1
|
Xu Q, Yu Y, Chen K. The potential application of fermented tea as a drink for regulating bone mass. Front Pharmacol 2024; 15:1353811. [PMID: 39027330 PMCID: PMC11254645 DOI: 10.3389/fphar.2024.1353811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Currently, there is evidence to suggest the benefits of drinking fermented tea for people with osteoporosis, and based on this, many studies have been conducted on the dosage, exact ingredients, mechanisms, and industrial applications of fermented tea for protecting against osteoporosis. A summary and analysis of studies on the regulation of bone mass by oolong tea, black tea, and their active ingredients (including 39 known catechin compounds) was conducted. It was found that the regulation of bone mass by fermented tea is backed by evidence from epidemiology, animal experiments, and cell experiments. The main active components of fermented tea are tea polyphenols, tea pigments, and trace amino acids. The specific mechanisms involved include regulating bone marrow mesenchymal stem cell osteogenesis, inhibiting osteoclast activity, promoting calcium and phosphorus absorption, reducing inflammation levels, regulating gut microbiota, regulating endocrine function, and inhibiting oxidative stress. In terms of its application, extraction, precipitation, biosynthesis and membrane separation method are mainly used to separate the active ingredients of anti osteoporosis from fermented tea. In conclusion, fermented tea has sufficient theoretical and practical support for regulating bone mass and preventing osteoporosis, and is suitable for development as a health supplement. At the same time, a large amount of epidemiological evidence is needed to prove the specific dosage of tea consumption.
Collapse
Affiliation(s)
- Qiaolu Xu
- Department of Geriatric Medicine, The Second Hospital of Jinhua, Jinhua, China
| | - Yikang Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ke Chen
- Orthopedics and Traumatology Department, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Faienza MF, Giardinelli S, Annicchiarico A, Chiarito M, Barile B, Corbo F, Brunetti G. Nutraceuticals and Functional Foods: A Comprehensive Review of Their Role in Bone Health. Int J Mol Sci 2024; 25:5873. [PMID: 38892062 PMCID: PMC11172758 DOI: 10.3390/ijms25115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Bone health is the result of a tightly regulated balance between bone modeling and bone remodeling, and alterations of these processes have been observed in several diseases both in adult and pediatric populations. The imbalance in bone remodeling can ultimately lead to osteoporosis, which is most often associated with aging, but contributing factors can already act during the developmental age, when over a third of bone mass is accumulated. The maintenance of an adequate bone mass is influenced by genetic and environmental factors, such as physical activity and diet, and particularly by an adequate intake of calcium and vitamin D. In addition, it has been claimed that the integration of specific nutraceuticals such as resveratrol, anthocyanins, isoflavones, lycopene, curcumin, lutein, and β-carotene and the intake of bioactive compounds from the diet such as honey, tea, dried plums, blueberry, and olive oil can be efficient strategies for bone loss prevention. Nutraceuticals and functional foods are largely used to provide medical or health benefits, but there is an urge to determine which products have adequate clinical evidence and a strong safety profile. The aim of this review is to explore the scientific and clinical evidence of the positive role of nutraceuticals and functional food in bone health, focusing both on molecular mechanisms and on real-world studies.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy; (M.F.F.)
| | - Silvia Giardinelli
- Department of Medical Sciences, Pediatrics, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| | - Mariangela Chiarito
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy; (M.F.F.)
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, 70125 Bari, Italy;
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (B.B.)
| |
Collapse
|
3
|
Wang J, Xue M, Hu Y, Li J, Li Z, Wang Y. Proteomic Insights into Osteoporosis: Unraveling Diagnostic Markers of and Therapeutic Targets for the Metabolic Bone Disease. Biomolecules 2024; 14:554. [PMID: 38785961 PMCID: PMC11118602 DOI: 10.3390/biom14050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoporosis (OP), a prevalent skeletal disorder characterized by compromised bone strength and increased susceptibility to fractures, poses a significant public health concern. This review aims to provide a comprehensive analysis of the current state of research in the field, focusing on the application of proteomic techniques to elucidate diagnostic markers and therapeutic targets for OP. The integration of cutting-edge proteomic technologies has enabled the identification and quantification of proteins associated with bone metabolism, leading to a deeper understanding of the molecular mechanisms underlying OP. In this review, we systematically examine recent advancements in proteomic studies related to OP, emphasizing the identification of potential biomarkers for OP diagnosis and the discovery of novel therapeutic targets. Additionally, we discuss the challenges and future directions in the field, highlighting the potential impact of proteomic research in transforming the landscape of OP diagnosis and treatment.
