1
|
Barakat AM, Fadaly HAME, Gareh A, Abd El-Razik KA, Ali FAZ, Saleh AA, Sadek SAS, Dahran N, El-Gendy AENG, El-Khadragy MF, Elmahallawy EK. Wheat Germ Oil and Propolis Decrease Parasite Burden and Restore Marked Histopathological Changes in Liver and Lung in Mice with Chronic Toxoplasmosis. Animals (Basel) 2022; 12:ani12223069. [PMID: 36428297 PMCID: PMC9686545 DOI: 10.3390/ani12223069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Toxoplasmosis is a parasitic zoonotic disease with a worldwide distribution. Its effects can be critical in immunocompromised patients. However, there is a limited availability of effective, low-toxicity drugs against this disease, particularly in its chronic form. The present study evaluated the effect of propolis and wheat germ oil (WGO) as safe, natural products to reduce Toxoplasma cysts in experimentally infected mice. For the experiment, five groups (10 mice per group) were examined: Group 1: negative control (noninfected, nontreated); Group 2: positive control (infected, nontreated); Group 3: infected and treated with WGO at a dose of 0.2 mg/1.5 mL per kg body weight/day; Group 4: infected and treated with 0.1 mL propolis extract/day; and Group 5: infected and treated with a combination of WGO and propolis at the same doses as Group 3 and 4. After the mice were sacrificed, liver and lung specimens underwent histopathological examination, and the parasite burden was investigated by parasitological methods and quantified using real-time polymerase chain reaction. Notably, the results showed a substantial decrease in parasitic burden in Group 5 compared to the control group. These results were further confirmed by molecular analysis and quantification of the DNA concentration of the Toxoplasma P29 gene after treatment in all tested samples. Furthermore, the combination of propolis and WGO restored all histopathological changes in the liver and lungs. Taken together, these findings provide remarkably promising evidence of the effects of the combination of WGO and propolis against chronic toxoplasmosis in mice.
Collapse
Affiliation(s)
- Ashraf Mohamed Barakat
- Department of Zoonotic Diseases, National Research Centre, El Buhouth St., Dokki, Giza 12622, Egypt
| | | | - Ahmed Gareh
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan 24101, Egypt
| | - Khaled A. Abd El-Razik
- Department of Animal Reproduction, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Amira A. Saleh
- Department of Human Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sabry A. S. Sadek
- Department of Zoonotic Diseases, National Research Centre, El Buhouth St., Dokki, Giza 12622, Egypt
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Abd El-Nasser G. El-Gendy
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Manal F. El-Khadragy
- Department of biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence:
| |
Collapse
|
2
|
Potentials of Natural Preservatives to Enhance Food Safety and Shelf Life: A Review. ScientificWorldJournal 2022; 2022:9901018. [PMID: 36193042 PMCID: PMC9525789 DOI: 10.1155/2022/9901018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Food-borne illnesses are a significant concern for consumers, the food industry, and food safety authorities. Natural preservatives are very crucial for enhancing food safety and shelf life. Therefore, this review aimed to assess the literature regarding the potential of natural preservatives to enhance food safety and extend the shelf life of food products. The review paper indicated that natural antimicrobial agents that inhibit bacterial and fungal growth for better quality and shelf life have been of considerable interest in recent years. Natural antimicrobials are mainly extracted and isolated as secondary metabolites of plants, animals, and microorganisms. Plants, especially herbs and spices, are given more attention as a source of natural antimicrobials. Microorganisms used in food fermentation also produce different antimicrobial metabolites, including organic acids, hydrogen peroxide, and diacetyl, in addition to bacteriocins. Products of animal origin, such as tissues and milk, contain different antimicrobial agents. Natural antimicrobials are primarily extracted and purified before utilization for food product development. The extraction condition and purification of natural preservatives may change their structure and affect their functionality. Selecting the best extraction method coupled with minimal processing such as direct mechanical extraction seems to preserve active ingredients. The activity of natural antimicrobials could also be influenced by the source, time of harvesting, and stage of development. The effectiveness of natural antimicrobial compounds in food applications is affected by different factors, including food composition, processing method, and storage conditions. Natural antimicrobials are safe because they can limit microbial resistance and meet consumers’ demands for healthier foods.
Collapse
|
3
|
Innovative processing technology for enhance potential prebiotic effects of RG-I pectin and cyanidin-3-glucoside. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Sequino G, Valentino V, Torrieri E, De Filippis F. Specific Microbial Communities Are Selected in Minimally-Processed Fruit and Vegetables according to the Type of Product. Foods 2022; 11:foods11142164. [PMID: 35885409 PMCID: PMC9315490 DOI: 10.3390/foods11142164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Fruits and vegetables (F&V) products are recommended for the daily diet due to their low caloric content, high amount of vitamins, minerals and fiber. Furthermore, these foods are a source of various phytochemical compounds, such as polyphenols, flavonoids and sterols, exerting antioxidant activity. Despite the benefits derived from eating raw F&V, the quality and safety of these products may represent a source of concern, since they can be quickly spoiled and have a very short shelf-life. Moreover, they may be a vehicle of pathogenic microorganisms. This study aims to evaluate the bacterial and fungal populations in F&V products (i.e., iceberg lettuces, arugula, spinaches, fennels, tomatoes and pears) by using culture-dependent microbiological analysis and high-throughput sequencing (HTS), in order to decipher the microbial populations that characterize minimally-processed F&V. Our results show that F&V harbor diverse and product-specific bacterial and fungal communities, with vegetables leaf morphology and type of edible fraction of fruits exerting the highest influence. In addition, we observed that several alterative (e.g., Pseudomonas and Aspergillus) and potentially pathogenic taxa (such as Staphylococcus and Cladosporium) are present, thus emphasizing the need for novel product-specific strategies to control the microbial composition of F&V and extend their shelf-life.
Collapse
Affiliation(s)
- Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (G.S.); (V.V.); (E.T.)
| | - Vincenzo Valentino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (G.S.); (V.V.); (E.T.)
| | - Elena Torrieri
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (G.S.); (V.V.); (E.T.)
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (G.S.); (V.V.); (E.T.)
- Task Force on Microbiome Studies, University of Naples Federico II, Corso Umberto I 40, 80138 Naples, Italy
- Correspondence: ; Tel.: +39-0812539388
| |
Collapse
|
5
|
Recent Advancements in Enhancing Antimicrobial Activity of Plant-Derived Polyphenols by Biochemical Means. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050401] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants are a reservoir of phytochemicals, which are known to possess several beneficial health properties. Along with all the secondary metabolites, polyphenols have emerged as potential replacements for synthetic additives due to their lower toxicity and fewer side effects. However, controlling microbial growth using these preservatives requires very high doses of plant-derived compounds, which limits their use to only specific conditions. Their use at high concentrations leads to unavoidable changes in the organoleptic properties of foods. Therefore, the biochemical modification of natural preservatives can be a promising alternative to enhance the antimicrobial efficacy of plant-derived compounds/polyphenols. Amongst these modifications, low concentration of ascorbic acid (AA)–Cu (II), degradation products of ascorbic acid (DPAA), Maillard reaction products (MRPs), laccase–mediator (Lac–Med) and horse radish peroxidase (HRP)–H2O2 systems standout. This review reveals the importance of plant polyphenols, their role as antimicrobial agents, the mechanism of the biochemical methods and the ways these methods may be used in enhancing the antimicrobial potency of the plant polyphenols. Ultimately, this study may act as a base for the development of potent antimicrobial agents that may find their use in food applications.
