1
|
Ćorković I, Pichler A, Šimunović J, Kopjar M. A Comprehensive Review on Polyphenols of White Wine: Impact on Wine Quality and Potential Health Benefits. Molecules 2024; 29:5074. [PMID: 39519715 PMCID: PMC11547695 DOI: 10.3390/molecules29215074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Polyphenols are associated with various beneficial health effects. These compounds are present in edible plants such as fruits and vegetables, and the human body absorbs them through the consumption of foods and beverages. Wine is recognized as a rich source of these valuable compounds, and it has been well established that polyphenols present in red wine possess numerous biologically active functions related to health promotion. Therefore, most scientific research has been focused on red wine polyphenols, whereas white wine polyphenols have been neglected. This review presents the summarized information about the most abundant polyphenols in white wines, their concentration, their impact on wine quality and their potential health effects, such as neuroprotective and cardioprotective activities, antioxidant potential, antimicrobial activity and their positive effects on lipids. These findings are an effort to help compensate for the relative lack of relevant data in the scientific literature regarding white wine polyphenols.
Collapse
Affiliation(s)
- Ina Ćorković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (A.P.)
| | - Anita Pichler
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (A.P.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.Ć.); (A.P.)
| |
Collapse
|
2
|
Theodoridis X, Chourdakis M, Papaemmanouil A, Chaloulakou S, Papageorgiou N, Georgakou AV, Chatzis G, Triantafyllou A. The Association between Food Groups, Nutraceuticals, and Food Supplements Consumption on Vascular Health Outcomes: A Literature Review. Life (Basel) 2024; 14:1210. [PMID: 39337992 PMCID: PMC11433244 DOI: 10.3390/life14091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Vascular aging, marked by alterations in the structure and function of blood vessels, including heightened arterial stiffness and impaired endothelial function, is linked to a higher likelihood of developing cardiovascular and age-associated pathological conditions. Oxidative stress and inflammation are key stimulation factors in vascular aging. Engaging in healthy dietary habits could enhance the functioning of blood vessels. The aim of this study was to conduct a literature review of the evidence regarding the relationship between food regimens, nutraceuticals, and dietary supplements and vascular health. A search of electronic databases, including PubMed, Scopus, and Web of Science Core Collection, was performed. Experimental and observational studies evaluating the association between food groups, nutraceuticals, supplements, and endothelial function and/or arterial stiffness were deemed eligible for this narrative review. Based on the current body of the included studies, food groups, nutraceuticals, and dietary supplements may not demonstrate superiority over placebos in enhancing markers of vascular health. To obtain more reliable evidence on the effectiveness of interventions in vascular health, additional RCTs with larger sample sizes, extended follow-up periods, and multi-center participation are necessary. Enhancing the credibility of these RCTs requires better control of dietary variables and more precise measurement of vascular health markers.
Collapse
Affiliation(s)
- Xenophon Theodoridis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| | - Michail Chourdakis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Androniki Papaemmanouil
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Stavroula Chaloulakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Niki Papageorgiou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Athina Vasiliki Georgakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Georgios Chatzis
- School of Physical Education and Sports Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| |
Collapse
|
3
|
Lei S, Hu Z, Liu H. Treatment with quercetin mitigates polystyrene nanoparticle-induced reduction in neuron capacity by inhibiting dopaminergic neurodegeneration and facilitating dopamine metabolism in Caenorhabditis elegans. CHEMOSPHERE 2024; 364:143303. [PMID: 39251157 DOI: 10.1016/j.chemosphere.2024.143303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
