1
|
de Weerth C, Aatsinki AK, Azad MB, Bartol FF, Bode L, Collado MC, Dettmer AM, Field CJ, Guilfoyle M, Hinde K, Korosi A, Lustermans H, Mohd Shukri NH, Moore SE, Pundir S, Rodriguez JM, Slupsky CM, Turner S, van Goudoever JB, Ziomkiewicz A, Beijers R. Human milk: From complex tailored nutrition to bioactive impact on child cognition and behavior. Crit Rev Food Sci Nutr 2022; 63:7945-7982. [PMID: 35352583 DOI: 10.1080/10408398.2022.2053058] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human milk is a highly complex liquid food tailor-made to match an infant's needs. Beyond documented positive effects of breastfeeding on infant and maternal health, there is increasing evidence that milk constituents also impact child neurodevelopment. Non-nutrient milk bioactives would contribute to the (long-term) development of child cognition and behavior, a process termed 'Lactocrine Programming'. In this review we discuss the current state of the field on human milk composition and its links with child cognitive and behavioral development. To promote state-of-the-art methodologies and designs that facilitate data pooling and meta-analytic endeavors, we present detailed recommendations and best practices for future studies. Finally, we determine important scientific gaps that need to be filled to advance the field, and discuss innovative directions for future research. Unveiling the mechanisms underlying the links between human milk and child cognition and behavior will deepen our understanding of the broad functions of this complex liquid food, as well as provide necessary information for designing future interventions.
Collapse
Affiliation(s)
- Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Anna-Katariina Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Meghan B Azad
- Department of Pediatrics and Child Health, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frank F Bartol
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, California, USA
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Amanda M Dettmer
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, College of Basic and Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Meagan Guilfoyle
- Department of Anthropology, Indiana University, Bloomington, Indiana, USA
| | - Katie Hinde
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity group, University of Amsterdam, Amsterdam, The Netherlands
| | - Hellen Lustermans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Nurul Husna Mohd Shukri
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sophie E Moore
- Department of Women & Children's Health, King's College London, St Thomas' Hospital, London, UK
- School of Hygiene and Tropical Medicine, Nutrition Theme, MRC Unit The Gambia and the London, Fajara, The GambiaBanjul
| | - Shikha Pundir
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Juan Miguel Rodriguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Carolyn M Slupsky
- Department of Nutrition and Department of Food Science and Technology, University of California, Davis, California, USA
| | - Sarah Turner
- Department of Community Health Sciences, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Johannes B van Goudoever
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Anna Ziomkiewicz
- Department of Anthropology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Roseriet Beijers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
- Department of Social Development, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Pereira AD, Ribeiro DC, Cardoso LMDF, Ribeiro GG, Quintes BDCR, Boueri BFDC, Costa NDS, Chagas M, Silva EMD, da Costa CAS, Velarde LGC, Boaventura GT. Dietary Intake of Flaxseed Oil since Early Stages of Life Promotes Femur Quality in Male Rats. J Am Coll Nutr 2021; 41:462-467. [PMID: 34370629 DOI: 10.1080/07315724.2021.1912673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Flaxseed oil (FO) is an alpha linolenic acid source important for growth and body development. However, there is little literature on the role of FO in critical stages of bone development and formation. OBJECTIVE This study evaluated the influence of a diet containing FO on rat femurs. METHODS After birth, mothers and pups were divided into control and flaxseed groups (n = 6 pups each) fed diets containing 7% soybean oil (C) or 7% FO. At 21 days, pups were weaned and separated from the mothers, and control or experimental diets were continued. At 67 days, the following were analyzed: osteocalcin and osteoprotegerin (OPG) levels, bone mineral density (BMD) and content, and bone area; the dimension, BMD, head radiodensity, and biomechanical proprieties of the right femur; and histomorphometric parameters of the left femur. RESULTS Compared to the C group, the FO group presented (p < 0.05) a lower body mass (-3.7%) and medullary area (-10.1%) and higher osteocalcin (+36.7%), OPG (+52.5%), femur width (+3.8%), absolute mass (+2.3%), femur BMD (+3.6%), head radiodensity (+6.1%), maximum force (+7.4%), breaking strength (+17.3), and cortical thickness (+7.0). CONCLUSION The FO diet contributed to femur quality in healthy male Wistar rats.