Collapse
|
6
|
Effects of red cabbage extract rich in anthocyanins on rumen fermentation, rumen bacterial community, nutrient digestion, and plasma indices in beef bulls. Animal 2022; 16:100510. [PMID: 35436650 DOI: 10.1016/j.animal.2022.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022] Open
Abstract
Dietary anthocyanins (ATH) have probiotic and antioxidant functions in humans. They may also have beneficial impacts on rumen microorganisms and subsequently nutrient digestion in cattle. The experiment aimed to study the effects of dietary red cabbage extract (RCE) rich in ATH on rumen fermentation, rumen bacterial community, and nutrient digestibility in beef bulls. Eight Simmental beef bulls and two RCE levels (0 and 120 g/d) were allocated in a replicated 2 × 2 crossover design. Each experimental period included 15 days for adaptation and subsequent 5 days for sampling. The results showed that dietary addition of RCE increased the ruminal concentration of total volatile fatty acids and the molar proportion of propionate, decreased the acetate to propionate ratio, and tended to decrease the molar proportion of acetate, but it did not affect the ruminal pH and the concentrations of ammonia N, microbial CP, monophenols, polyphenols, and total phenolics. ATH was undetectable in the ruminal fluid of beef bulls in both groups. RCE did not affect the alpha diversity of rumen bacterial community, and the relative abundances of major rumen bacteria at the phylum level, but it increased the relative abundances of Ruminobacter and Anaerovibrio and tended to increase the relative abundances of Oribacterium and Monoglobus at the genus level. RCE tended to increase the plasma concentrations of globulin and total protein, but it did not affect the plasma albumin, urea, triglyceride, glucose, and antioxidant activities. Dietary addition of RCE did not affect the apparent nutrient digestibility. In conclusion, the ATH in RCE was highly hydrolysable in rumen fluid. Dietary addition of RCE increased the ruminal concentration of total volatile fatty acids, decreased the acetate to propionate ratio, and slightly modified the rumen bacterial community, but it did not affect the nutrient digestibility and the plasma antioxidants in beef bulls.
Collapse
|
7
|
Zhu WJ, Liu Y, Cao YN, Peng LX, Yan ZY, Zhao G. Insights into Health-Promoting Effects of Plant MicroRNAs: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14372-14386. [PMID: 34813309 DOI: 10.1021/acs.jafc.1c04737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant-derived microRNAs (miRNAs) play a significant role in human health and are "dark nutrients", as opposed to traditional plant nutrients, as well as important components of food diversification. Studies have revealed that multiple plant-derived miRNA pathways affect human health. First, plant miRNAs regulate plant growth and development and accumulation of metabolites, which alters the food quality and thus indirectly interferes with the health of the host. Moreover, when absorbed in vivo, some miRNAs may target the host cell mRNAs to affect protein expression. In addition, plant miRNAs target and reshape the human gut microbiota (GM), which interferes with the physiology and metabolism of the host. Therefore, miRNAs play a significant role in the cross-kingdom communication of plants, GM, and the host and in maintaining a balance of the three. Future contributions of plant miRNAs can bring new perspectives and opportunities to better understand food nutrition and health care research, which will facilitate the right exploitation of plant resources.
Collapse
Affiliation(s)
- Wen-Jing Zhu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yu Liu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Zhu-Yun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
8
|
Evaluation of the Antioxidant Activity, Deodorizing Effect, and Antibacterial Activity of 'Porotan' Chestnut By-Products and Establishment of a Compound Paper. Foods 2021; 10:foods10051141. [PMID: 34065309 PMCID: PMC8161069 DOI: 10.3390/foods10051141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
Chestnuts are widely cultivated for their edible portion (kernel), whereas the non-edible parts are discarded. To enable the utilization of the by-products of processed chestnuts, we separated them into green and brown burs, shells, inner skin, and leaves, and analyzed the bioactive properties of the ground components. We also created a composite paper, comprising the inner skin, and examined its deodorant properties. It was revealed that the inner skin had the highest functionality and showed potent antioxidant, antibacterial, and deodorant properties. Furthermore, when we produced a paper, containing 60% inner skin, and examined its deodorant properties, we found that it was highly effective in deodorizing ammonia and acetic acid gases. These results show that the inner skin of chestnuts is a promising material for developing hygiene and other products.
Collapse
|
9
|
Martínez Y, Más D, Betancur C, Gebeyew K, Adebowale T, Hussain T, Lan W, Ding X. Role of the Phytochemical Compounds like Modulators in Gut Microbiota and Oxidative Stress. Curr Pharm Des 2020; 26:2642-2656. [PMID: 32410554 DOI: 10.2174/1381612826666200515132218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Currently, daily consumption of green herb functional food or medicinal herbs has increased as adopted by many people worldwide as a way of life or even as an alternative to the use of synthetic medicines. Phytochemicals, which are a series of compounds of relatively complex structures and restricted distribution in plants, usually perform the defensive functions for plants against insects, bacteria, fungi or other pathogenic factors. A series of studies have found their effectiveness in the treatment or prevention of systemic diseases such as autoimmune diseases, cancer, neurodegenerative diseases, Crohn's disease and so on. OBJECTIVE This review systematizes the literature on the mechanisms of the phytochemicals that react against unique free radicals and prevent the oxidative stress and also summarizes their role in gut microbiota inhibiting bacterial translocation and damage to the intestinal barrier and improving the intestinal membrane condition. CONCLUSION The gut microbiota modulation and antioxidant activities of the phytochemicals shall be emphasized on the research of the active principles of the phytochemicals.