In organisms, long-term nanopolystyrenes (PS-NPs) exposure can cause toxicity, including neurotoxicity. Quercetin, the flavonol with extensive distribution within plants, possesses diverse biological activities. Nevertheless, the possible effect of quercetin to suppress PS-NPs-induced neurotoxicity and its associated mechanism remains unknown. Thus, in the present work, Caenorhabditis elegans was utilized as the model animal to investigate quercetin's pharmacological effect on suppressing PS-NPs-induced neurotoxicity and the underlying mechanism. PS-NPs exposure at 1-100 μg/L remarkably reduced locomotion behavior, while only PS-NPs exposure at 100 μg/L significantly decrease sensory perception behavior. Meanwhile, the increase in the number of worms with dopaminergic neurodegeneration was detected in nematodes exposed to 100 μg/L PS-NPs and the decreased dopamine content was observed within nematodes exposed to 10-100 μg/L PS-NPs, demonstrating the function of dopaminergic neurodegeneration and disruption of dopamine metabolism in inducing PS-NPs toxicity on neuron capacity. After 100 μg/L PS-NPs exposure, the 25-100 μM quercetin treatment effectively increased the locomotion behavior and the sensory perception behavior. Developmentally, quercetin treatment (100 μM) remarkably enhanced fluorescence intensity while decreasing worm number with neurodegeneration within BZ555 transgenic strains exposed to 100 μg/L PS-NPs. Physiologically, quercetin treatment (100 μM) significantly enhanced dopamine content within nematodes exposed to 100 μg/L PS-NPs. Molecularly, quercetin treatment (100 μM) notably decreased the expressions of genes governing neurodegeneration (mec-4, deg-3, unc-68, itr-1, clp-1, and asp-3) while significantly increasing the expression of genes governing dopamine metabolism (cat-2, cat-1, dop-1, dop-2, dop-3). As revealed by molecular docking results, quercetin might bind to excitotoxic-like ion channels receptors (MEC-4 and DEG-3) and dopamine secreted protein (CAT-2). Consequently, findings in this work demonstrated that long-term PS-NPs exposure within the μg/L range (1-100 μg/L) was toxic to neuron capacity, which was associated with the enhancement in dopaminergic neurodegeneration and disruption of dopamine metabolism. Notably, PS-NPs-mediated neurotoxicity to nematodes is probably suppressed through subsequent quercetin treatment.
Collapse
Affiliation(s)
- Shuhan Lei
- Institute of Environmental Processes and Pollution Control, School of Environmental and Ecology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhiyong Hu
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, China
| | - Huanliang Liu
- Environment and Health research division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
4
|
Ivarsson J, Bennett A, Ferrara F, Strauch R, Vallase A, Iorizzo M, Pecorelli A, Lila MA, Valacchi G. Gut-derived wild blueberry phenolic acid metabolites modulate extrinsic cutaneous damage. Food Funct 2024; 15:7849-7864. [PMID: 38962816 DOI: 10.1039/d4fo01874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
As the first line of defense, the skin is equipped with various physiological mechanisms positioned to prevent incoming oxidative damage from numerous environmental insults. With persistent exposure to the environment, understanding ways to augment the skin defenses is paramount in protecting from premature aging. In this study, we investigated the ability of five dietary phenolic metabolites, typically found in the bloodstream after wild blueberry consumption, to successfully defend the skin from UV light exposure in a novel ex vivo co-culture model of human skin explants and primary endothelial cells. Skin explants, placed in transwell inserts, were exposed to UV, and subsequently co-cultured with endothelial cells. When the endothelial cells had been pretreated with the bioactive metabolites at physiological concentrations (hippuric acid 3000 nM, isoferulic acid 1000 nM, salicylic acid 130 nM, benzoic acid 900 nM, α-hydroxyhippuric acid 400 nM) cutaneous damage was prevented on the co-cultured with UV-challenged skin explants. Co-culture with non-pretreated endothelial cells did not protect skin explants. Specifically, the pretreatment was able to reduce skin lipid peroxidation (measured as 4-hydroxynonenal protein adducts), and pro-inflammatory enzymes such as cyclooxygenase 2 (COX-2) and NADPH oxidase 4 (NOX-4). Furthermore, pretreatment with the metabolites prevented UV-induced release of inflammatory cytokines such as IL-1β and IL-8 as well as nitric oxides (NO) levels. In addition, the metabolites showed an impressive ability to prevent the loss of cutaneous structural proteins including involucrin and collagen type 1. Of note, endothelial cells cultured with UV exposed skin explants exhibited increased oxidative stress demonstrated by heme oxygenase-1 (HO-1) up-regulation which was significantly prevented in the metabolite treated models. These findings highlight the ability of dietary polyphenolic metabolites to improve cutaneous defenses against extrinsic stressors.
Collapse
Affiliation(s)
- John Ivarsson
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA.