Collapse
Affiliation(s)
- Jihan Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
| | - Mengju Xue
- School of Medicine, Xi’an International University, Xi’an 710077, China
| | - Ya Hu
- Department of Medical College, Hunan Polytechnic of Environment and Biology, Hengyang 421000, China
| | - Jingwen Li
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Zhenzhen Li
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
4
|
Shah MA, Faheem HI, Hamid A, Yousaf R, Haris M, Saleem U, Shah GM, Alhasani RH, Althobaiti NA, Alsharif I, Silva AS. The entrancing role of dietary polyphenols against the most frequent aging-associated diseases. Med Res Rev 2024; 44:235-274. [PMID: 37486109 DOI: 10.1002/med.21985] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 01/27/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Aging, a fundamental physiological process influenced by innumerable biological and genetic pathways, is an important driving factor for several aging-associated disorders like diabetes mellitus, osteoporosis, cancer, and neurodegenerative diseases including Alzheimer's and Parkinson's diseases. In the modern era, the several mechanisms associated with aging have been deeply studied. Treatment and therapeutics for age-related diseases have also made considerable advances; however, for the effective and long-lasting treatment, nutritional therapy particularly including dietary polyphenols from the natural origin are endorsed. These dietary polyphenols (e.g., apigenin, baicalin, curcumin, epigallocatechin gallate, kaempferol, quercetin, resveratrol, and theaflavin), and many other phytochemicals target certain molecular, genetic mechanisms. The most common pathways of age-associated diseases are mitogen-activated protein kinase, reactive oxygen species production, nuclear factor kappa light chain enhancer of activated B cells signaling pathways, metal chelation, c-Jun N-terminal kinase, and inflammation. Polyphenols slow down the course of aging and help in combatting age-linked disorders. This exemplified in the form of clinical trials on specific dietary polyphenols in various aging-associated diseases. With this context in mind, this review reveals the new insights to slow down the aging process, and consequently reduce some classic diseases associated with age such as aforementioned, and targeting age-associated diseases by the activities of dietary polyphenols of natural origin.
Collapse
Affiliation(s)
| | - Hafiza Ishmal Faheem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ayesha Hamid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Universiteit Gent, Ghent, Belgium
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Botany, Faculty of Health and Biological Sciences, Hazara University, Mansehra, Pakistan
| | - Reem H Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Norah A Althobaiti
- Department of Biology, College of Science and Humanities, Shaqra University, Al-Quwaiiyah, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ana Sanches Silva
- National Institute for Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de St Comba, Coimbra, Portugal
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Zhang C, Li H, Li J, Hu J, Yang K, Tao L. Oxidative stress: A common pathological state in a high-risk population for osteoporosis. Biomed Pharmacother 2023; 163:114834. [PMID: 37163779 DOI: 10.1016/j.biopha.2023.114834] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023] Open
Abstract
Osteoporosis is becoming a major concern in the field of public health. The process of bone loss is insidious and does not directly induce obvious symptoms. Complications indicate an irreversible decrease in bone mass. The high-risk populations of osteoporosis, including postmenopausal women, elderly men, diabetic patients and obese individuals need regular bone mineral density testing and appropriate preventive treatment. However, the primary changes in these populations are different, increasing the difficulty of effective treatment of osteoporosis. Determining the core pathogenesis of osteoporosis helps improve the efficiency and efficacy of treatment among these populations. Oxidative stress is a common pathological state secondary to estrogen deficiency, aging, hyperglycemia and hyperlipemia. In this review, we divided oxidative stress into the direct effect of reactive oxygen species (ROS) and the reduction of antioxidant enzyme activity to discuss their roles in the development of osteoporosis. ROS initiated mitochondrial apoptotic signaling and suppressed osteogenic marker expression to weaken osteogenesis. MAPK and NF-κB signaling pathways mediated the positive effect of ROS on osteoclast differentiation. Antioxidant enzymes not only eliminate the negative effects of ROS, but also directly participate in the regulation of bone metabolism. Additionally, we also described the roles of proinflammatory factors and HIF-1α under the pathophysiological changes of inflammation and hypoxia, which provided a supplement of oxidative stress-induced osteoporosis. In conclusion, our review showed that oxidative stress was a common pathological state in a high-risk population for osteoporosis. Targeted oxidative stress treatment would greatly optimize the therapeutic schedule of various osteoporosis treatments.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Hao Li