Collapse
Affiliation(s)
- Aline D'Avila Pereira
- Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Danielle Cavalcante Ribeiro
- Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | | | - Gabrielle Gracio Ribeiro
- Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Bruna da Costa Rodrigues Quintes
- Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Bianca Ferolla da Camara Boueri
- Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Nathália da Silva Costa
- Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Maurício Chagas
- Laboratory of Cellular and Extracellular Biomorphology, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Eduardo Moreira da Silva
- Analytical Laboratory of Restorative Biomaterials, Dental School, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Carlos Alberto Soares da Costa
- Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,Health and Science Center, Federal University Reconcavo of Bahia, Santo Antonio de Jesus, Bahia, Brazil
| | | | - Gilson Teles Boaventura
- Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
de França Silva RC, de Souza MA, da Silva JYP, Ponciano CDS, Bordin Viera V, de Menezes Santos Bertozzo CC, Guerra GC, de Souza Araújo DF, da Conceição MM, Querino Dias CDC, Oliveira ME, Soares JKB. Evaluation of the effectiveness of macaíba palm seed kernel (Acrocomia intumescens drude) on anxiolytic activity, memory preservation and oxidative stress in the brain of dyslipidemic rats. PLoS One 2021; 16:e0246184. [PMID: 33730037 PMCID: PMC7968719 DOI: 10.1371/journal.pone.0246184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022] Open
Abstract
Macaíba palm seed kernel is a source of lipids and phenolic compounds. The objective of this study was to evaluate the effects of macaíba palm seed kernel on anxiety, memory, and oxidative stress in the brain of health and dyslipidemic rats. Forty rats were used, divided into 4 groups (n = 10 each): control (CONT), dyslipidemic (DG), kernel (KG), and Dyslipidemic kernel (DKG). Dyslipidemia was induced using a high fat emulsion for 14 days before treatment. KG and DKG received 1000 mg/kg of macaíba palm seed kernel per gavage for 28 days. After treatment, anxiety tests were carried out using the Open Field Test (OFT), Elevated Plus Maze (EPM), and the Object Recognition Test (ORT) to assess memory. In the animals’ brain tissue, levels of malondialdehyde (MDA) and total glutathione (GSH) were quantified to determine oxidative stress. The data were treated with Two Way ANOVA followed by Tukey (p <0.05). Results demonstrated that the animals treated with kernel realized more rearing. DG and KG groomed less compared with CONT and DKG compared with all groups in OFT. KG spent more time in aversive open arms compared with CONT and DKG compared with all groups in EPM. Only DKG spent more time in the central area in EMP. KG and DKG showed a reduction in the exploration rate and MDA values (p <0.05). Data showed that macaíba palm seed kernel consumption induced anxiolytic-like behaviour and decreased lipids peroxidation in rats’ brains. On the other hand, this consumption by healthy and dyslipidemic animals compromises memory.
Collapse
|
4
|
Silva-Couto S, Correia-Santos AM, Vicente GC, Castro CLC, Barreto VDLM, Martins JEC, Lenzi Q, Boaventura GT, Chagas MA. Maternal Intake of Flaxseed During Lactation and Exercise Training Protect Against Salt Overload-Induced Aortic Remodeling in Adult Offspring. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2020. [DOI: 10.36660/ijcs.20190165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Parikh M, Maddaford TG, Austria JA, Aliani M, Netticadan T, Pierce GN. Dietary Flaxseed as a Strategy for Improving Human Health. Nutrients 2019; 11:E1171. [PMID: 31130604 PMCID: PMC6567199 DOI: 10.3390/nu11051171] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Flaxseed is a rich source of the omega-3 fatty acid, alpha linolenic acid, the lignan secoisolariciresinol diglucoside and fiber. These compounds provide bioactivity of value to the health of animals and humans through their anti-inflammatory action, anti-oxidative capacity and lipid modulating properties. The characteristics of ingesting flaxseed or its bioactive components are discussed in this article. The benefits of administering flaxseed or the individual bioactive components on health and disease are also discussed in this review. Specifically, the current evidence on the benefits or limitations of dietary flaxseed in a variety of cardiovascular diseases, cancer, gastro-intestinal health and brain development and function, as well as hormonal status in menopausal women, are comprehensive topics for discussion.