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Abby Bennett
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Renee Strauch
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Andrea Vallase
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Iorizzo
- Department of Horticultural Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Alessandra Pecorelli
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mary Ann Lila
- Department of Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA.
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
- Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea
| |
Collapse
|
5
|
Amato B, Novellino E, Morlando D, Vanoli C, Vanoli E, Ferrara F, Difruscolo R, Goffredo VM, Compagna R, Tenore GC, Stornaiuolo M, Fordellone M, Caradonna E. Benefits of Taurisolo in Diabetic Patients with Peripheral Artery Disease. J Cardiovasc Dev Dis 2024; 11:174. [PMID: 38921674 PMCID: PMC11203668 DOI: 10.3390/jcdd11060174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Trimethyl-N-oxide (TMAO) has been linked to peripheral artery disease (PAD). TaurisoloⓇ is a natural, balanced phytocomplex containing resveratrol, quercetin, catechins, procianidins, gallic acid, and caffeic acid. Numerous studies have shown that TaurisoloⓇ reduces the damage of TMAO and exerts a protective effect on endothelial cells (ECs). The aim of this randomized, double-blind, single-center study was to evaluate the effects of TaurisoloⓇ on claudication in patients with PAD (Rutheford grade I, category II, Fontaine Classification: Stage IIA, American Medical Association Whole Person Impairment Classification: Class 0-WPI 0%) in two parallel groups of 31 patients. The primary outcomes were an increase in the pain-free walking distance and the ankle/brachial pressure index at the beginning and at the end of the treatment with Taurisolo. The secondary endpoint was the serum TMAO changes. The claudication distance improved by 14.1% in the Taurisolo group and by 2.0% in the placebo group, while the maximal distance increased by 15.8% and 0.6% only, respectively (both p < 0.05). The TMAO plasma levels decreased from 3.97 ± 2.13 micromole/L to 0.87 ± 0.48 (p < 0.0001) in the treated group. All these changes were highly significant both in univariate mixed models as well as in the adjusted model. Ultimately, TaurisoloⓇ might be an effective intervention to ameliorate intermittent claudication.
Collapse
Affiliation(s)
- Bruno Amato
- Department of Public Health, Università degli Studi di Napoli Federico II, 80138 Naples, Italy; (B.A.); (D.M.)
| | - Ettore Novellino
- Chimica Farmaceutica e Tossicologica, Università Cattolica del Sacro Cuore, 20123 Rome, Italy;
| | - Davide Morlando
- Department of Public Health, Università degli Studi di Napoli Federico II, 80138 Naples, Italy; (B.A.); (D.M.)
| | - Camilla Vanoli
- Clinical Psychology, Antioch University Los Angeles, Culver City, CA 90230, USA
| | - Emilio Vanoli
- School of Nursing, University of Pavia, 27100 Pavia, Italy;
| | - Fulvio Ferrara
- Centro Diagnostico Italiano, Department of Clinical Laboratory, 20100 Milan, Italy; (F.F.); (E.C.)
| | - Rossana Difruscolo
- Biotecnologie Mediche e Farmaceutiche, Università degli Studi di Bari, 70126 Bari, Italy;
| | - Vito Maria Goffredo
- Department of Interdisciplinary Medicine, Università degli Studi di Bari, 70124 Bari, Italy;
| | - Rita Compagna
- Vascular Surgery Unit AORN Ospedale dei Colli, 80131 Naples, Italy;
| | - Gian Carlo Tenore
- Department of Pharmacy, Università degli Studi di Napoli Federico II, 80138 Naples, Italy; (G.C.T.); (M.S.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, Università degli Studi di Napoli Federico II, 80138 Naples, Italy; (G.C.T.); (M.S.)
| | - Mario Fordellone
- Unità di Statistica Medica, Dipartimento di Salute Mentale e Fisica e Medicina Preventiva, Università degli Studi della Campania ‘Luigi Vanvitelli’, 81020 Napoli, Italy;
| | - Eugenio Caradonna
- Centro Diagnostico Italiano, Department of Clinical Laboratory, 20100 Milan, Italy; (F.F.); (E.C.)