Collapse
Affiliation(s)
- Yordan Martínez
- Escuela Agrícola Panamericana Zamorano, Valle de Yeguare, San Antonio de Oriente, Francisco Morazan 96, Honduras
| | - Dairon Más
- Laboratorio de Nutricion Animal, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Queretaro 76230, Mexico
| | - Cesar Betancur
- Departamento de Ganaderia, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Monteria 230002, Colombia
| | - Kefyalew Gebeyew
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Tolulope Adebowale
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), P. O. Box: 128, Jhang Road, Faisalabad, 38000, Pakistan
| | - Wensheng Lan
- Shenzhen R&D Key Laboratory of Alien Pest Detection Technology, The Shenzhen Academy of Inspection and Quarantine. Food Inspection and Quarantine Center of Shenzhen Custom, 1011Fuqiang Road, Shenzhen 518045, China
| | - Xinghua Ding
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
10
|
Characterization of Phytochemicals in Berry Fruit Wines Analyzed by Liquid Chromatography Coupled to Photodiode-Array Detection and Electrospray Ionization/Ion Trap Mass Spectrometry (LC-DAD-ESI-MS n) and Their Antioxidant and Antimicrobial Activity. Foods 2020; 9:foods9121783. [PMID: 33271880 PMCID: PMC7761082 DOI: 10.3390/foods9121783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 11/28/2022] Open
Abstract
Fruits are a valuable source of phytochemicals. However, there is little detailed information about the compounds contained in fruit wines. In this study, wines from six different berries were analyzed using HPLC-DAD-ESI-MSn. About 150 compounds were identified, including anthocyanins (34), hydroxycinnamic acids (12) and flavonols (36). Some of the compounds were identified for the first time in berry wines. The blackberry wines were found to contain the largest number of bioactive compounds (59). Elderberry wines where the richest source of polyphenols (over 1000 mg/L) and contained the largest amounts of all of the analyzed groups of compounds (hydroxycinnamic acids, anthocyanins and flavonols). The lowest concentration of polyphenols was observed in the wines made from cranberries and bilberries (less than 500 mg/L). The antioxidant activity was determined in relation to ABTS+, DPPH, and FRAP. The highest values were observed in the blackberry wines, and the lowest for the cranberry wines. The wines were analyzed to test their antimicrobial activity. Five of the six wines (with the exception of elderberry wine) inhibited Bacillus cereus growth and two (blackberry and cranberry wines) were active against Listeria monocytogenes.
Collapse
|
11
|
Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients 2020; 12:E381. [PMID: 32023943 PMCID: PMC7071260 DOI: 10.3390/nu12020381] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Understanding how dietary nutrients modulate the gut microbiome is of great interest for the development of food products and eating patterns for combatting the global burden of non-communicable diseases. In this narrative review we assess scientific studies published from 2005 to 2019 that evaluated the effect of micro- and macro-nutrients on the composition of the gut microbiome using in vitro and in vivo models, and human clinical trials. The clinical evidence for micronutrients is less clear and generally lacking. However, preclinical evidence suggests that red wine- and tea-derived polyphenols and vitamin D can modulate potentially beneficial bacteria. Current research shows consistent clinical evidence that dietary fibers, including arabinoxylans, galacto-oligosaccharides, inulin, and oligofructose, promote a range of beneficial bacteria and suppress potentially detrimental species. The preclinical evidence suggests that both the quantity and type of fat modulate both beneficial and potentially detrimental microbes, as well as the Firmicutes/Bacteroides ratio in the gut. Clinical and preclinical studies suggest that the type and amount of proteins in the diet has substantial and differential effects on the gut microbiota. Further clinical investigation of the effect of micronutrients and macronutrients on the microbiome and metabolome is warranted, along with understanding how this influences host health.
Collapse
Affiliation(s)
- Qi Yang
- Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | - Qi Liang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Biju Balakrishnan
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | | | - Qian-Jin Feng
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Wei Zhang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| |
Collapse
|
12
|
Ben-Fadhel Y, Maherani B, Aragones M, Lacroix M. Antimicrobial Properties of Encapsulated Antimicrobial Natural Plant Products for Ready-to-Eat Carrots. Foods 2019; 8:E535. [PMID: 31683824 PMCID: PMC6915581 DOI: 10.3390/foods8110535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
The antimicrobial activity of natural antimicrobials (fruit extracts, essential oils and derivates), was assessed against six bacteria species (E. coli O157:H7, L. monocytogenes, S. Typhimurium, B. subtilis, E. faecium and S. aureus), two molds (A. flavus and P. chrysogenum) and a yeast (C. albicans) using disk diffusion method. Then, the antimicrobial compounds having high inhibitory capacity were evaluated for the determination of their minimum inhibitory, bactericidal and fungicidal concentration (MIC, MBC and MFC respectively). Total phenols and flavonoids content, radical scavenging activity and ferric reducing antioxidant power of selected compounds were also evaluated. Based on in vitro assays, five antimicrobial compounds were selected for their lowest effective concentration. Results showed that, most of these antimicrobial compounds had a high concentration of total phenols and flavonoids and a good anti-oxidant and anti-radical activity. In situ study showed that natural antimicrobials mix, applied on the carrot surface, reduced significantly the count of the initial mesophilic total flora (TMF), molds and yeasts and allowed an extension of the shelf-life of carrots by two days as compared to the control. However, the chemical treatment (mix of peroxyacetic acid and hydrogen peroxide) showed antifungal activity and a slight reduction of TMF.
Collapse
Affiliation(s)
- Yosra Ben-Fadhel
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS-Armand Frappier, Health and Biotechnology Center, Institute of Nutraceutical and Functionals Foods, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada.
| | - Behnoush Maherani
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS-Armand Frappier, Health and Biotechnology Center, Institute of Nutraceutical and Functionals Foods, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada.
| | - Melinda Aragones
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS-Armand Frappier, Health and Biotechnology Center, Institute of Nutraceutical and Functionals Foods, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada.
| | - Monique Lacroix
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS-Armand Frappier, Health and Biotechnology Center, Institute of Nutraceutical and Functionals Foods, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
13
|
Quinto EJ, Caro I, Villalobos-Delgado LH, Mateo J, De-Mateo-Silleras B, Redondo-Del-Río MP. Food Safety through Natural Antimicrobials. Antibiotics (Basel) 2019; 8:E208. [PMID: 31683578 PMCID: PMC6963522 DOI: 10.3390/antibiotics8040208] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Microbial pathogens are the cause of many foodborne diseases after the ingestion of contaminated food. Several preservation methods have been developed to assure microbial food safety, as well as nutritional values and sensory characteristics of food. However, the demand for natural antimicrobial agents is increasing due to consumers' concern on health issues. Moreover, the use of antibiotics is leading to multidrug resistant microorganisms reinforcing the focus of researchers and the food industry on natural antimicrobials. Natural antimicrobial compounds from plants, animals, bacteria, viruses, algae and mushrooms are covered. Finally, new perspectives from researchers in the field and the interest of the food industry in innovations are reviewed. These new approaches should be useful for controlling foodborne bacterial pathogens; furthermore, the shelf-life of food would be extended.
