical Research, National Institute of Neurology and Neurosurgery, Mexico City, Mexico; Superior School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | | | | | - Gerardo Reyes-Acevedo
- Department of Clinical Sciences, University of Monterrey , San Pedro Garza-García , Mexico
| | | | - Carol Marina Zamora-Jarquín
- Department of Clinical Research, National Institute of Neurology and Neurosurgery, Mexico City, Mexico; Institute of Neuropsychology and Neuropsychopedagogy, Mexico City, Mexico
| |
Collapse
|
4
|
San-Juan D, Morales-Quezada L, Orozco Garduño AJ, Alonso-Vanegas M, González-Aragón MF, Espinoza López DA, Vázquez Gregorio R, Anschel DJ, Fregni F. Transcranial Direct Current Stimulation in Epilepsy. Brain Stimul 2015; 8:455-64. [PMID: 25697590 DOI: 10.1016/j.brs.2015.01.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation therapy in epilepsy with conflicting results in terms of efficacy and safety. OBJECTIVE Review the literature about the efficacy and safety of tDCS in epilepsy in humans and animals. METHODS We searched studies in PubMed, MedLine, Scopus, Web of Science and Google Scholar (January 1969 to October 2013) using the keywords 'transcranial direct current stimulation' or 'tDCS' or 'brain polarization' or 'galvanic stimulation' and 'epilepsy' in animals and humans. Original articles that reported tDCS safety and efficacy in epileptic animals or humans were included. Four review authors independently selected the studies, extracted data and assessed the methodological quality of the studies using the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions, PRISMA guidelines and Jadad Scale. A meta-analysis was not possible due to methodological, clinical and statistical heterogeneity of included studies. RESULTS We analyzed 9 articles with different methodologies (3 animals/6 humans) with a total of 174 stimulated individuals; 109 animals and 65 humans. In vivo and in vitro animal studies showed that direct current stimulation can successfully induce suppression of epileptiform activity without neurological injury and 4/6 (67%) clinical studies showed an effective decrease in epileptic seizures and 5/6 (83%) reduction of inter-ictal epileptiform activity. All patients tolerated tDCS well. CONCLUSIONS tDCS trials have demonstrated preliminary safety and efficacy in animals and patients with epilepsy. Further larger studies are needed to define the best stimulation protocols and long-term follow-up.
Collapse
Affiliation(s)
- Daniel San-Juan
- Neurophysiology Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, México D.F. 14269, Mexico.
| | - León Morales-Quezada
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 300 1st Ave, Charlestown, MA 02129, USA
| | - Adolfo Josué Orozco Garduño
- Neurophysiology Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, México D.F. 14269, Mexico
| | - Mario Alonso-Vanegas
- Neurosurgery Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, México D.F. 14269, Mexico
| | - Maricarmen Fernández González-Aragón
- Neurophysiology Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, México D.F. 14269, Mexico
| | - Dulce Anabel Espinoza López
- Neurophysiology Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, México D.F. 14269, Mexico
| | - Rafael Vázquez Gregorio
- Neurophysiology Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Av. Insurgentes Sur 3877, Col. La Fama, Tlalpan, México D.F. 14269, Mexico
| | - David J Anschel
- Comprehensive Epilepsy Center of Long Island, St. Charles Hospital, 200 Belle Terre Rd., Port Jefferson, NY 11777, USA
| | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 300 1st Ave, Charlestown, MA 02129, USA
| |
Collapse
|
5
|
Bröer S, Backofen-Wehrhahn B, Bankstahl M, Gey L, Gernert M, Löscher W. Vigabatrin for focal drug delivery in epilepsy: Bilateral microinfusion into the subthalamic nucleus is more effective than intranigral or systemic administration in a rat seizure model. Neurobiol Dis 2012; 46:362-76. [DOI: 10.1016/j.nbd.2012.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/23/2011] [Accepted: 01/31/2012] [Indexed: 01/04/2023] Open
|
6
|
Volz MS, Mendonca M, Pinheiro FS, Cui H, Santana M, Fregni F. Dissociation of motor task-induced cortical excitability and pain perception changes in healthy volunteers. PLoS One 2012; 7:e34273. [PMID: 22470548 PMCID: PMC3314609 DOI: 10.1371/journal.pone.0034273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/27/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND There is evidence that interventions aiming at modulation of the motor cortex activity lead to pain reduction. In order to understand further the role of the motor cortex on pain modulation, we aimed to compare the behavioral (pressure pain threshold) and neurophysiological effects (transcranial magnetic stimulation (TMS) induced cortical excitability) across three different motor tasks. METHODOLOGY/PRINCIPAL FINDINGS Fifteen healthy male subjects were enrolled in this randomized, controlled, blinded, cross-over designed study. Three different tasks were tested including motor learning with and without visual feedback, and simple hand movements. Cortical excitability was assessed using single and paired-pulse TMS measures such as resting motor threshold (RMT), motor-evoked potential (MEP), intracortical facilitation (ICF), short intracortical inhibition (SICI), and cortical silent period (CSP). All tasks showed significant reduction in pain perception represented by an increase in pressure pain threshold compared to the control condition (untrained hand). ANOVA indicated a difference among the three tasks regarding motor cortex excitability change. There was a significant increase in motor cortex excitability (as indexed by MEP increase and CSP shortening) for the simple hand movements. CONCLUSIONS/SIGNIFICANCE Although different motor tasks involving motor learning with and without visual feedback and simple hand movements appear to change pain perception similarly, it is likely that the neural mechanisms might not be the same as evidenced by differential effects in motor cortex excitability induced by these tasks. In addition, TMS-indexed motor excitability measures are not likely good markers to index the effects of motor-based tasks on pain perception in healthy subjects as other neural networks besides primary motor cortex might be involved with pain modulation during motor training.
Collapse
Affiliation(s)
- Magdalena S. Volz
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Charité Center for Neurology, Neurosurgery and Psychiatry, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mariana Mendonca
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fernando S. Pinheiro
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Huashun Cui
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marcus Santana
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Current World Literature. Curr Opin Neurol 2010; 23:194-201. [DOI: 10.1097/wco.0b013e328338cade] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|