| |
Collapse
|
6
|
Bertozzi-Matheus M, Bueno-Pereira TO, Nunes PR, Sandrim VC. EGCG, a Green Tea Compound, Increases NO Production and Has Antioxidant Action in a Static and Shear Stress In Vitro Model of Preeclampsia. Antioxidants (Basel) 2024; 13:158. [PMID: 38397756 PMCID: PMC10886151 DOI: 10.3390/antiox13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Preeclampsia (PE) is a gestational hypertensive disease characterized by endothelial dysfunction. Epigallocatechin-3-gallate (EGCG), the main compound in green tea, is a promising therapeutic target for the disease. By activating eNOS, EGCG increased NO production and exerted an important antioxidant action, but its specific impact in the context of PE remains understudied. The aim of this study is to evaluate the effects of EGCG on endothelial function in static and shear stress in in vitro models of PE. Endothelial cells were incubated with healthy (HP) and preeclamptic (PE) pregnant women's plasma, and the latter group was treated with EGCG. Additionally, NOS (L-NAME) and PI3K protein (LY249002) inhibitors were also used. The levels of NO, ROS, and O2•- were evaluated, as well as the antioxidant potential. These investigations were also carried out in a shear stress model. We found that EGCG increases the NO levels, which were reduced in the PE group. This effect was attenuated with the use of L-NAME and LY249002. Furthermore, EGCG increased the antioxidant capacity of PE, but its action decreased with LY294002. In cells subjected to shear stress, EGCG increased nitrite levels in the PE group and maintained its action on the antioxidant capacity. This is the first study of the effects of EGCG in this experimental model, as well as the investigation of its effects along with shear stress. Our findings suggest that EGCG improves parameters of endothelial dysfunction in vitro, making it a promising target in the search for treatments for the disease.
Collapse
Affiliation(s)
| | | | | | - Valeria Cristina Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (M.B.-M.); (T.O.B.-P.); (P.R.N.)
| |
Collapse
|
7
|
Zhao L, Chang Q, Cong Z, Zhang Y, Liu Z, Zhao Y. Effects of dietary polyphenols on maternal and fetal outcomes in maternal diabetes. Food Funct 2023; 14:8692-8710. [PMID: 37724008 DOI: 10.1039/d3fo02048g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The incidences of short-term or long-term adverse maternal and fetal outcomes caused by maternal diabetes are increasing. Due to toxicity or side effects, economic pressures, and other problems associated with injections or oral hypoglycemic drugs, many researchers have investigated natural treatment methods. Polyphenols can protect against chronic pathologies by regulating numerous physiological processes and provide many health benefits. Moreover, polyphenols have anti-diabetic properties and can be used to treat diabetic complications. Diets rich in polyphenols are beneficial to pregnant women with diabetes. Here, we review the epidemiological and experimental evidence on the impact of dietary polyphenols on maternal and fetal outcomes in pregnant women with diabetes, and the effects of polyphenols on biological changes and possible mechanisms. Previous data (mainly from in vitro and animal experiments) showed that polyphenols can alleviate gestational diabetes mellitus and diabetic embryopathy by reducing maternal hyperglycemia and insulin resistance, alleviating inflammation and oxidative stress, and regulating related signaling pathways. Although polyphenols have shown many health benefits, further research is needed to better understand the complex interactions between polyphenols and maternal diabetes.