Collapse
Affiliation(s)
- Emiliano J Quinto
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain.
| | - Irma Caro
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain.
| | - Luz H Villalobos-Delgado
- Institute of Agroindustry, Technological University of the Mixteca, Huajuapan de León, Oaxaca 69000, Mexico.
| | - Javier Mateo
- Department of Hygiene and Food Technology, Faculty of Veterinary Medicine, University of León, 24071 León, Spain.
| | - Beatriz De-Mateo-Silleras
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain.
| | - María P Redondo-Del-Río
- Department of Nutrition and Food Science, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain.
| |
Collapse
|
14
|
Lovato A, Pignatti A, Vitulo N, Vandelle E, Polverari A. Inhibition of Virulence-Related Traits in Pseudomonas syringae pv. actinidiae by Gunpowder Green Tea Extracts. Front Microbiol 2019; 10:2362. [PMID: 31681224 PMCID: PMC6797950 DOI: 10.3389/fmicb.2019.02362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
Green tea is a widely-consumed healthy drink produced from the leaves of Camellia sinensis. It is renowned for its antioxidant and anticarcinogenic properties, but also displays significant antimicrobial activity against numerous human pathogens. Here we analyzed the antimicrobial activity of Gunpowder green tea against Pseudomonas syringae pv. actinidiae (Psa), the agent that causes kiwifruit bacterial canker. At the phenotypic level, tea extracts strongly inhibited Psa growth and swimming motility, suggesting it could reduce Psa epiphytic survival during plant colonization. The loss of bacterial virulence-related traits following treatment with tea extracts was also investigated by large-scale transcriptome analysis, which confirmed the in vitro phenotypes and revealed the induction of adaptive responses in the treated bacteria allowing them to cope with iron deficiency and oxidative stress. Such molecular changes may account for the ability of Gunpowder green tea to protect kiwifruit against Psa infection.
Collapse
Affiliation(s)
| | | | | | - Elodie Vandelle
- Biotechnology Department, University of Verona, Verona, Italy
| | | |
Collapse
|
15
|
Pezeshkpour V, Khosravani SA, Ghaedi M, Dashtian K, Zare F, Sharifi A, Jannesar R, Zoladl M. Ultrasound assisted extraction of phenolic acids from broccoli vegetable and using sonochemistry for preparation of MOF-5 nanocubes: Comparative study based on micro-dilution broth and plate count method for synergism antibacterial effect. ULTRASONICS SONOCHEMISTRY 2018; 40:1031-1038. [PMID: 28946400 DOI: 10.1016/j.ultsonch.2017.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was comparison study of dilution and plating method for evaluation of the synergism effect of metal-organic framework nanocubes (MOF-5-NCs) and broccoli extract (Brassica oleracea) on antibacterial activity of standard and clinical Pseudomonas aeruginosa strains. For this purpose, sonochemical synthesis of MOF-5-NCs was performed and it was characterized using XRD, FT-IR, FESEM and EDS techniques. Maceration extraction (ME) and ultrasound assisted extraction (UAE) methods in three different solvents were prepared and applicability of their extracts were compared in some cases such as radical scavenging and antioxidant activity. The HPLC/UV analysis was applied for separation, identification and evaluation of phenolic acids in prepared broccoli extracts. Then, antimicrobial activity of MOF-5NCs and broccoli extract against gram-negative bacteria, Pseudomonas aeruginosa was evaluated by detection of minimal inhibition concentration (MIC), minimal bactericidal concentration (MBC) and zone of inhibition (ZOI). The results of in vitro assays showed that dilution method due to flase estimation of 4% viability percentage which is not logic by consideration of MBC well could not be able to estimate MBC. Therefore, plate count method was performed for precise calculation of MBC. MIC of broccoli extract and MOF-5-NCs on Pseudomonas aeruginosa strains were 7.81mgmL-1 and 3.13mgmL-1, respectively.
Collapse
Affiliation(s)
- Vahid Pezeshkpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Biotechnology and Microbial Nanotechnology, Dena Pathobiology Laboratory, Yasuj, Iran
| | | | - Mehrorang Ghaedi
- Department of Chemistry, Yasuj University, Yasuj 75918-74831, Iran; Department of Biotechnology and Microbial Nanotechnology, Dena Pathobiology Laboratory, Yasuj, Iran.
| | - Kheibar Dashtian
- Department of Chemistry, Yasuj University, Yasuj 75918-74831, Iran; Department of Biotechnology and Microbial Nanotechnology, Dena Pathobiology Laboratory, Yasuj, Iran
| | - Fahimeh Zare
- Department of Chemistry, Yasuj University, Yasuj 75918-74831, Iran; Department of Biotechnology and Microbial Nanotechnology, Dena Pathobiology Laboratory, Yasuj, Iran
| | - Asghar Sharifi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ramin Jannesar
- Department of Pathology, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Biotechnology and Microbial Nanotechnology, Dena Pathobiology Laboratory, Yasuj, Iran
| | - Mohammad Zoladl
- Social Determinants of Health Research Centre, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
16
|
Pisoschi AM, Pop A, Georgescu C, Turcuş V, Olah NK, Mathe E. An overview of natural antimicrobials role in food. Eur J Med Chem 2017; 143:922-935. [PMID: 29227932 DOI: 10.1016/j.ejmech.2017.11.095] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023]
Abstract
The present paper aims to review the natural food preservatives with antimicrobial properties emphasizing their importance for the future of food manufacturing and consumers' health. The extraction procedures applied to natural antimicrobials will be considered, followed by the description of some natural preservatives' antimicrobial mechanism of action, including (i) membrane rupture with ATP-ase activity inhibition, (ii) leakage of essential biomolecules from the cell, (iii) disruption of the proton motive force and (iiii) enzyme inactivation. Moreover, a provenance-based classification of natural antimicrobials is discussed by considering the sources of origin for the major natural preservative categories: plants, animals, microbes and fungi. As well, the structure influence on the antimicrobial potential is considered. Natural preservatives could also constitute a viable alternative to address the critical problem of microbial resistance, and to hamper the negative side effects of some synthetic compounds, while meeting the requirements for food safety, and exerting no negative impact on nutritional and sensory attributes of foodstuffs.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Sector 5, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, Sector 5, Bucharest, Romania
| | - Cecilia Georgescu
- "Lucian Blaga" University of Sibiu, Faculty of Agriculture Science, Food Industry and Environmental Protection, Dr. I. Ratiu str.7-9, 550012, Sibiu, Romania
| | - Violeta Turcuş
- Vasile Goldiş Western University of Arad, Faculty of Medicine, Department of Life Sciences, Liviu Rebreanu str.91-93, 310414, Arad, Romania
| | - Neli Kinga Olah
- Vasile Goldiş Western University of Arad, Faculty of Medicine, Department of Life Sciences, Liviu Rebreanu str.91-93, 310414, Arad, Romania
| | - Endre Mathe
- Vasile Goldiş Western University of Arad, Faculty of Medicine, Department of Life Sciences, Liviu Rebreanu str.91-93, 310414, Arad, Romania; University of Debrecen, Faculty of Agriculture and Food Sciences and Environmental Management, Institute of Food Technology, Böszörményi út 138, H-4032, Debrecen, Hungary
| |
Collapse
|
17
|
Mackert JD, McIntosh MK. Combination of the anthocyanidins malvidin and peonidin attenuates lipopolysaccharide-mediated inflammatory gene expression in primary human adipocytes. Nutr Res 2016; 36:1353-1360. [DOI: 10.1016/j.nutres.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 02/04/2023]
|
18
|
Black Currant ( Ribes nigrum L.) and Bilberry ( Vaccinium myrtillus L.) Fruit Juices Inhibit Adhesion of Asaia spp. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3671306. [PMID: 27747228 PMCID: PMC5055924 DOI: 10.1155/2016/3671306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/25/2016] [Indexed: 01/17/2023]
Abstract
The aim of the study was to evaluate the activity of high-polyphenolic black currant (Ribes nigrum L.) and bilberry (Vaccinium myrtillus L.) juices against bacterial strains Asaia lannensis and Asaia bogorensis isolated as spoilage of commercial soft drinks. The composition of fruit juices was evaluated using chromatographic techniques HPLC and LC-MS. The adhesion to glass, polystyrene, and polyethylene terephthalate in two different culture media was evaluated by luminometry and the plate count method. The major anthocyanins in the V. myrtillus were petunidin-3-glucoside, malvidin-3-glucoside, cyanidin-3-glucoside, and delphinidin-3-glucoside, while in R. nigrum delphinidin-3-rutinoside and cyanidin-3-rutinoside were detected. The LC-MS analysis showed presence of anthocyanins (delphinidin, cyanidin, petunidin, and malvidin derivatives), phenolic acids (chlorogenic and neochlorogenic acids), flavonols (quercetin-3-glucoside, quercetin-3-rutinoside), and flavanols (procyanidin B2 and procyanidin type A2). Additionally, in the bilberry juice A type procyanidin trimer was detected. The adhesion of Asaia spp. cells depended on the type of medium, carbon sources, and the type of abiotic surfaces. We noted that the adhesion was significantly stronger in minimal medium containing sucrose. The addition of bilberry and black currant juices notably reduced bacterial growth as well as cell adhesion to polyethylene terephthalate surfaces.