Collapse
Affiliation(s)
- Mihir Parikh
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W3, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - Thane G Maddaford
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W3, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - J Alejandro Austria
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W3, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - Michel Aliani
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Department of Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Thomas Netticadan
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W3, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Grant N Pierce
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W3, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| |
Collapse
|
6
|
Queiroz MP, Lima MDS, Barbosa MQ, de Melo MFFT, Bertozzo CCDMS, de Oliveira MEG, Bessa RJB, Alves SPA, Souza MIA, Queiroga RDCRDE, Soares JKB. Effect of Conjugated Linoleic Acid on Memory and Reflex Maturation in Rats Treated During Early Life. Front Neurosci 2019; 13:370. [PMID: 31068778 PMCID: PMC6491851 DOI: 10.3389/fnins.2019.00370] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/01/2019] [Indexed: 01/04/2023] Open
Abstract
In the critical period of neurodevelopment (gestation and lactation), maternal consumption of essential fatty acids (FAs) can alter the offspring cognitive function permanently causing damage. Lipids can regulate neurotrophin and compose brain tissue. However, the effects of maternal consumption of a mixture of conjugated linoleic acid (CLA) on an offspring nervous system are not completely clear. We aimed to investigate the impacts of different CLA concentrations mixed into the maternal diet during early life on neonatal reflex maturation and cognitive functions of the offspring. Three groups were formed: control (CG): receiving a standard diet; CLA1: receiving a diet containing 1% of CLA, and CLA3: receiving a diet containing 3% of CLA, offered during gestation and lactation. After birth, the reflex responses of the offspring were observed from the 1st to the 21st day. After weaning, the animals' anxiety and memory were assessed using open field (OF) and novel object recognition tests. Fatty acids in the breast milk and the offspring's brain were also quantified. The data were analyzed using one-way ANOVA and the Kruskal-Wallis test. CLA1 presented accelerated palmar grasp disappearance versus CLA3 and negative-geotaxis versus CG; and the CLA3 presented increases for most reflexes (cliff-avoidance, vibrissa-placing, negative-geotaxis, and auditory-startle response), and decrease in reflexes palmar grasp and free-fall righting versus CG (p < 0.05). CLA3 group explored less of the OF in the second exposure. CLA1 and CLA3 presented an increased exploration ratio for new objects, which indicates memory improvement. The milk tested from CLA3 demonstrated an increase in polyunsaturated fatty acids (PUFAs), and a decrease in monounsaturated fatty acids. The amount of CLA in milk was greater in CLA1 and CLA3 and in the brain offspring both presented moderated amounts of CLA. Maternal treatment with the CLA mixture induced anticipated reflex maturation and improved memory in the offspring. Even though CLA was detected in the brains in only trace amounts, offspring's brain PUFA and SFA levels were increased. Further studies aimed to delineate the effect of maternal CLA supplementation on offspring's brain lipid metabolism and long-term neurologic outcome are needed to confirm these findings.