Collapse
Affiliation(s)
- Lu Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qing Chang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhangzhao Cong
- Department of Teaching Affairs, China Medical University, Shenyang, China
| | - Yalin Zhang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhuxi Liu
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yuhong Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
van der Heide FCT, Eussen SJPM, Houben AJHM, Henry RMA, Kroon AA, van der Kallen CJH, Dagnelie PC, van Dongen MCJM, Berendschot TTJM, Schouten JSAG, Webers CAB, van Greevenbroek MMJ, Wesselius A, Schalkwijk CG, Koster A, Jansen JFA, Backes WH, Beulens JWJ, Stehouwer CDA. Alcohol consumption and microvascular dysfunction: a J-shaped association: The Maastricht Study. Cardiovasc Diabetol 2023; 22:67. [PMID: 36964536 PMCID: PMC10039613 DOI: 10.1186/s12933-023-01783-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Microvascular dysfunction (MVD) is an important contributor to major clinical disease such as stroke, dementia, depression, retinopathy, and chronic kidney disease. Alcohol consumption may be a determinant of MVD. OBJECTIVE Main objectives were (1) to study whether alcohol consumption was associated with MVD as assessed in the brain, retina, skin, kidney and in the blood; and (2) to investigate whether associations differed by history of cardiovascular disease or sex. DESIGN We used cross-sectional data from The Maastricht Study (N = 3,120 participants, 50.9% men, mean age 60 years, and 27.5% with type 2 diabetes [the latter oversampled by design]). We used regression analyses to study the association between total alcohol (per unit and in the categories, i.e. none, light, moderate, high) and MVD, where all measures of MVD were combined into a total MVD composite score (expressed in SD). We adjusted all associations for potential confounders; and tested for interaction by sex, and history of cardiovascular disease. Additionally we tested for interaction with glucose metabolism status. RESULTS The association between total alcohol consumption and MVD was non-linear, i.e. J-shaped. Moderate versus light total alcohol consumption was significantly associated with less MVD, after full adjustment (beta [95% confidence interval], -0.10 [-0.19; -0.01]). The shape of the curve differed with sex (Pinteraction = 0.03), history of cardiovascular disease (Pinteraction < 0.001), and glucose metabolism status (Pinteraction = 0.02). CONCLUSIONS The present cross-sectional, population-based study found evidence that alcohol consumption may have an effect on MVD. Hence, although increasing alcohol consumption cannot be recommended as a policy, this study suggests that prevention of MVD may be possible through dietary interventions.
Collapse
Affiliation(s)
- Frank C T van der Heide
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands.
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands.
| | - Simone J P M Eussen
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Epidemiology, UM, Maastricht, The Netherlands
- CAPHRI Care and Public Health Research Institute, UM, Maastricht, The Netherlands
| | - Alfons J H M Houben
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Ronald M A Henry
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
- Heart and Vascular Center, MUMC+ Maastricht, Maastricht, The Netherlands
| | - Abraham A Kroon
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Carla J H van der Kallen
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Pieter C Dagnelie
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Martien C J M van Dongen
- Department of Epidemiology, UM, Maastricht, The Netherlands
- CAPHRI Care and Public Health Research Institute, UM, Maastricht, The Netherlands
| | | | - Jan S A G Schouten
- University Eye Clinic Maastricht, MUMC+, Maastricht, The Netherlands
- Department of Ophthalmology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | | | - Marleen M J van Greevenbroek
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Anke Wesselius
- Department of Epidemiology, NUTRIM School for Nutrition and Translational Research in Metabolism, UM, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Annemarie Koster
- CAPHRI Care and Public Health Research Institute, UM, Maastricht, The Netherlands
- Department of Social Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jacobus F A Jansen
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Dept. of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Walter H Backes
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Dept. of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joline W J Beulens
- Department of Epidemiology and Data Science, Amsterdam University Medical Centres - location VUmc, Amsterdam Public Health Institute, Amsterdam, The Netherlands
| | - Coen D A Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| |
Collapse
|
9
|
Rathod NB, Elabed N, Punia S, Ozogul F, Kim SK, Rocha JM. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061217. [PMID: 36986905 PMCID: PMC10053535 DOI: 10.3390/plants12061217] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/01/2023]
Abstract