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Jie Li
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Jiajin Hu
- Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| |
Collapse
|
6
|
Yang YJ, Li Y, Gao L. Postmenopausal osteoporosis: Effect of moderate-intensity treadmill exercise on bone proteomics in ovariectomized rats. Front Surg 2023; 9:1000464. [PMID: 36684175 PMCID: PMC9852312 DOI: 10.3389/fsurg.2022.1000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/13/2022] [Indexed: 01/09/2023] Open
Abstract
Objectives This study aimed to identify the key proteins in the bone mass of ovariectomized (OVX) rats after a period of regular moderate-intensity treadmill exercise and to investigate their effects using tag mass spectrometry and quantitative proteomics with a view to improving the understanding and treatment of postmenopausal osteoporosis. Methods Sixty three-month-old female Sprague-Dawley tats of specific-pathogen-free grade were randomly and equally divided into a sham operation group, ovariectomized group (OVX) and ovariectomized combined exercise (OVX + EX) group, and the latter took moderate-intensity treadmill exercise for 17 weeks. After this period of time, body composition and bone density were measured using dual-energy x-ray absorptiometry, and serum bone metabolism indicators were measured using an enzyme immunoassay. In addition, the bone microstructure was examined using micro-computed tomography and scanning of the femur, and femur proteins were subject to proteomic analysis. Results Compared with the rats in the OVX group, the bone metabolism indicators in the OVX + EX group decreased significantly, femur bone density increased significantly, the number of the trabeculae increased, and continuity was higher. In the OVX + EX group, 17 proteins were significantly upregulated and 33 significantly downregulated. The main gene ontology and signaling pathways enriched by the proteins were identified as the tumor necrosis factor-mediated signaling pathways. The protein-protein interaction network identified the key proteins, and the correlation analysis of these proteins and the bone parameters found histone deacetylase 8(HDAC8) and leucine-rich transmembrane and O-methyltransferase domain containing (LRTOMT) and trimethylguanosine synthase 1(TGS1) and ankyrin repeat domain 46(ANKRD46) to be the key targets of exercise in relation to postmenopausal osteoporosis. Conclusion Moderate-intensity treadmill exercise significantly improved the bone mass of OVX rats, and differentially expressed proteins, such as HDAC8 and LRTOMT and TGS1 and ANKRD46, could be the target of moderate-intensity treadmill exercise.
Collapse
|
7
|
Multi-omics approach in tea polyphenol research regarding tea plant growth, development and tea processing: current technologies and perspectives. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Lin SY, Kan JY, Lu CC, Huang HH, Cheng TL, Huang HT, Ho CJ, Lee TC, Chuang SC, Lin YS, Kang L, Chen CH. Green Tea Catechin (-)-Epigallocatechin-3-Gallate (EGCG) Facilitates Fracture Healing. Biomolecules 2020; 10:biom10040620. [PMID: 32316306 PMCID: PMC7226345 DOI: 10.3390/biom10040620] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/04/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Green tea drinking can ameliorate postmenopausal osteoporosis by increasing the bone mineral density. (-)-Epigallocatechin-3-gallate (EGCG), the abundant and active compound of tea catechin, was proven to be able to reduce bone loss and ameliorate microarchitecture in female ovariectomized rats. EGCG can also enhance the osteogenic differentiation of murine bone marrow mesenchymal stem cells and inhibit the osteoclastogenesis in RAW264.7 cells by modulation of the receptor activator of nuclear factor-kB (RANK)/RANK ligand (RANKL)/osteoprotegrin (OPG) (RANK/RANKL/OPG) pathway. Our previous study also found that EGCG can promote bone defect healing in the distal femur partially via bone morphogenetic protein-2 (BMP-2). Considering the osteoinduction property of BMP-2, we hypothesized that EGCG could accelerate the bone healing process with an increased expression of BMP-2. In this manuscript, we studied whether the local use of EGCG can facilitate tibial fracture healing. Fifty-six 4-month-old rats were randomly assigned to two groups after being weight-matched: a control group with vehicle treatment (Ctrl) and a study group with 10 µmol/L, 40 µL, EGCG treatment (EGCG). Two days after the operation, the rats were treated daily with EGCG or vehicle by percutaneous local injection for 2 weeks. The application of EGCG enhanced callus formation by increasing the bone volume and subsequently improved the mechanical properties of the tibial bone, including the maximal load, break load, stiffness, and Young’s modulus. The results of the histology and BMP-2 immunohistochemistry staining showed that EGCG treatment accelerated the bone matrix formation and produced a stronger expression of BMP-2. Taken together, this study for the first time demonstrated that local treatment of EGCG can accelerate the fracture healing process at least partly via BMP-2.