Collapse
Affiliation(s)
- Michelly Pires Queiroz
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, Brazil
| | - Martiniano da Silva Lima
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Campina Grande, Brazil
| | - Mayara Queiroga Barbosa
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Campina Grande, Brazil
| | | | | | - Maria Elieidy Gomes de Oliveira
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, Brazil
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Campina Grande, Brazil
| | - Rui José Branquinho Bessa
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Susana Paula Almeida Alves
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Maria Izabel Amaral Souza
- Program in Animal Science, School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, Brazil
| | - Rita de Cassia Ramos do Egypto Queiroga
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, Brazil
- Laboratory of Bromatology, Department of Nutrition, Federal University of Paraíba, João Pessoa, Brazil
| | - Juliana Késsia Barbosa Soares
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, Brazil
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Campina Grande, Brazil
| |
Collapse
|
7
|
Suzuki A, Correia-Santos AM, Vicente GC, Velarde LGC, Boaventura GT. Effects of Maternal Flaxseed Supplementation on Female Offspring of Diabetic Rats in Serum Concentration of Glucose, Insulin, and Thyroid Hormones. INT J VITAM NUTR RES 2019; 89:45-54. [PMID: 30957705 DOI: 10.1024/0300-9831/a000259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective: This study aimed to evaluate the effect of maternal consumption of flaxseed flour and oil on serum concentrations of glucose, insulin, and thyroid hormones of the adult female offspring of diabetic rats. Methods: Wistar rats were induced to diabetes by a high-fat diet (60%) and streptozotocin (35 mg/kg). Rats were mated and once pregnancy was confirmed, were divided into the following groups: Control Group (CG): casein-based diet; High-fat Group (HG): high-fat diet (49%); High-fat Flaxseed Group (HFG): high-fat diet supplemented with 25% flaxseed flour; High-fat Flaxseed Oil group (HOG): high-fat diet, where soya oil was replaced with flaxseed oil. After weaning, female pups (n = 6) from each group were separated, received a commercial rat diet and were sacrificed after 180 days. Serum insulin concentrations were determined by ELISA, the levels of triiodothyronine (T3), thyroxine (T4) and thyroid-stimulating hormone (TSH) were determined by chemiluminescence. Results: There was a significant reduction in body weight at weaning in HG (-31%), HFG (-33%) and HOG (44%) compared to CG (p = 0.002), which became similar by the end of 180 days. Blood glucose levels were reduced in HFG (-10%, p = 0.044) when compared to CG, and there was no significant difference between groups in relation to insulin, T3, T4, and TSH after 180 days. Conclusions: Maternal severe hyperglycemia during pregnancy and lactation resulted in a microsomal offspring. Maternal consumption of flaxseed reduces blood glucose levels in adult offspring without significant effects on insulin levels and thyroid hormones.
Collapse
Affiliation(s)
- Akemi Suzuki
- 1Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Rio de Janeiro, Brazil
| | - André Manoel Correia-Santos
- 1Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Gabriela Câmara Vicente
- 1Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Luiz Guillermo Coca Velarde
- 1Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Gilson Teles Boaventura
- 1Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
de Melo MFFT, Pereira DE, Moura RDL, da Silva EB, de Melo FALT, Dias CDCQ, Silva MDCA, de Oliveira MEG, Viera VB, Pintado MME, Dos Santos SG, Soares JKB. Maternal Supplementation With Avocado ( Persea americana Mill.) Pulp and Oil Alters Reflex Maturation, Physical Development, and Offspring Memory in Rats. Front Neurosci 2019; 13:9. [PMID: 30728763 PMCID: PMC6351466 DOI: 10.3389/fnins.2019.00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Avocado (Persea americana Mill.) is an oleaginous fruit source of fatty acids with high levels of neuroprotective phytocomplexes. The objective of this study was to evaluate the development of reflex and somatic maturation, fatty acid profiles in the brain, and memory in different stages of life in the offspring of dams supplemented with avocado pulp and oil during gestation and lactation. The dams were randomly divided into three groups (n = 15 pups/group), and recieved by gavage supplementation: control group (CG)-distilled water; Avocado Oil (AO)-3,000 mg avocado oil/kg animal weight, and Avocado Pulp (AP)-3,000 mg avocado pulp/kg animal weight. We performed the following tests: Analysis of Somatic Development and Ontogeny of Postnatal Reflex (T0 to T21), the Open Field Habituation Test and the Object Recognition Test (ORT) in the adolescent (T45) and adult (T90) phases. The cerebral fatty acids content was evaluated at times T0, T21, T45, and T90. The results were analyzed using the statistical program GraphPad Prism and significant statistics were considered when p < 0.05. Acceleration of reflex maturation and reflex ontogeny was observed in the offspring of AO and AP fed dams, with the results being more pronounced in the pulp fed group (p < 0.05). All groups presented a decrease in the ambulation parameter in the second exposure to the Open Field Habituation Test, at T45 and T90 (p < 0.05). In the ORT, the AO and AP offspring presented memory improvements in the short and long term in the adult and adolescent phases (p < 0.05). The results of the brain fatty acid profiles presented higher polyunsaturated fatty acids (PUFA) content in the AO and AP groups at T21, T45, and T90. The docosahexaenoic fatty acid (DHA) content was higher at T21 (AO and AP), at T45 (AO and AP), and at T90 (AP) (p < 0.05). The arachidonic acid (ARA) content was higher at T45 (AO and AP), and at T90 (AO) (p < 0.05). Maternal supplementation with avocado oil and pulp anticipates reflex maturation and somatic postnatal development, and improves memory during the adolescent and adult phases.
