1
|
Coto-Montes A, González-Blanco L, Antuña E, Menéndez-Valle I, Bermejo-Millo JC, Caballero B, Vega-Naredo I, Potes Y. The Interactome in the Evolution From Frailty to Sarcopenic Dependence. Front Cell Dev Biol 2021; 9:792825. [PMID: 34926470 PMCID: PMC8675940 DOI: 10.3389/fcell.2021.792825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/11/2021] [Indexed: 12/01/2022] Open
Abstract
Biomarkers are essential tools for accurate diagnosis and effective prevention, but their validation is a pending challenge that limits their usefulness, even more so with constructs as complex as frailty. Sarcopenia shares multiple mechanisms with frailty which makes it a strong candidate to provide robust frailty biomarkers. Based on this premise, we studied the temporal evolution of cellular interactome in frailty, from independent patients to dependent ones. Overweight is a recognized cause of frailty in aging, so we studied the altered mechanisms in overweight independent elderly and evaluated their aggravation in dependent elderly. This evidence of the evolution of previously altered mechanisms would significantly support their role as real biomarkers of frailty. The results showed a preponderant role of autophagy in interactome control at both different functional points, modulating other essential mechanisms in the cell, such as mitochondrial capacity or oxidative stress. Thus, the overweight provoked in the muscle of the elderly an overload of autophagy that kept cell survival in apparently healthy individuals. This excessive and permanent autophagic effort did not seem to be able to be maintained over time. Indeed, in dependent elderly, the muscle showed a total autophagic inactivity, with devastating effects on the survival of the cell, which showed clear signs of apoptosis, and reduced functional capacity. The frail elderly are in a situation of weakness that is a precursor of dependence that can still be prevented if detection is early. Hence biomarkers are essential in this context.
Collapse
Affiliation(s)
- Ana Coto-Montes
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Laura González-Blanco
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Spain
| | - Eduardo Antuña
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Iván Menéndez-Valle
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Juan Carlos Bermejo-Millo
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Beatriz Caballero
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Ignacio Vega-Naredo
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Yaiza Potes
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
2
|
Cayli S, Alimogullari E, Piskin I, Bilginoglu A, Nakkas H. Effect of pioglitazone on the expression of ubiquitin proteasome system and autophagic proteins in rat pancreas with metabolic syndrome. J Mol Histol 2021; 52:929-942. [PMID: 34410563 DOI: 10.1007/s10735-021-10013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
The metabolic syndrome (MetS) and pathologies associated with metabolic dysregulations a worldwide growing problem. Our previous study demonstrated that pioglitazone (PGZ) has beneficial effects on metabolic syndrome associated disturbances in the heart. However, mechanism mediating the molecular alterations of Ubiquitin proteasome system (UPS) and autophagy has not been investigated in rat pancreas with metabolic syndrome. For this reason, we first aimed to detect whether MetS effects on the expression of UPS (p97/VCP, SVIP, Ubiquitin) and autophagic (p62, LC3) proteins in rat pancreas. The second aim of the study was to find impact of pioglitazone on the expression of UPS and autophagic proteins in MetS rat pancreas. To answer these questions, metabolic syndrome induced rats were used as a model and treated with pioglitazone for 2 weeks. Pancreatic tissue injuries, fibrosis and lipid accumulation were evaluated histopathologically in control, MetS and MetS-PGZ groups. Apoptosis and cell proliferation of pancreatic islet cells were assessed in all groups. UPS and autophagic protein expressions of pancreas in all groups were detected by using immunohistochemistry, double-immunfluorescence and Western blotting. Compared with the controls, the rat fed with high sucrose exhibited signs of metabolic syndrome, such as higher body weight, insulin resistance, higher triglyceride level and hyperglycaemia. MetS rats showed pancreatic tissue degeneration, fibrosis and lipid accumulation when their pancreas were examined with Hematoxilen-eozin and Mallory trichrome staining. Metabolic, histopathologic parameters and cell proliferation showed greater improvement in MetS-PGZ rats and pioglitazone decreased apoptosis of islet cells. Moreover, SVIP, ubiquitin, LC3 and p62 expressions were significantly increased while only p97/VCP expression was significantly decreased in MetS-rat pancreas compared to control. PGZ treatment significantly decreased the MetS-induced increases in autophagy markers. Additionally, UPS and autophagy markers were found to colocalizated with insulin and glucagon. Colocalization ratio of UPS markers with insulin showed significant decrease in MetS rats and PGZ increased this ratio, whereas LC3-insulin colocalization displayed significant increase in MetS rats and PGZ reversed this effect. In conclusion, PGZ improved the pancreatic tissue degeneration by increasing the level of p97/VCP and decreasing autophagic proteins, SVIP and ubiquitin expressions in MetS-rats. Moreover, PGZ has an effect on the colocalization ratio of UPS and autophagy markers with insulin.