Collapse
Affiliation(s)
- Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jung Yu Kan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Cheng-Chang Lu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Han Hsiang Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City 60054, Taiwan;
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsuan-Ti Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
| | - Cheng-Jung Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tien-Ching Lee
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (L.K.); (C.-H.C.); Tel.: +886-7-3209209 (C.-H.C.)
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.L.); (C.-C.L.); (T.-L.C.); (H.-T.H.); (C.-J.H.); (T.-C.L.); (S.-C.C.); (Y.-S.L.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Correspondence: (L.K.); (C.-H.C.); Tel.: +886-7-3209209 (C.-H.C.)
| |
Collapse
|
9
|
Sarmadi B, Ismail A, Yusof L, Faridz Mod Yunoh M. Mechanism of action of cocoa on bone metabolism in calcium- and estrogen-deficient rat model of osteoporosis: Evidence for site and dose-related responses and involvement of IGF-I. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Two-Dimensional Difference Gel Electrophoresis: A Gel-Based Proteomic Approach for Protein Analysis. Methods Mol Biol 2020; 2102:163-176. [PMID: 31989554 DOI: 10.1007/978-1-0716-0223-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) remains to be one of the most popular and versatile methods of protein separation among many proteomics technologies. Similar to traditional two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), the proteins are separated based on their charges and molecular weight by 2D-DIGE. Different from 2D-PAGE, proteins are pre-labeled with different fluorescent dyes, and different protein samples are run in one gel by this method. Therefore, 2D-DIGE not only carries the advantages of 2D-PAGE but also eliminates gel-to-gel variation and achieves high resolution, sensitivity, and reproducibility.
Collapse
|
11
|
Lin SY, Kang L, Chen JC, Wang CZ, Huang HH, Lee MJ, Cheng TL, Chang CF, Lin YS, Chen CH. (-)-Epigallocatechin-3-gallate (EGCG) enhances healing of femoral bone defect. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:165-171. [PMID: 30668426 DOI: 10.1016/j.phymed.2018.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/24/2018] [Accepted: 07/16/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Previously, we found that (-)-epigallocatechin-3-gallate (EGCG) enhanced osteogenic differentiation of murine bone marrow mesenchymal stem cells by increasing the mRNA expression of osteogenesis-related genes, alkaline phosphatase activity and eventually mineralization. We further found EGCG supplementation preserved bone mass and microarchitecture in female rats during estrogen deficiency in the proximal tibia and lumbar spine at least in part by increasing bone morphogenetic protein-2 (BMP2). BMP2 can enhance de novo bone formation. PURPOSE In this study, we evaluate the effect of local EGCG application in de novo bone formation in bone defect healing. METHODS Twenty-four rats aged 4 months were weight-matched and randomly allocated to 2 groups: defect control with vehicle treatment (control) and defect with 10 µM EGCG treatment (EGCG). Daily vehicle and EGCG were applied locally by percutaneous local injection 2 days after defect creation for 2 weeks. Four weeks after treatment, animals were sacrificed for micro-computed tomography (μ-CT) and biomechanical analysis. RESULTS Local EGCG at femoral defect can enhance de novo bone formation by increasing bone volume and subsequently improve mechanical properties including max load, break point, stiffness, area under the max load curve, area under the break point curve and ultimate stress. CONCLUSIONS Local EGCG may enhance bone defect healing via at least partly by the de novo bone formation of BMP-2.