Polyphenol has been used in treatment for some health disorders due to their diverse health promoting properties. These compounds can reduce the impacts of oxidation on the human body, prevent the organs and cell structure against deterioration and protect their functional integrity. The health promoting abilities are attributed to their high bioactivity imparting them high antioxidative, antihypertensive, immunomodulatory, antimicrobial, and antiviral activity, as well as anticancer properties. The application of polyphenols such as flavonoids, catechin, tannins, and phenolic acids in the food industry as bio-preservative substances for foods and beverages can exert a superb activity on the inhibition of oxidative stress via different types of mechanisms. In this review, the detailed classification of polyphenolic compunds and their important bioactivity with special focus on human health are addressed. Additionally, their ability to inhibit SARS-CoV-2 could be used as alternative therapy to treat COVID patients. Inclusions of polyphenolic compounds in various foods have demonstrated their ability to extend shelf life and they positive impacts on human health (antioxidative, antihypertensive, immunomodulatory, antimicrobial, anticancer). Additionally, their ability to inhibit the SARS-CoV-2 virus has been reported. Considering their natural occurrence and GRAS status they are highly recommended in food.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Post-Graduate Institute of Post-Harvest Technology and Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha 402 116, India
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, BP 77-1054 Amilcar, Carthage 1054, Tunisia
| | - Sneh Punia
- Department of Food, Nutrition and Packaging Sciences, Clemoson University, Clemosn, SC 29634, USA
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, 01330 Adana, Turkey
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, College of Science & Technology, Hanyang University, ERICA Campus, Ansan 11558, Republic of Korea
| | - João Miguel Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
ZHANG Y, LI X, LI H, HUANG L, HUANG J, TANG Q. Rapid and non-destructive determination of tea polyphenols content in Chongzhou new loquat tea lines based on near infrared spectroscopy. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.004023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Ying ZHANG
- Sichuan Agricultural University, China; Chongqing Academy of Agricultural Sciences, China
| | | | - Hui LI
- Sichuan Agricultural University, China
| | | | | | - Qian TANG
- Sichuan Agricultural University, China
| |
Collapse
|
11
|
Ye Z, Liu Y. Polyphenolic compounds from rapeseeds (Brassica napus L.): The major types, biofunctional roles, bioavailability, and the influences of rapeseed oil processing technologies on the content. Food Res Int 2023; 163:112282. [PMID: 36596189 DOI: 10.1016/j.foodres.2022.112282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022]
Abstract
The rapeseed (Brassica napus L.) are the important oil bearing material worldwide, which contain wide variety of bioactive components with polyphenolic compounds considered the most typical. The rapeseed polyphenols encompass different structural variants, and have been considered to have many bioactive functions, which are beneficial for the human health. Whereas, the rapeseed oil processing technologies affect their content and the biofunctional activities. The present review of the literature highlighted the major types of the rapeseed polyphenols, and summarized their biofunctional roles. The influences of rapeseed oil processing technologies on these polyphenols were also elucidated. Furthermore, the directions of the future studies for producing nutritional rapeseed oils preserved higher level of polyphenols were prospected. The rapeseed polyphenols are divided into the phenolic acids and polyphenolic tannins, both of which contained different subtypes. They are reported to have multiple biofunctional roles, thus showing outstanding health improvement effects. The rapeseed oil processing technologies have significant effects on both of the polyphenol content and activity. Some novel processing technologies, such as aqueous enzymatic extraction (AEE), subcritical or supercritical extraction showed advantages for producing rapeseed oil with higher level of polyphenols. The oil refining process involved heat or strong acid and alkali conditions affected their stability and activity, leading to the loss of polyphenols of the final products. Future efforts are encouraged to provide more clinic evidence for the practical applications of the rapeseed polyphenols, as well as optimizing the processing technologies for the green manufacturing of rapeseed oils.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
12
|
Torres‐Fuentes C, Suárez M, Aragonès G, Mulero M, Ávila‐Román J, Arola‐Arnal A, Salvadó MJ, Arola L, Bravo FI, Muguerza B. Cardioprotective Properties of Phenolic Compounds: A Role for Biological Rhythms. Mol Nutr Food Res 2022; 66:e2100990. [PMID: 35279936 PMCID: PMC9786928 DOI: 10.1002/mnfr.202100990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/25/2022] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of deaths worldwide and their prevalence is continuously increasing. Available treatments may present several side effects and therefore the development of new safer therapeutics is of interest. Phenolic compounds have shown several cardioprotective properties helpful in reducing different CVD risk factors such as inflammation, elevated blood pressure, hyperlipidemia, or endothelial dysfunction. These factors are significantly influenced by biological rhythms which are in fact emerging as key modulators of important metabolic and physiological processes. Thus, increased events of CVD have been observed under circadian rhythm disruption or in winter versus other seasons. These rhythms can also affect the functionality of phenolic compounds. Indeed, different effects have been observed depending on the administration time or under different photoperiods. Therefore, in this review the focus will be on the potential of phenolic compounds as therapeutics to prevent CVD via biological rhythm modulation.