Collapse
|
19
|
Zhang X, Yang Y, Wu Z, Weng P. The Modulatory Effect of Anthocyanins from Purple Sweet Potato on Human Intestinal Microbiota in Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2582-90. [PMID: 26975278 DOI: 10.1021/acs.jafc.6b00586] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In order to investigate the modulatory effect of purple sweet potato anthocyanins (PSPAs) on human intestinal microbiota, PSPAs were prepared by column chromatography and their influence on intestinal microbiota was analyzed by monitoring the bacterial populations and analyzing short-chain fatty acid (SCFA) concentrations at different time points. The numbers (log10 cell/mL) of Bifidobacterium and Lactobacillus/Enterococcus spp., Bacteroides-Prevotella, Clostridium histolyticum, and total bacteria after 24 h of culture in anaerobic fermentation broth containing PSPAs were 8.44 ± 0.02, 8.30 ± 0.01, 7.80 ± 0.03, 7.60 ± 0.03, and 9.00 ± 0.02, respectively, compared with 8.21 ± 0.03, 8.12 ± 0.02, 7.95 ± 0.02, 7.77 ± 0.02, and 9.01 ± 0.03, respectively, in the controls. The results showed that PSPAs induced the proliferation of Bifidobacterium and Lactobacillus/Enterococcus spp., inhibited the growth of Bacteroides-Prevotella and Clostridium histolyticum, and did not affect the total bacteria number. Total SCFA concentrations in the cultures with PSPAs were significantly higher than in the controls (P < 0.05). Moreover, during the fermentation, the PSPAs were partially fragmented to phenolic acids, which may exert a better effect on intestinal microecology, suggesting that PSPAs may have prebiotic-like activity by generating SCFAs and modulating the intestinal microbiota, contributing to improvements in human health.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University , Ningbo 315211, P. R. China
| | - Yang Yang
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University , Ningbo 315211, P. R. China
| | - Zufang Wu
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University , Ningbo 315211, P. R. China
| | - Peifang Weng
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University , Ningbo 315211, P. R. China
| |
Collapse
|
20
|
Karabiyikli Ş, Öncül N. Inhibitory Effect of Unripe Grape Products on Foodborne Pathogens. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12731] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Şeniz Karabiyikli
- Gaziosmanpaşa University, Faculty of Engineering and Natural Science; Food Engineering Department; Tokat 60250 Turkey
| | - Nilgün Öncül
- Gaziosmanpaşa University, Faculty of Engineering and Natural Science; Food Engineering Department; Tokat 60250 Turkey
| |
Collapse
|
21
|
Hiding in Fresh Fruits and Vegetables: Opportunistic Pathogens May Cross Geographical Barriers. Int J Microbiol 2016; 2016:4292417. [PMID: 26989419 PMCID: PMC4772400 DOI: 10.1155/2016/4292417] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/24/2016] [Indexed: 01/11/2023] Open
Abstract
Different microbial groups of the microbiome of fresh produce can have diverse effects on human health. This study was aimed at identifying some microbial communities of fresh produce by analyzing 105 samples of imported fresh fruits and vegetables originated from different countries in the world including local samples (Oman) for aerobic plate count and the counts of Enterobacteriaceae, Enterococcus, and Staphylococcus aureus. The isolated bacteria were identified by molecular (PCR) and biochemical methods (VITEK 2). Enterobacteriaceae occurred in 60% of fruits and 91% of vegetables. Enterococcus was isolated from 20% of fruits and 42% of vegetables. E. coli and S. aureus were isolated from 22% and 7% of vegetables, respectively. Ninety-seven bacteria comprising 21 species were similarly identified by VITEK 2 and PCR to species level. E. coli, Klebsiella pneumoniae, Enterococcus casseliflavus, and Enterobacter cloacae were the most abundant species; many are known as opportunistic pathogens which may raise concern to improve the microbial quality of fresh produce. Phylogenetic trees showed no relationship between clustering of the isolates based on the 16S rRNA gene and the original countries of fresh produce. Intercountry passage of opportunistic pathogens in fresh produce cannot be ruled out, which requires better management.