Collapse
Affiliation(s)
- Sung-Yen Lin
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jian-Chih Chen
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chau-Zen Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Han Hsiang Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City 60054, Taiwan
| | - Mon-Juan Lee
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan; Innovative Research Center of Medicine, Chang Jung Christian University, Tainan, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
12
|
Chen ST, Kang L, Wang CZ, Huang PJ, Huang HT, Lin SY, Chou SH, Lu CC, Shen PC, Lin YS, Chen CH. (-)-Epigallocatechin-3-Gallate Decreases Osteoclastogenesis via Modulation of RANKL and Osteoprotegrin. Molecules 2019; 24:E156. [PMID: 30609798 PMCID: PMC6337469 DOI: 10.3390/molecules24010156] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/20/2023] Open
Abstract
Osteoporosis is the second most common epidemiologic disease in the aging population worldwide. Previous studies have found that frequent tea drinkers have higher bone mineral density and less hip fracture. We previously found that (-)-epigallocatechin gallate (EGCG) (20⁻100 µmol/L) significantly suppressed receptor activator of nuclear factor-kB ligand (RANKL)-induced osteoclastogenesis and pit formation via inhibiting NF-κB transcriptional activity and nuclear transport of NF-κB in RAW 264.7 cells and murine primary bone marrow macrophage cells. The most important regulation in osteoclastogenesis is the receptor activator of nuclear factor-kB/RANKL/osteoprotegrin (RANK/RANKL/OPG) pathway. In this study, we used the coculture of RAW 264.7 cells and the feeder cells, ST2, to evaluate how EGCG regulated the RANK/RANKL/OPG pathway in RAW 264.7 cells and ST2 cells. We found EGCG decreased the RANKL/OPG ratio in both mRNA expression and secretory protein levels and eventually decreased osteoclastogenesis by TRAP (+) stain osteoclasts and TRAP activity at low concentrations-1 and 10 µmol/L-via the RANK/RANKL/OPG pathway. The effective concentration can be easily achieved in daily tea consumption. Taken together, our results implicate that EGCG could be an important nutrient in modulating bone resorption.
Collapse
Affiliation(s)
- Shih-Tse Chen
- Department of Psychiatry, National Taiwan University Hospital Hsin-Chu Branch, Hsin Chu 30059, Taiwan.
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Chau-Zen Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80701, Taiwan.
| | - Peng-Ju Huang
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Hsuan-Ti Huang
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, No.68, Zhonghua 3rd Rd., Qianjin Dist., Kaohsiung City 80145, Taiwan.
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Shih-Hsiang Chou
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Cheng-Chang Lu
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Po-Chih Shen
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan.
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, No.68, Zhonghua 3rd Rd., Qianjin Dist., Kaohsiung City 80145, Taiwan.
| |
Collapse
|
13
|
Liu Z, Feng D, Gu D, Zheng R, Esperat C, Gao W. Differentially expressed haptoglobin as a potential biomarker for type 2 diabetic mellitus in Hispanic population. Biofactors 2017; 43:424-433. [PMID: 28218436 DOI: 10.1002/biof.1352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 01/01/2023]
Abstract
Glycosylated hemoglobin (HbA1c) measurement is currently a primary tool for diagnosis of type 2 diabetes mellitus (T2DM), especially for the assessment of chronic hyperglycemia. However, many studies reported the limitation of using HbA1c for T2DM diagnosis/prognosis, such as poor sensitivities, difficult standardization, and variable cut points across ethnic groups. Therefore, the aim of this study was to discover novel biomarkers associated with elevated HbA1c levels as complementary T2DM diagnostic tools. Two-dimensional difference gel electrophoresis combined with mass spectrometry were applied for protein profile analyses of two pooled serum samples collected from Hispanic T2DM subjects (n = 74) with HbA1c ≥7 and HbA1c< 7, respectively. Isoforms of haptoglobin (Hp) α1/α2 chains were significantly altered in pooled serum samples from T2DM subjects with HbA1c ≥7 compared to those with HbA1c< 7. Hp genotypes of 262 Hispanic subjects, including 109 T2DM and 153 nondiabetic controls, were further determined by PCRs and western blotting analysis. Meanwhile, a new droplet digital PCR method for Hp genotyping was also established. The distribution of Hp2 allele was higher in T2DM subjects compared to nondiabetic controls and the HbA1c levels of T2DM subjects carrying at least one Hp2 allele tended to be higher than T2DM subjects with Hp 1-1. In summary, our results indicate that differentially expressed serum Hp protein isoforms could be associated with HbA1c levels and subjects with Hp2 allele have a higher risk for the occurrence of T2DM in Hispanic population. © 2016 BioFactors, 43(3):424-433, 2017.