Collapse
Affiliation(s)
- Marilia Ferreira Frazão Tavares de Melo
- Program of Food Science and Tecnology, Universidade Federal da Paraíba, João Pessoa, Brazil.,Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | - Diego Elias Pereira
- Program of Food Science and Tecnology, Universidade Federal da Paraíba, João Pessoa, Brazil.,Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | - Renally de Lima Moura
- Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | - Elisiane Beatriz da Silva
- Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | | | - Celina de Castro Querino Dias
- Program of Food Science and Tecnology, Universidade Federal da Paraíba, João Pessoa, Brazil.,Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | - Maciel da Costa Alves Silva
- Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | - Maria Elieidy Gomes de Oliveira
- Program of Food Science and Tecnology, Universidade Federal da Paraíba, João Pessoa, Brazil.,Laboratory of Bromatology, Department of Nutrition, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Vanessa Bordin Viera
- Laboratory of Bromatology, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | | | | | - Juliana Késsia Barbosa Soares
- Program of Food Science and Tecnology, Universidade Federal da Paraíba, João Pessoa, Brazil.,Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| |
Collapse
|
9
|
Correia-Santos AM, Vicente GC, Boaventura GT. Functional implications of maternal intake of flaxseed and its by-products during pregnancy and lactation on offspring. ACTA ACUST UNITED AC 2017. [DOI: 10.1108/nfs-03-2017-0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The purpose of this review of the literature is to provide data about flaxseed intake during pregnancy and/or lactation and its effects in the offspring from birth to adulthood.
Design/methodology/approach
This review includes up-to-date information from evidence-based sources on flaxseed intake and its by-products, during pregnancy and lactation and its effects on male and female offspring, from post-weaning until adulthood. Topics included are effects on body mass; glycaemic metabolism; lipid profile; blood pressure and aortic structure; reproductive system and brain tissue.
Findings
The main effects of flaxseed or its by-products were observed in the cardiovascular system, where a lipid profile improvement and minor aortic remodelling were noticed, and in the cerebral development, where greater n-3 PUFA incorporation in the brain was detected.
Originality/value
The research done in this study, to understand the offspring response that were early exposed to the flaxseed components during pregnancy and lactation, may be the first step toward guiding future strategies for recommending the use of this seed during the offspring’s perinatal period.
Collapse
|
10
|
de Melo MFFT, Pereira DE, Sousa MM, Medeiros DMF, Lemos LTM, Madruga MS, Santos NM, de Oliveira MEG, de Menezes CC, Soares JKB. Maternal intake of cashew nuts accelerates reflex maturation and facilitates memory in the offspring. Int J Dev Neurosci 2017; 61:58-67. [PMID: 28663041 DOI: 10.1016/j.ijdevneu.2017.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/24/2017] [Indexed: 12/19/2022] Open
Abstract
Essential fatty acids, being indispensable during the stages of pregnancy, lactation and infancy influence the transmission of nerve impulses and brain function, and cashew nuts are a good source of these fatty acids. The objective of this study was to evaluate the effects of cashew nut consumption on reflex development, memory and profile of fatty acids of rat offspring treated during pregnancy and lactation. The animals were divided into three groups: Control (CONT), treated with 7% lipid derived from soybean oil; Normolipidic (NL) treated with 7% lipids derived from cashew nuts; and Hyperlipidic (HL) treated with 20% lipids derived from cashew nuts. Reflex ontogeny, Open-field habituation test and the Object Recognition Test (ORT) were assessed. The profile of fatty acids in the brain was carried out when the animals were zero, 21 and 60days old. Accelerated reflex maturation was observed in animals treated with cashew nuts (p<0.05). NL presented better memory in the Open-field habituation test; the NL and HL showed improvement of short-term memory in the ORT, but long term damage in HL (p<0.05). The results of the lipid profile of the brain at the end of the experiment showed an increase in levels of saturated fatty acids and less Docosahexaenoic acid (DHA) in animals of the HL. The data showed that maternal consumption of cashew nuts can accelerate reflex maturation and facilitate memory in offspring when offered in adequate quantities.