Collapse
|
22
|
Gupta D, Dubey J, Kumar M. Phytochemical analysis and antimicrobial activity of some medicinal plants against selected common human pathogenic microorganisms. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(15)60978-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Cetin-Karaca H, Newman MC. Antimicrobial efficacy of plant phenolic compounds against Salmonella and Escherichia Coli. FOOD BIOSCI 2015. [DOI: 10.1016/j.fbio.2015.03.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Radji M, Agustama RA, Elya B, Tjampakasari CR. Antimicrobial activity of green tea extract against isolates of methicillin-resistant Staphylococcus aureus and multi-drug resistant Pseudomonas aeruginosa. Asian Pac J Trop Biomed 2013; 3:663-7; discussion 666. [PMID: 23905026 DOI: 10.1016/s2221-1691(13)60133-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE To evaluate antibacterial activity of the Indonesian water soluble green tea extract, Camellia sinensis, against clinical isolates of methicillin-resistant Staphylococcus aureus (S. aureus) (MRSA) and multi-drug resistant Pseudomonas aeruginosa (MDR-P. aeruginosa). METHODS Antimicrobial activity of green tea extract was determined by the disc diffusion method and the minimum inhibitory concentration (MIC) was determined by the twofold serial broth dilutions method. The tested bacteria using in this study were the standard strains and multi-drug resistant clinical isolates of S. aureus and P. aeruginosa, obtained from Laboratory of Clinical Microbiology, Faculty of Medicine, University of Indonesia. RESULTS The results showed that the inhibition zone diameter of green tea extracts for S. aureus ATCC 25923 and MRSA were (18.970 ± 0.287) mm, and (19.130 ± 0.250) mm respectively. While the inhibition zone diameter for P. aeruginosa ATCC 27853 and MDR-P. aeruginosa were (17.550 ± 0.393) mm and (17.670 ± 0.398) mm respectively. The MIC of green tea extracts against S. aureus ATCC 25923 and MRSA were 400 µg/mL and 400 µg/mL, respectively, whereas the MIC for P. aeruginosa ATCC 27853 and MDR-P. aeruginosa were 800 µg/mL, and 800 µg/mL, respectively. CONCLUSIONS Camellia sinensis leaves extract could be useful in combating emerging drug-resistance caused by MRSA and P. aeruginosa.
Collapse
Affiliation(s)
- Maksum Radji
- Laboratory of Microbiology and Biotechnology, Faculty of Pharmacy, University of Indonesia, Depok 16424, Indonesia.
| | | | | | | |
Collapse
|
25
|
Lee EH, Jang KI, Bae IY, Lee HG. Antibacterial Effects of Leek and Garlic Juice and Powder in a Mixed Strains System. ACTA ACUST UNITED AC 2011. [DOI: 10.9721/kjfst.2011.43.4.518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Hafidh RR, Abdulamir AS, Vern LS, Abu Bakar F, Abas F, Jahanshiri F, Sekawi Z. Inhibition of growth of highly resistant bacterial and fungal pathogens by a natural product. Open Microbiol J 2011; 5:96-106. [PMID: 21915230 PMCID: PMC3171003 DOI: 10.2174/1874285801105010096] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 06/24/2011] [Accepted: 06/28/2011] [Indexed: 12/05/2022] Open
Abstract
The continuous escalation of resistant bacteria against a wide range of antibiotics necessitates discovering novel unconventional sources of antibiotics. B. oleracea L (red cabbage) is health-promoting food with proven anticancer and anti-inflammatory activities. However, it has not been researched adequately for its antimicrobial activity on potential resistant pathogens. The methanol crude extract of B. oleracea L. was investigated for a possible anti-microbial activity. The screening method was conducted using disc diffusion assay against 22 pathogenic bacteria and fungi. It was followed by evaluation of the minimum inhibitory concentration (MIC). Moreover, the antibacterial and the antifungal activities were confirmed using the minimum bactericidal concentration (MBC) and the minimum fungicidal concentration (MFC), respectively. Remarkable, antibacterial activity was evident particularly against highly infectious microorganisms such as Methicillin-resistant Staphylococcus aureus, Escherichia coli O157:H7, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and Salmonella enterica serovar Typhimurium as well as against human fungal pathogens, Trichophyton rubrum and Aspergillus terreus. Red cabbage is a rich source of phenolic compounds, anthocyanins being the most abundant class, which might explain its potent antimicrobial action. This extract is potentially novel for future antimicrobials, inexpensive, and readily available at a large scale for pharmaceutical companies for further investigation and processing.
Collapse
Affiliation(s)
- Rand R Hafidh
- Department of Microbiology, College of Medicine, Baghdad University, Baghdad-Iraq
| | | | | | | | | | | | | |
Collapse
|
27
|
Schwaiger K, Helmke K, Holzel CS, Bauer J. Comparative analysis of the bacterial flora of vegetables collected directly from farms and from supermarkets in Germany. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2011; 21:161-172. [PMID: 21506036 DOI: 10.1080/09603123.2010.515672] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A total of 1,001 vegetables were collected from 13 farms and 11 supermarkets in Bavaria, Germany; 722 samples were positive for coliforms (mostly Enterobacter cloacae; n = 176). Escherichia coli were detected in 34, Pseudomonas spp. in 439, Salmonella spp. in 1, Enterococcus spp. in 682, and Listeria spp. in 11 samples. Prevalence of all investigated genera tended to be lower in samples collected at the supermarket. However, prevalence of Pseudomonas fluorescens was higher in supermarket samples. Cereals/bulbous vegetables were less contaminated than root vegetables/salads. Fruit vegetables seem to be often subsequently contaminated in the retail market. Compared to foods of animal origin, prevalence of pathogenic bacteria is low. Particularly, in 1,001 investigated vegetables, only four L. monocytogenes and one Salmonella enterica have been found. Almost all of the detected microorganisms are reported to be opportunistic pathogens, if only in rare cases. Therefore, fresh produce should be washed or peeled before it is eaten raw.
Collapse
Affiliation(s)
- Karin Schwaiger
- Technische Universitat Munchen, Chair of Animal Hygiene, Freising, Germany.
| | | | | | | |
Collapse
|
28
|
Abstract
Body malodour, including foot odour, suppresses social interaction by diminishing self-confidence and accelerating damage to the wearer's clothes and shoes. Most treatment agents, including aluminium anti-perspirant salts, inhibit the growth of malodourous bacteria. These metallic salts also reduce sweat by blocking the excretory ducts of sweat glands, minimizing the water source that supports bacterial growth. However, there are some drawback effects that limit the use of aluminium anti-perspirant salts. In addition, over-the-counter anti-perspirant and deodourant products may not be sufficiently effective for heavy sweaters, and strong malodour producers. Body odour treatment agents are rarely mentioned in the literature compared with other cosmetic ingredients. This review briefly summarizes the relationship among sweat, skin bacteria, and body odour; describes how odourous acids, thiols, and steroids are formed; and discusses the active ingredients, including metallic salts and herbs, that are used to treat body odour. A new class of ingredients that function by regulating the release of malodourants will also be described. These ingredients do not alter the balance of the skin flora.