Collapse
Affiliation(s)
- Zhongwei Liu
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX
| | - Du Feng
- School of Nursing, University of Nevada, Las Vegas, NV
| | - Danshan Gu
- Huafang College, Xuzhou Medical University, Xuzhou, China
| | - Richard Zheng
- Department of Biology, Texas Tech University, Lubbock, TX
| | - Christina Esperat
- School of Nursing, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX
| |
Collapse
|
14
|
Shen CL, Chyu MC. Tea flavonoids for bone health: from animals to humans. J Investig Med 2016; 64:1151-7. [PMID: 27356546 DOI: 10.1136/jim-2016-000190] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2016] [Indexed: 01/27/2023]
Abstract
Osteoporosis is a skeletal disease characterized by a deterioration of bone mass and bone quality that predisposes an individual to a higher risk of fragility fractures. Emerging evidence has shown that the risk for low bone mass and osteoporosis-related fractures can be reduced by nutritional approaches aiming to improve bone microstructure, bone mineral density, and strength. Tea and its flavonoids, especially those of black tea and green tea, have been suggested to protect against bone loss and to reduce risk of fracture, due to tea's antioxidant and anti-inflammatory properties. Based on the results of animal studies, moderate intake of tea has shown to benefit bone health as shown by mitigation of bone loss and microstructural deterioration as well as improvement of bone strength and quality. Epidemiological studies have reported positive, insignificant, and negative impacts on bone mineral density at multiple skeletal sites and risk of fracture in humans with habitual tea consumption. There are limited human clinical trials that objectively and quantitatively assessed tea consumption and bone efficacy using validated outcome measures in a population at high risk for osteoporosis, along with safety monitoring approach. This review summarizes the current state of knowledge of laboratory animal research, epidemiological observational studies, and clinical trials assessing the skeletal effects of tea and its active flavonoids, along with discussion of relevant future directions in translational research.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA Laura W. Bush Institute for Women's Health, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Ming-Chien Chyu
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA Graduate Healthcare Engineering Option, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
15
|
Đudarić L, Fužinac-Smojver A, Muhvić D, Giacometti J. The role of polyphenols on bone metabolism in osteoporosis. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.10.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Liu W, Xu Z, Yang T, Deng Y, Xu B, Feng S, Li Y. The protective role of tea polyphenols against methylmercury-induced neurotoxic effects in rat cerebral cortex via inhibition of oxidative stress. Free Radic Res 2014; 48:849-63. [DOI: 10.3109/10715762.2014.916039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Zeng X, Tian J, Cai K, Wu X, Wang Y, Zheng Y, Su Y, Cui L. Promoting osteoblast differentiation by the flavanes from Huangshan Maofeng tea is linked to a reduction of oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:217-24. [PMID: 24075209 DOI: 10.1016/j.phymed.2013.08.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/24/2013] [Accepted: 08/23/2013] [Indexed: 05/23/2023]
Abstract
Epidemiological evidence has shown an association between tea consumption and the prevention of bone loss in the elderly. Previous studies indicated that green tea exerted osteoprotective effect in vivo. This study aims to investigate the constituents in Huangshan Maofeng tea and systemically evaluate their antioxidative and osteogenic effects in vitro. Five flavanes, isolated from Huangshan Maofeng tea, showed effects on proliferation of osteoblastic cells and ameliorated H2O2-induced C2C12 mouse myoblast cell apoptosis at 3.125-50 μg/ml. (-)-Epicatechin observably increased alkaline phosphatase (ALP) activity and hydroxyproline content. (-)-Epiafzelechin at 25 μg/ml significantly increased the area of mineralized bone nodules. The activities of flavanes in promoting osteblastic proliferation and differentiation are positively correlated with activities in protecting against apoptosis in C2C12 cells. It indicates that anti-osteoporosis effect of these flavanes may be linked to their antioxidative activity. The observed effects of these flavanes suggest that these flavanes may have beneficial effects on bone health.
Collapse
Affiliation(s)
- Xiaobin Zeng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical College, Zhanjiang 524023, Guangdong, China.