Collapse
Affiliation(s)
| | - Diego Elias Pereira
- Laboratory of Experimental Nutrition, Federal University of Campina Grande, Paraíba, Brazil.
| | - Morgana Moura Sousa
- Laboratory of Experimental Nutrition, Federal University of Campina Grande, Paraíba, Brazil.
| | | | | | - Marta Suely Madruga
- Department of Food Engineering, Federal University of Paraíba, Paraíba, Brazil.
| | - Nayane Medeiros Santos
- Laboratory of Experimental Nutrition, Federal University of Campina Grande, Paraíba, Brazil.
| | | | | | | |
Collapse
|
11
|
Huang KL, Zhang ML, Ma GJ, Wu H, Wu XM, Ren F, Li XB. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. PLoS One 2017; 12:e0179027. [PMID: 28594951 PMCID: PMC5464616 DOI: 10.1371/journal.pone.0179027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
Seed oil content is an important agronomic trait in oilseed rape. However, the molecular mechanism of oil accumulation in rapeseeds is unclear so far. In this report, RNA sequencing technique (RNA-Seq) was performed to explore differentially expressed genes in siliques of two Brassica napus lines (HFA and LFA which contain high and low oil contents in seeds, respectively) at 15 and 25 days after pollination (DAP). The RNA-Seq results showed that 65746 and 66033 genes were detected in siliques of low oil content line at 15 and 25 DAP, and 65236 and 65211 genes were detected in siliques of high oil content line at 15 and 25 DAP, respectively. By comparative analysis, the differentially expressed genes (DEGs) were identified in siliques of these lines. The DEGs were involved in multiple pathways, including metabolic pathways, biosynthesis of secondary metabolic, photosynthesis, pyruvate metabolism, fatty metabolism, glycophospholipid metabolism, and DNA binding. Also, DEGs were related to photosynthesis, starch and sugar metabolism, pyruvate metabolism, and lipid metabolism at different developmental stage, resulting in the differential oil accumulation in seeds. Furthermore, RNA-Seq and qRT-PCR data revealed that some transcription factors positively regulate seed oil content. Thus, our data provide the valuable information for further exploring the molecular mechanism of lipid biosynthesis and oil accumulation in B. nupus.
Collapse
Affiliation(s)
- Ke-Lin Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Mei-Li Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Guang-Jing Ma
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Huan Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xiao-Ming Wu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- * E-mail: (XBL); (FR)
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- * E-mail: (XBL); (FR)
| |
Collapse
|
12
|
Maternal Flaxseed Oil During Lactation Enhances Bone Development in Male Rat Pups. Lipids 2016; 51:923-9. [DOI: 10.1007/s11745-016-4165-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
|
13
|
Yu X, Chen W, Wei Z, Ren T, Yang X, Yu X. Effects of maternal mild zinc deficiency and different ways of zinc supplementation for offspring on learning and memory. Food Nutr Res 2016; 60:29467. [PMID: 26829185 PMCID: PMC4734033 DOI: 10.3402/fnr.v60.29467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 01/13/2023] Open
Abstract
Background The effect of different ways of zinc supplementation on spatial learning and memory remains unclear. Objectives This study aims to assess the effectiveness of two ways of zinc supplementation – oral use and intravenous transfusion – in zinc-deficient offspring rats on learning and memory. Design Rats were randomly divided into six groups on the first day of pregnancy (n=12): control (CO), pair fed (PF), zinc deprived (ZD), oral zinc supplementation (OZS), injection zinc supplementation (IZS), and injection control. The offspring's spatial learning and memory were tested at postnatal day 35 using Morris water maze (MWM). Maternal rats’ serum zinc was measured at postnatal day 21, while pups’ serum zinc was measured at postnatal day 35. Results Compared with the CO and PF groups, pups in ZD group spent more time finding the latent platform and swam longer distances (p<0.05). Compared with ZD groups, pups in OZS group significantly decreased the time used for finding the platform and the swimming distance (p<0.05) and were similar to that of CO and PF groups (p>0.05). However, compared with ZD groups, pups in IZS did not show any improvement in the indexes of MWM (p>0.05) although their zinc serum concentration increased significantly (p<0.05). Conclusions These results indicate that mild zinc deficiency during pregnancy and lactation leads to the impairment of learning and memory function in offspring, and that OZS, instead of intravenous transfusion zinc supplementation, can recover the impairment of spatial learning and memory function.