Collapse
Affiliation(s)
- Sevil Cayli
- Department of Histology and Embryology, Medical Faculty, Ankara Yıldırım Beyazıt University, 06800, Ankara, Turkey.
| | - Ebru Alimogullari
- Department of Histology and Embryology, Medical Faculty, Ankara Yıldırım Beyazıt University, 06800, Ankara, Turkey
| | - Ilkay Piskin
- Department of Histology and Embryology, Medical Faculty, Ankara Yıldırım Beyazıt University, 06800, Ankara, Turkey
| | - Ayca Bilginoglu
- Department of Biophysics, Medical Faculty, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Hilal Nakkas
- Department of Histology and Embryology, Medical Faculty, Ankara Yıldırım Beyazıt University, 06800, Ankara, Turkey
| |
Collapse
|
3
|
Wiedmer P, Jung T, Castro JP, Pomatto LC, Sun PY, Davies KJ, Grune T. Sarcopenia - Molecular mechanisms and open questions. Ageing Res Rev 2021; 65:101200. [PMID: 33130247 DOI: 10.1016/j.arr.2020.101200] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Sarcopenia represents a muscle-wasting syndrome characterized by progressive and generalized degenerative loss of skeletal muscle mass, quality, and strength occurring during normal aging. Sarcopenia patients are mainly suffering from the loss in muscle strength and are faced with mobility disorders reducing their quality of life and are, therefore, at higher risk for morbidity (falls, bone fracture, metabolic diseases) and mortality. Several molecular mechanisms have been described as causes for sarcopenia that refer to very different levels of muscle physiology. These mechanisms cover e. g. function of hormones (e. g. IGF-1 and Insulin), muscle fiber composition and neuromuscular drive, myo-satellite cell potential to differentiate and proliferate, inflammatory pathways as well as intracellular mechanisms in the processes of proteostasis and mitochondrial function. In this review, we describe sarcopenia as a muscle-wasting syndrome distinct from other atrophic diseases and summarize the current view on molecular causes of sarcopenia development as well as open questions provoking further research efforts for establishing efficient lifestyle and therapeutic interventions.
Collapse
|
4
|
Characterization of PMI-5011 on the Regulation of Deubiquitinating Enzyme Activity in Multiple Myeloma Cell Extracts. Biochem Eng J 2020; 166. [PMID: 33716550 DOI: 10.1016/j.bej.2020.107834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deubiquitinating enzyme (DUB)-targeted therapeutics have shown promise in recent years as alternative cancer therapeutics, especially when coupled with proteasome-based inhibitors. While a majority of DUB-based therapeutics function by inhibiting DUB enzymes, studies show that positive regulation of these enzymes can stabilize levels of protein degradation. Unfortunately, there are currently no clinically available therapeutics for this purpose. The goal of this work was to understand the effect of a botanical extract from Artemisia dracunculus L called PMI-5011 on DUB activity in cancer cells. Through a series of kinetic analyses and mathematical modeling, it was found that PMI-5011 positively regulated DUB activity in two model multiple myeloma cells line (OPM2 and MM.1S). This suggests that PMI-5011 interacts with the active domains of DUBs to enhance their activity directly or indirectly, without apparently affecting cellular viability. Similar kinetic profiles of DUB activity were observed with three bioactive compounds in PMI-5011 (DMC-1, DMC-2, davidigenin). Interestingly, a differential cell line-independent trend was observed at higher concentrations which suggested variances in inherent gene expressions of UCHL1, UCHL5, USP7, USP15, USP14, and Rpn11 in OPM2 and MM.1S cell lines. These findings highlight the therapeutic potential of PMI-5011 and its selected bioactive compounds in cancer.