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Kangyong Cai
- Analysis Center of Guangdong Medical College, Guangdong Medical College, Zhanjiang 524023, Guangdong, China
| | - Xin Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical College, Zhanjiang 524023, Guangdong, China
| | - Yang Wang
- Shenzhen Xinpeng Shengwu Gongcheng Co. Ltd., Shenzhen 518055, Guangdong, China
| | - Yayuan Zheng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical College, Zhanjiang 524023, Guangdong, China
| | - Yanjie Su
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical College, Zhanjiang 524023, Guangdong, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical College, Zhanjiang 524023, Guangdong, China.
| |
Collapse
|
18
|
D’Alessandro A, Zolla L. The SODyssey: superoxide dismutases from biochemistry, through proteomics, to oxidative stress, aging and nutraceuticals. Expert Rev Proteomics 2014; 8:405-21. [DOI: 10.1586/epr.11.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Abstract
A protocol for protein analysis using two-dimensional difference gel electrophoresis (2D-DIGE) is described. 2D-DIGE is one of the most popular and versatile methods of protein separation among rapidly increasing proteomics technologies. Similar to traditional two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), the proteins are separated based on their charges and molecular weight by 2D-DIGE. Different from 2D-PAGE, proteins are pre-labeled with different fluorescent and different protein samples are run in one gel by this method. Therefore, 2D-DIGE not only carries the advantages of 2D-PAGE but also eliminates gel-to-gel variation and achieves high resolution, sensitivity, and reproducibility.
Collapse
|
20
|
|
21
|
Wu S, Liu Y, Zhang L, Han Y, Lin Y, Deng HW. Genome-wide approaches for identifying genetic risk factors for osteoporosis. Genome Med 2013; 5:44. [PMID: 23731620 PMCID: PMC3706967 DOI: 10.1186/gm448] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Osteoporosis, the most common type of bone disease worldwide, is clinically characterized by low bone mineral density (BMD) and increased susceptibility to fracture. Multiple genetic and environmental factors and gene-environment interactions have been implicated in its pathogenesis. Osteoporosis has strong genetic determination, with the heritability of BMD estimated to be as high as 60%. More than 80 genes or genetic variants have been implicated in risk of osteoporosis by hypothesis-free genome-wide studies. However, these genes or genetic variants can only explain a small portion of BMD variation, suggesting that many other genes or genetic variants underlying osteoporosis risk await discovery. Here, we review recent progress in genome-wide studies of osteoporosis and discuss their implications for medicine and the major challenges in the field.
Collapse
Affiliation(s)
- Shuyan Wu
- The Center for System Biomedical Research, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Yangpu district, Shanghai, 200093, China
| | - Yongjun Liu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St, New Orleans, LA 70112, USA
| | - Lei Zhang
- The Center for System Biomedical Research, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Yangpu district, Shanghai, 200093, China ; Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St, New Orleans, LA 70112, USA
| | - Yingying Han
- The Center for System Biomedical Research, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Yangpu district, Shanghai, 200093, China
| | - Yong Lin
- The Center for System Biomedical Research, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Yangpu district, Shanghai, 200093, China
| | - Hong-Wen Deng
- The Center for System Biomedical Research, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Yangpu district, Shanghai, 200093, China ; Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St, New Orleans, LA 70112, USA
| |
Collapse
|
22
|
Lu C, Zhu W, Shen CL, Gao W. Green tea polyphenols reduce body weight in rats by modulating obesity-related genes. PLoS One 2012; 7:e38332. [PMID: 22715380 PMCID: PMC3371013 DOI: 10.1371/journal.pone.0038332] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/03/2012] [Indexed: 12/16/2022] Open
Abstract
Beneficial effects of green tea polyphenols (GTP) against obesity have been reported, however, the mechanism of this protection is not clear. Therefore, the objective of this study was to identify GTP-targeted genes in obesity using the high-fat-diet-induced obese rat model. A total of three groups (n = 12/group) of Sprague Dawley (SD) female rats were tested, including the control group (rats fed with low-fat diet), the HF group (rats fed with high-fat diet), and the HF+GTP group (rats fed with high-fat diet and GTP in drinking water). The HF group increased body weight as compared to the control group. Supplementation of GTP in the drinking water in the HF+GTP group reduced body weight as compared to the HF group. RNA from liver samples was extracted for gene expression analysis. A total of eighty-four genes related to obesity were analyzed using PCR array. Compared to the rats in the control group, the rats in the HF group had the expression levels of 12 genes with significant changes, including 3 orexigenic genes (Agrp, Ghrl, and Nr3c1); 7 anorectic genes (Apoa4, Cntf, Ghr, IL-1β, Ins1, Lepr, and Sort); and 2 genes that relate to energy expenditure (Adcyap1r1 and Adrb1). Intriguingly, the HF+GTP group restored the expression levels of these genes in the high-fat-induced obese rats. The protein expression levels of IL-1β and IL-6 in the serum samples from the control, HF, and HF+GTP groups confirmed the results of gene expression. Furthermore, the protein expression levels of superoxide dismutase-1 (SOD1) and catechol-O-methyltransferase (COMT) also showed GTP-regulated protective changes in this obese rat model. Collectively, this study revealed the beneficial effects of GTP on body weight via regulating obesity-related genes, anti-inflammation, anti-oxidant capacity, and estrogen-related actions in high-fat-induced obese rats.