Collapse
Affiliation(s)
- Xiaogang Yu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Chen
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenzhen Wei
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Ren
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Yang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodan Yu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China;
| |
Collapse
|
14
|
Interesterified fat or palm oil as substitutes for partially hydrogenated fat during the perinatal period produces changes in the brain fatty acids profile and increases leukocyte–endothelial interactions in the cerebral microcirculation from the male offspring in adult life. Brain Res 2015; 1616:123-33. [DOI: 10.1016/j.brainres.2015.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 01/12/2023]
|
15
|
Mucci DDB, Fernandes FS, Souza ADS, Sardinha FLDC, Soares-Mota M, Tavares do Carmo MDG. Flaxseed mitigates brain mass loss, improving motor hyperactivity and spatial memory, in a rodent model of neonatal hypoxic-ischemic encephalopathy. Prostaglandins Leukot Essent Fatty Acids 2015; 97:13-9. [PMID: 25865679 DOI: 10.1016/j.plefa.2015.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/15/2015] [Accepted: 03/20/2015] [Indexed: 11/17/2022]
Abstract
Neonatal hypoxic-ischemic (HI) encephalopathy is a major cause of perinatal morbimortality. There is growing evidence that n-3 polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), attenuate brain injury. This study aimed to investigate the possible neuroprotective effect of maternal intake of flaxseed, rich in DHA׳s precursor α-linolenic acid, in the young male offspring subjected to perinatal HI. Wistar rats were divided in six groups, according to maternal diet and offspring treatment at day 7: Control HI (CHI) and Flaxseed HI (FHI); Control Sham and Flaxseed Sham; Control Control and Flaxseed Control. Flaxseed diet increased offspring׳s hippocampal DHA content and lowered depressive behavior. CHI pups presented brain mass loss, motor hyperactivity and poor spatial memory, which were improved in FHI rats. Maternal flaxseed intake may prevent depressive symptoms in the offspring and promote neuroprotective effects, in the context of perinatal HI, improving brain injury and its cognitive and behavioral impairments.
Collapse
Affiliation(s)
- Daniela de Barros Mucci
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro. Rio de Janeiro , RJ, Brazil
| | - Flávia Spreafico Fernandes
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro. Rio de Janeiro , RJ, Brazil
| | - Amanda Dos Santos Souza
- Laboratório de Farmacologia da Neuroplasticidade e do Comportamento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil
| | - Fátima Lúcia de Carvalho Sardinha
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro. Rio de Janeiro , RJ, Brazil
| | - Márcia Soares-Mota
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro. Rio de Janeiro , RJ, Brazil
| | - Maria das Graças Tavares do Carmo
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro. Rio de Janeiro , RJ, Brazil.
| |
Collapse
|
16
|
Abstract
Neurotransmitter gamma-aminobutiric acid (GABA) through ionotropic GABAA and metabotropic GABAB receptors plays key roles in modulating the development, plasticity and function of neuronal networks. GABA is inhibitory in mature neurons but excitatory in immature neurons, neuroblasts and neural stem/progenitor cells (NSCs/NPCs). The switch from excitatory to inhibitory occurs following the development of glutamatergic synaptic input and results from the dynamic changes in the expression of Na+/K+/2Cl- co-transporter NKCC1 driving Cl- influx and neuron-specific K+/Cl- co-transporter KCC2 driving Cl- efflux. The developmental transition of KCC2 expression is regulated by Disrupted-in-Schizophrenia 1 (DISC1) and brain-derived neurotrophic factor (BDNF) signaling. The excitatory GABA signaling during early neurogenesis is important to the activity/experience-induced regulation of NSC quiescence, NPC proliferation, neuroblast migration and newborn neuronal maturation/functional integration. The inhibitory GABA signaling allows for the sparse and static functional networking essential for learning/memory development and maintenance.