Collapse
|
5
|
Shen S, Yu H, Gan L, Ye Y, Lin L. Natural constituents from food sources: potential therapeutic agents against muscle wasting. Food Funct 2019; 10:6967-6986. [PMID: 31599912 DOI: 10.1039/c9fo00912d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle wasting is highly correlated with not only reduced quality of life but also higher morbidity and mortality. Although an increasing number of patients are suffering from various kinds of muscle atrophy and weakness, there is still no effective therapy available, and skeletal muscle is considered as an under-medicated organ. Food provided not only essential macronutrients but also functional substances involved in the modulation of the physiological systems of our body. Natural constituents from commonly consumed dietary plants, either extracts or compounds, have attracted more and more attention to be developed as agents for preventing and treating muscle wasting due to their safety and effectiveness, as well as structural diversity. This review provides an overview of the mechanistic aspects of muscle wasting, and summarizes the extracts and compounds from food sources as potential therapeutic agents against muscle wasting.
Collapse
Affiliation(s)
- Shengnan Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Lishe Gan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
6
|
Oh SL, Lee SR, Kim JS. Effects of conjugated linoleic acid/n-3 and resistance training on muscle quality and expression of atrophy-related ubiquitin ligases in middle-aged mice with high-fat diet-induced obesity. J Exerc Nutrition Biochem 2017; 21:11-18. [PMID: 29036761 PMCID: PMC5643205 DOI: 10.20463/jenb.2017.0028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/31/2017] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To investigate the effects of conjugated linoleic acid (CLA)/n-3 supplements and resistance exercise training (RT) for 20 weeks on muscle quality and genes related to protein synthesis/degradation in middle-aged mice with high-fat diet (HFD)-induced obesity. METHODS Nine-month-old C57BL/6 male mice were randomly assigned to five groups: 1) normal diet (C), 2) high-fat diet (H), 3) H+RT (HRT), 4) H+CLA/n-3 (H-CN), and 5) H+RT+CLA/n-3 (H-RTCN). HFD groups were given a diet containing 60% fat for 20 weeks, and exercised groups underwent progressive RT using weighted ladder climbing. The CLA/n-3 mixed diet contained 1% CLA and 1% n-3. Grip strength was assessed, and triceps were removed. RT-PCR was used to analyze transcript levels. RESULTS Grip strength of the H group was significantly lower than that of the C group; however, those in the H-CN, H-RT, and H-RTN groups were significantly greater than that in the H group. However, the muscle quality was significantly greater only in the H-RT group compared with the H and H-CN groups. Akt expression decreased in the H-CN, H-RT, and H-RTCN groups compared with those in the C and H groups, whereas mammalian target of rapamycin expression increased in the H, H-CN, H-RT, and H-RTCN groups compared with that in the C group. However, atrogin1 was significantly downregulated in the H-RTCN group compared with that in the H and H-CN groups, and MuRF1 expression was also decreased in the H-RT and H-RTCN groups. Interestingly, atrogin1 and MuRF1 were downregulated in the H-RTCN group compared with that in the H-CN group. CONCLUSION HFD-mediated gene expression involved in protein degradation was attenuated following 20-week RT with CLA/n-3. Furthermore, RT with or without CLA/n-3 improved grip strength and muscle quality in middle-aged mice during HFD. Therefore, RT with CLA/n-3 during HFD may improve muscle strength and quality by suppressing protein degradation.