Collapse
|
29
|
Wisuitiprot W, Somsiri A, Ingkaninan K, Waranuch N. A novel technique for chitosan microparticle preparation using a water/silicone emulsion: green tea model. Int J Cosmet Sci 2011; 33:351-8. [PMID: 21323933 DOI: 10.1111/j.1468-2494.2010.00635.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many effective methods such as spray drying, coacervation, ionic gelation, solvent evaporation and sieving have been suggested for entrapping bioactive compounds into micro- or nanoparticles. However, those methods still have some limitations owing to high temperature requirement, difficulty in particle harvesting or low entrapment for uncharged molecules. In this study, a novel chitosan microparticle preparation method was developed using water-in-silicone emulsion technique with green tea extract as a model active compound. Chitosan microparticles of diameter <5 μm were obtained from 2% chitosan solution with tripolyphosphate (TPP) solution as the hardening agent. The size and properties of the particles appeared to depend on several parameters such as TPP, emulsifier concentrations and pH. High concentration of emulsifier led to low encapsulation and particle aggregation. Entrapment efficiency of chitosan microparticles was improved with lower pH of the tripolyphosphate solution [59.94 ± 3.97 of epigallocatechin gallate (EGCG)] while slowing release of catechins. Epigallocatechin and epicatechin were released almost completely within 2 h under acidic condition whereas EGCG and epicatechin gallate were slowly released. In neutral condition, release of catechins depended on their molecular stabilities. The stabilities of catechins loaded in chitosan microparticles were varied under various temperatures. The degradation of tea catechins increased with temperature. However, the degradation of tea catechins loaded in chitosan microparticles was less than that of free catechins. Thus, the new technique for preparing chitosan microparticles containing heat-sensitive water soluble green tea extract was successfully developed. The technique is suitable for micro-encapsulation of hydrophilic compounds into chitosan microparticles with the ease of harvesting technique.
Collapse
Affiliation(s)
- W Wisuitiprot
- Department of Pharmaceutical Technology and Department of Pharmacognosy and Pharmaceutical Chemistry, Naresuan University, Phitsanulok, Thailand
| | | | | | | |
Collapse
|
30
|
Leishman ON, Johnson MJ, Labuza TP, Diez-Gonzalez F. Survival of Bacillus anthracis spores in fruit juices and wine. J Food Prot 2010; 73:1694-7. [PMID: 20828478 DOI: 10.4315/0362-028x-73.9.1694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Foods have been identified as a potential target for bioterrorism due to their essential nature and global distribution. Foods produced in bulk have the potential to have large batches of product intentionally contaminated, which could affect hundreds or thousands of individuals. Bacillus anthracis spores are one potential bioterrorism agent that may survive pasteurization and remain viable throughout the shelf life of fruit juices and cause disease if consumed. This project examined B. anthracis spore survival in orange, apple, and grape juices, as well as wine. Samples of beverages were inoculated with spores of two nonpathogenic B. anthracis strains at approximately 10(6) CFU/ml, and the spore count was determined periodically during storage for 30 days at 4°C. After this time, the counts of survival spores never declined more than 1 log CFU/ml in any of the beverage types. These results indicate that spores can survive, with little to no loss in viability, for at least a month in fruit juices and wine.
Collapse
Affiliation(s)
- Oriana N Leishman
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | |
Collapse
|
31
|
Lee YL, Owens J, Thrupp L, Barron S, Shanbrom E, Cesario T, Najm WI. The antifungal activity of urine after ingestion of cranberry products. J Altern Complement Med 2009; 15:957-8. [PMID: 19757972 DOI: 10.1089/acm.2009.0148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
32
|
Tiwari BK, O'Donnell CP, Patras A, Brunton N, Cullen PJ. Anthocyanins and color degradation in ozonated grape juice. Food Chem Toxicol 2009; 47:2824-9. [PMID: 19733609 DOI: 10.1016/j.fct.2009.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 08/03/2009] [Accepted: 09/01/2009] [Indexed: 11/26/2022]
Abstract
Grape juice samples were ozonated with processing variables of ozone concentration (1.6-7.8% w/w) and treatment time (0-10 min). Effects of processing variables on grape juice color values (L, a and b) and anthocyanins were determined. The changes in lightness (L) values and total color difference (TCD) values were fitted well to zero-order kinetics whereas, a and b followed first-order kinetics. Three major anthocyanins were observed in the grape juice namely cyanidin-3-O-glucoside (Cy3Gl, 133.9 mg/L), delphinidin-3-O-glucoside (Dy3Gl, 21.4) and malvidin-3-O-glucoside (My3Gl, 3.2mg/L). Significant reductions in anthocyanin content were observed during ozonation. During ozonation Cy3Gl was found to be stable compared to Dy3Gl and My3Gl. Changes in Cy3Gl were fitted well to the fraction conversion model. The results presented in this study indicate that both color and anthocyanin content are significantly affected during ozone processing. Thus, the effects of ozonation on the grape juice should be considered by processors prior to its adoption as a preservation technique.
Collapse
Affiliation(s)
- B K Tiwari
- Biosystems Engineering, UCD School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | |
Collapse
|
33
|
Selma MV, Espín JC, Tomás-Barberán FA. Interaction between phenolics and gut microbiota: role in human health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:6485-501. [PMID: 19580283 DOI: 10.1021/jf902107d] [Citation(s) in RCA: 862] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Dietary phenolic compounds are often transformed before absorption. This transformation modulates their biological activity. Different studies have been carried out to understand gut microbiota transformations of particular polyphenol types and identify the responsible microorganisms. Although there are potentially thousands of different phenolic compounds in the diet, they are typically transformed to a much smaller number of metabolites. The aim of this review was to discuss the current information about the microbial degradation metabolites obtained from different phenolics and their formation pathways, identifying their differences and similarities. The modulation of gut microbial population by phenolics was also reviewed in order to understand the two-way phenolic-microbiota interaction. Clostridium and Eubacterium genera, which are phylogenetically associated, are other common elements involved in the metabolism of many phenolics. The health benefits from phenolic consumption should be attributed to their bioactive metabolites and also to the modulation of the intestinal bacterial population.
Collapse
Affiliation(s)
- María V Selma
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | | | | |
Collapse
|
34
|
Jazani NH, Shahabi S, Ali AA. Antibacterial effects of water soluble green tea extracts on multi-antibiotic resistant isolates of Pseudomonas aeruginosa. Pak J Biol Sci 2007; 10:1544-1546. [PMID: 19069973 DOI: 10.3923/pjbs.2007.1544.1546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this research we evaluated the antibacterial activity of water soluble green tea extracts on 43 hospital isolates of Pseudomonas aeruginosa. A total of 43 strains of Pseudomonas aeruginosa were collected from clinical specimens at two hospitals in Tehran, Iran. The susceptibilities of isolates to different antibiotics were tested using agar disk diffusion method. Antibacterial activity of water soluble green tea extract was measured by Minimum Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentrations (MBCs). 35.6% of isolated strains showed resistance to 5 antibiotics or more and 55.8% of all strains were Multi-Drug Resistant (MDR) strains. The average MICs and MBCs of the extract against all strains of Pseudomonas auroginosa were 2.06 +/- 1.76 and 2.54 +/- 2.22 mg mL(-1) respectively.Our study suggests that green tea has significant activity with bactericidal action on multi-drug resistant strains of Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- N Hosseini Jazani
- Department of Microbiology, Immunology and Genetics, Faculty of Medicine, Urmia Medical Sciences University, Urmia, Iran
| | | | | |
Collapse
|
35
|
Jazani NH, Shahabi S, Ali AA, Zartoshti M. Antibacterial effects of water soluble green tea extracts on multi-antibiotic resistant isolates of Acinetobacter sp. Pak J Biol Sci 2007; 10:1477-1480. [PMID: 19069960 DOI: 10.3923/pjbs.2007.1477.1480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this research we evaluated the antibacterial activity of water soluble green tea extracts on isolates of Acinetobacter. A total of 20 strains were collected from burn wounds at different hospitals in Tehran, Iran. The susceptibilities of isolates to different antibiotics were tested using agar disk diffusion method. Antibacterial activity of water soluble green tea extract was measured by Minimum Bactericidal Concentrations (MBCs). Seventy five percent of isolated strains showed resistance to at least 12 antibiotics or more and all the strains were Multi-drug Resistant (MDR) strains. The average MBCs of the extract against all strains of Acinetobacter were 387.5 +/- 127.6 microg mL(-1). Present study suggests that green tea has significant bactericidal action on multi-drug resistant strains of Acinetobacter.