Collapse
Affiliation(s)
- Adalto Pontes
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA ; Universidade do Estado do Pará, Santarém, PA, Brasil
| | | | | |
Collapse
|
17
|
Yu X, Jin L, Zhang X, Yu X. Effects of maternal mild zinc deficiency and zinc supplementation in offspring on spatial memory and hippocampal neuronal ultrastructural changes. Nutrition 2013; 29:457-61. [PMID: 23312766 DOI: 10.1016/j.nut.2012.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Knowledge about the hippocampal morphologic mechanisms of learning and memory for maternal mild zinc deficiency during pregnancy/lactation followed by zinc supplementation of pups after weaning is limited. This study examined the effects of zinc deficiency and zinc supplementation on cognition and hippocampal neurons. METHODS One-day pregnant rats were randomly divided into four groups (n = 12): control (CO), pair-fed (PF), zinc-deprived (ZD), and oral zinc-supplemented (OZS). The CO and PF groups were fed a control diet (zinc 25 μg/g diet), and the others were fed a mildly zinc-deficient diet (zinc 2 μg/g diet) during pregnancy and lactation. After weaning (day 21), offspring in the OZS group were switched to a control diet. After 35 d, the behavioral function of the offspring was tested with the Morris water maze test. The ultrastructure of the hippocampal CA3 area was observed under a transmission electron microscope. RESULTS Compared with the CO and PF groups, rats in the ZD group spent more time finding the latent platform and swam longer distances (P < 0.05). The time used finding the platform and the swimming distance in the OZS group were similar to those in the CO and PF groups (P > 0.05). In addition, apoptotic neuronal changes in the hippocampus were observed in the ZD group, whereas the reversal of neuronal morphologic changes was observed in the OZS group. CONCLUSION The changes in hippocampal neuron morphology were consistent with the changes in the learning and memory ability of mildly zinc-deficient and zinc-supplemented offspring.
Collapse
Affiliation(s)
- XiaoDan Yu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Institute for Pediatric Research, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | | | | | |
Collapse
|
18
|
Rombaldi Bernardi J, de Souza Escobar R, Ferreira CF, Pelufo Silveira P. Fetal and neonatal levels of omega-3: effects on neurodevelopment, nutrition, and growth. ScientificWorldJournal 2012; 2012:202473. [PMID: 23125553 PMCID: PMC3483668 DOI: 10.1100/2012/202473] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/19/2012] [Indexed: 01/08/2023] Open
Abstract
Nutrition in pregnancy, during lactation, childhood, and later stages has a fundamental influence on overall development. There is a growing research interest on the role of key dietary nutrients in fetal health. Omega-3 polyunsaturated fatty acids (n-3 LCPUFAs) play an important role in brain development and function. Evidence from animal models of dietary n-3 LCPUFAs deficiency suggests that these fatty acids promote early brain development and regulate behavioral and neurochemical aspects related to mood disorders (stress responses, depression, and aggression and growth, memory, and cognitive functions). Preclinical and clinical studies suggest the role of n-3 LCPUFAs on neurodevelopment and growth. n-3 LCPUFAs may be an effective adjunctive factor for neural development, growth, and cognitive development, but further large-scale, well-controlled trials and preclinical studies are needed to examine its clinical mechanisms and possible benefits. The present paper discusses the use of n-3 LCPUFAs during different developmental stages and the investigation of different sources of consumption. The paper summarizes the role of n-3 LCPUFAs levels during critical periods and their effects on the children's neurodevelopment, nutrition, and growth.
Collapse
Affiliation(s)
- Juliana Rombaldi Bernardi
- Núcleo de Estudos da Saúde da Criança e do Adolescente, Hospital de Clínicas de Porto Alegre-HCPA, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
19
|
Kavraal S, Oncu SK, Bitiktas S, Artis AS, Dolu N, Gunes T, Suer C. Maternal intake of Omega-3 essential fatty acids improves long term potentiation in the dentate gyrus and Morris water maze performance in rats. Brain Res 2012; 1482:32-9. [DOI: 10.1016/j.brainres.2012.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/03/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
|
20
|
Implications of dietary α-linolenic acid in bone health. Nutrition 2011; 27:1101-7. [DOI: 10.1016/j.nut.2011.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 11/24/2022]
|