Collapse
Affiliation(s)
- Chuanwen Lu
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Wenbin Zhu
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
23
|
Chemotherapeutic sensitization of leptomycin B resistant lung cancer cells by pretreatment with doxorubicin. PLoS One 2012; 7:e32895. [PMID: 22412944 PMCID: PMC3296751 DOI: 10.1371/journal.pone.0032895] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/07/2012] [Indexed: 12/26/2022] Open
Abstract
The development of novel targeted therapies has become an important research focus for lung cancer treatment. Our previous study has shown leptomycin B (LMB) significantly inhibited proliferation of lung cancer cells; however, p53 wild type lung cancer cells were resistant to LMB. Therefore, the objective of this study was to develop and evaluate a novel therapeutic strategy to sensitize LMB-resistant lung cancer cells by combining LMB and doxorubicin (DOX). Among the different treatment regimens, pretreatment with DOX (pre-DOX) and subsequent treatment with LMB to A549 cells significantly decreased the 50% inhibitory concentration (IC50) as compared to that of LMB alone (4.4 nM vs. 10.6 nM, P<0.05). Analysis of cell cycle and apoptosis by flow cytometry further confirmed the cytotoxic data. To investigate molecular mechanisms for this drug combination effects, p53 pathways were analyzed by Western blot, and nuclear proteome was evaluated by two dimensional-difference gel electrophoresis (2D-DIGE) and mass spectrometry. In comparison with control groups, the levels of p53, phospho-p53 (ser15), and p21 proteins were significantly increased while phospho-p53 (Thr55) and survivin were significantly decreased after treatments of pre-DOX and LMB (P<0.05). The 2D-DIGE/MS analysis identified that sequestosome 1 (SQSTM1/p62) had a significant increase in pre-DOX and LMB-treated cells (P<0.05). In conclusion, our results suggest that drug-resistant lung cancer cells with p53 wild type could be sensitized to cell death by scheduled combination treatment of DOX and LMB through activating and restoring p53 as well as potentially other signaling pathway(s) involving sequestosome 1.
Collapse
|
24
|
Green tea and bone health: Evidence from laboratory studies. Pharmacol Res 2011; 64:155-61. [PMID: 21473914 DOI: 10.1016/j.phrs.2011.03.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/23/2011] [Accepted: 03/25/2011] [Indexed: 01/22/2023]
Abstract
Osteoporosis is a major health problem in the elderly. Epidemiological evidence has shown an association between tea consumption and the prevention of bone loss in the elderly population. Ingestion of green tea and green tea bioactive compounds may be beneficial in mitigating bone loss of this population and decreasing their risk of osteoporotic fractures. This review describes the effect of green tea with its bioactive components on bone health with an emphasis on the following: (i) the etiology of osteoporosis, (ii) evidence of osteo-protective impacts of green tea on bone mass and microarchitecture in various bone loss models in which induced by aging, sex hormone deficiency, and chronic inflammation, (iii) discussion of impacts of green tea on bone mass in two obesity models, (iv) observation of short-term green tea supplementation given to postmenopausal women with low bone mass, (v) possible mechanisms for the osteo-protective effects of green tea bioactive compounds, and (vi) a summary and future research direction of green tea and bone health.
Collapse
|