Collapse
Affiliation(s)
- Seung-Lyul Oh
- Aging & Mobility Biophysics Lab, Dept. of Rehabilitation Medicine, Seoul National University Bundang Hospital, Sungnam, Republic of Korea
| | - Sang-Rok Lee
- Department of Kinesiology and Dance, New Mexico State University, NM United States, USA
| | - Jeong-Su Kim
- Department of Nutrition, Food and Exercise Science, Florida State University, FL United States, USA
| |
Collapse
|
7
|
Potes Y, de Luxán-Delgado B, Rodriguez-González S, Guimarães MRM, Solano JJ, Fernández-Fernández M, Bermúdez M, Boga JA, Vega-Naredo I, Coto-Montes A. Overweight in elderly people induces impaired autophagy in skeletal muscle. Free Radic Biol Med 2017; 110:31-41. [PMID: 28549989 DOI: 10.1016/j.freeradbiomed.2017.05.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/11/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
Sarcopenia is the gradual loss of skeletal muscle mass, strength and quality associated with aging. Changes in body composition, especially in skeletal muscle and fat mass are crucial steps in the development of chronic diseases. We studied the effect of overweight on skeletal muscle tissue in elderly people without reaching obesity to prevent this extreme situation. Overweight induces a progressive protein breakdown reflected as a progressive withdrawal of anabolism against the promoted catabolic state leading to muscle wasting. Protein turnover is regulated by a network of signaling pathways. Muscle damage derived from overweight displayed by oxidative and endoplasmic reticulum (ER) stress induces inflammation and insulin resistance and forces the muscle to increase requirements from autophagy mechanisms. Our findings showed that failure of autophagy in the elderly deprives it to deal with the cell damage caused by overweight. This insufficiently efficient autophagy leads to an accumulation of p62 and NBR1, which are robust markers of protein aggregations. This impaired autophagy affects myogenesis activity. Depletion of myogenic regulatory factors (MRFs) without links to variations in myostatin levels in overweight patients suggest a possible reduction of satellite cells in muscle tissue, which contributes to declined muscle quality. This discovery has important implications that improve the understanding of aged-related atrophy caused by overweight and demonstrates how impaired autophagy is one of the main responsible mechanisms that aggravate muscle wasting. Therefore, autophagy could be an interesting target for therapeutic interventions in humans against muscle impairment diseases.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería s/n, 33006 Oviedo, Asturias, Spain
| | - Beatriz de Luxán-Delgado
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería s/n, 33006 Oviedo, Asturias, Spain
| | - Susana Rodriguez-González
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería s/n, 33006 Oviedo, Asturias, Spain
| | - Marcela Rodrigues Moreira Guimarães
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería s/n, 33006 Oviedo, Asturias, Spain; Laboratory of Nutritional Investigation and Degenerative-Chronic Diseases (LINDCD), Federal University of Rio de Janeiro, Xavier Sigaud Street, 290, 22290-240 Rio de Janeiro City, Rio de Janeiro State, Brazil
| | - Juan J Solano
- Geriatric Service, Monte Naranco Hospital, Av. Dolores Fernández Vega 107, 33012 Oviedo, Asturias, Spain
| | - María Fernández-Fernández
- Geriatric Service, Monte Naranco Hospital, Av. Dolores Fernández Vega 107, 33012 Oviedo, Asturias, Spain
| | - Manuel Bermúdez
- Geriatric Service, Monte Naranco Hospital, Av. Dolores Fernández Vega 107, 33012 Oviedo, Asturias, Spain
| | - Jose A Boga
- Microbiology Service, Central University Hospital of Asturias, Av. Roma s/n, 33011 Oviedo, Asturias, Spain
| | - Ignacio Vega-Naredo
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería s/n, 33006 Oviedo, Asturias, Spain; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, 3004-517 Cantanhede, Portugal
| | - Ana Coto-Montes
- Department of Cell Biology and Morphology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería s/n, 33006 Oviedo, Asturias, Spain.
| |
Collapse
|
8
|
Botanicals and translational medicine: a paradigm shift in research approach. Nutrition 2014; 30:S1-3. [PMID: 24985098 DOI: 10.1016/j.nut.2014.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/10/2014] [Indexed: 11/24/2022]
|