Collapse
Affiliation(s)
- N Hosseini Jazani
- Department of Microbiology, Immunology and Genetics, Faculty of Medicine, Urmia Medical Sciences University, Urmia, Iran
| | | | | | | |
Collapse
|
36
|
Wu SC, Yen GC, Wang BS, Chiu CK, Yen WJ, Chang LW, Duh PD. Antimutagenic and antimicrobial activities of pu-erh tea. Lebensm Wiss Technol 2007. [DOI: 10.1016/j.lwt.2005.11.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Zhang J, Bateman R, Metzger S, Lanigan K. Taking nutritional supplements for three months reduced blood pressure but not blood lipid levels in students. J Chiropr Med 2006; 5:53-9. [DOI: 10.1016/s0899-3467(07)60133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 06/15/2006] [Indexed: 10/23/2022] Open
|
38
|
Ruddock PS, Liao M, Foster BC, Lawson L, Arnason JT, Dillon JAR. Garlic natural health products exhibit variable constituent levels and antimicrobial activity against Neisseria gonorrhoeae, Staphylococcus aureus and Enterococcus faecalis. Phytother Res 2005; 19:327-34. [PMID: 16041728 DOI: 10.1002/ptr.1667] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The composition of 19 garlic natural health products (NHPs) and fresh garlic extracts were determined, as was their antibacterial activity. The 19 NHPs and 5 fresh garlic extract standards were analysed for their principal active constituents. They were also extracted for 5, 10 or 15 min in water to fresh garlic equivalents of 200 mg/mL. The extract's minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) against three indicator microorganisms (Neisseria gonorrhoeae, Staphylococcus aureus and Enterococcus faecalis) were determined by the broth microdilution method. While 47% of the aqueous garlic NHP extracts exhibited activity against N. gonorrhoeae, only 16% of the aqueous extracts inhibited S. aureus or E. faecalis at all three timepoints. Generally, products with high antimicrobial activity contained higher levels of garlic constituents with comparable activity to fresh garlic extracts, while products with marginal antibacterial activity often contained lower concentrations of constituents than their product labels indicated. Different extraction times affected antibacterial activity only against N. gonorrhoeae and tended to be correlated with levels of allicin. Thus, many extracts showed discrepancies in both composition, allicin:alliin ratio and antimicrobial activity, raising concerns as to standards of preparation and quality control for these products.
Collapse
Affiliation(s)
- Patrick S Ruddock
- Department of Biology, University of Ottawa, P.O. Box 450, Stn A, Ottawa, ON, K1N 6N5, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 2005; 15:929-34. [PMID: 15916949 DOI: 10.1016/j.cub.2005.04.018] [Citation(s) in RCA: 423] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 04/04/2005] [Accepted: 04/05/2005] [Indexed: 11/23/2022]
Abstract
Garlic's pungent flavor has made it a popular ingredient in cuisines around the world and throughout history. Garlic's health benefits have been elevated from folklore to clinical study. Although there is some controversy as to the efficacy of garlic, garlic products are one of the most popular herbal supplements in the U.S. Chemically complex, garlic contains different assortments of sulfur compounds depending on whether the cloves are intact, crushed, cooked, or raw. Raw garlic, when cut and placed on the tongue or lips, elicits painful burning and prickling sensations through unknown mechanisms. Here, we show that raw but not baked garlic activates TRPA1 and TRPV1, two temperature-activated ion channels that belong to the transient receptor potential (TRP) family. These thermoTRPs are present in the pain-sensing neurons that innervate the mouth. We further show that allicin, an unstable component of fresh garlic, is the chemical responsible for TRPA1 and TRPV1 activation and is therefore likely to cause garlic's pungency.
Collapse
Affiliation(s)
- Lindsey J Macpherson
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Carlet J, Ben Ali A, Chalfine A. Epidemiology and control of antibiotic resistance in the intensive care unit. Curr Opin Infect Dis 2004; 17:309-16. [PMID: 15241074 DOI: 10.1097/01.qco.0000136927.29802.68] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Resistance to antibiotics is very high in the intensive care units of many countries, although there are several exceptions. Some infections are becoming extremely difficult to treat. The risk of cross-transmission of those strains is very high. This review focuses on recent data (2003 to the present) that may help understanding and dealing with this serious public health problem. RECENT FINDINGS Intensive care units can be considered as 'factories' for creating, disseminating and amplifying resistance to antibiotics, for many reasons: importation of resistant microorganisms at admission, selection of resistant strains with an extensive use of broad-spectrum antibiotics, cross-transmission of resistant strains via the hands or the environment. Some national programs can be considered as failures, as in the UK and the USA. Other countries have been able to maintain a low level of resistance (Scandinavian countries, Netherlands, Switzerland, Germany, Canada). There is clearly an 'inoculum effect' above which preventive measures become poorly efficient. Several preventive measures have been proposed including preventive isolation, systematic screening at admission, local, national or international antibiotic guidelines, antibiotic prescriptions advice by infectious-disease teams, antibiotic prevention with selective digestive decontamination, antibiotic strategies such as 'cycling', or rather, for some authors, the use of an 'à la carte' antibiotic strategy which could be considered as a 'patient-to-patient antibiotic rotation'. SUMMARY There is obviously an international concern regarding the level of resistance to antibiotics in the intensive-care-unit setting. A strong program including prevention of cross-transmission and better usage of antibiotics seems to be needed in order to be successful. We do not know if this kind of program will enable countries with a very high endemic level of resistance to decrease the level in future years.
Collapse
Affiliation(s)
- Jean Carlet
- Intensive Care Unit, Fondation Hôpital Saint-Joseph, 185, rue Raymond Losserand, 75014 Paris, France.
| | | | | |
Collapse
|