Collapse
Affiliation(s)
- Cristina Torres‐Fuentes
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Manuel Suárez
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Gerard Aragonès
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Miquel Mulero
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Javier Ávila‐Román
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Anna Arola‐Arnal
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Maria Josepa Salvadó
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Lluís Arola
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Begoña Muguerza
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| |
Collapse
|
13
|
Murata M, Marugame Y, Yamada S, Lin I, Yamashita S, Fujimura Y, Tachibana H. Circulating miRNA profiles in mice plasma following flavonoid intake. Mol Biol Rep 2022; 49:10399-10407. [PMID: 36098884 DOI: 10.1007/s11033-022-07918-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/03/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Polyphenols, including flavonoids, have been the focus of numerous studies that have revealed diverse health benefits. MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that function as posttranscriptional regulators of gene expression. miRNAs can be detected in the blood and these so-called circulating miRNAs are potential biomarkers of various diseases. This study aimed to explore circulating miRNAs in plasma as a means to predict the biological effects of functional food ingredients. METHODS AND RESULTS We used miRNA microarray analysis to compare plasma miRNA levels in mice orally administered three flavonoids (daidzein, quercetin, and delphinidin). Several miRNAs were differentially expressed in plasma from mice in each treatment group compared with the vehicle-treated group. The plasma levels of miR-25-5p, miR-146b-5p, and miR-501-3p were increased in the flavonoid-treated and the plasma levels of miR-148b-3p, miR-669e-5p, and miR-3962 were decreased. CONCLUSIONS Our findings suggested that flavonoids alter miRNA expression in plasma and identified promising plasma miRNAs for assessing the functionality of flavonoids.
Collapse
Affiliation(s)
- Motoki Murata
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Advanced Research Support Center (ADRES), Ehime University, Matsuyama, Ehime, Japan
| | - Yuki Marugame
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shuhei Yamada
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ichian Lin
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shuya Yamashita
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
14
|
Chadorshabi S, Hallaj-Nezhadi S, Ghasempour Z. Red onion skin active ingredients, extraction and biological properties for functional food applications. Food Chem 2022; 386:132737. [PMID: 35509169 DOI: 10.1016/j.foodchem.2022.132737] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
Onion is an important vegetable in the world and the second most important vegetable crop after tomato.Hence, the onion waste, such as onion skin, is produced in abundance causing environmental problems. Due to its bioactive compounds, especially phenolics and flavonoids, red onion skin can be used through appropriate methods for producing value-added products. These phytochemicals are proven to prevent oxidative stress and broad spectrum of microorganisms beside having diverse beneficial biological properties. Extraction step is the most critical processing in making phytonutrient available. Various approaches including conventional and non-conventional technologies applied for extracting different compounds from red onion wastes was summarized in this study. To evaluate the industrial application potential, the use of natural bioactives derived from red onion skin for elaboration of various food systems has been also investigated.
Collapse
Affiliation(s)
- Sara Chadorshabi
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Hallaj-Nezhadi
- Drug Applied Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Ghasempour
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Flavonoid and Phenolic Acid Profiles of Dehulled and Whole Vigna subterranea (L.) Verdc Seeds Commonly Consumed in South Africa. Molecules 2022; 27:molecules27165265. [PMID: 36014504 PMCID: PMC9415687 DOI: 10.3390/molecules27165265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Bambara groundnut (BGN) is an underexploited crop with a rich nutrient content and is used in traditional medicine, but limited information is available on the quantitative characterization of its flavonoids and phenolic acids. We investigated the phenolic profile of whole seeds and cotyledons of five BGN varieties consumed in South Africa using UPLC-qTOF-MS and GC-MS. Twenty-six phenolic compounds were detected/quantified in whole seeds and twenty-four in cotyledon, with six unidentified compounds. Flavonoids include flavan-3-ol (catechin, catechin hexoside-A, catechin hexoside-B), flavonol (quercetin, quercetin-3-O-glucoside, rutin, myricetin, kaempherol), hydroxybenzoic acid (4-Hydroxybenzoic, 2,6 Dimethoxybenzoic, protocatechuic, vanillic, syringic, syringaldehyde, gallic acids), hydroxycinnamic acid (trans-cinnamic, p-coumaric, caffeic, ferulic acids) and lignan (medioresinol). The predominant flavonoids were catechin/derivatives, with the highest content (78.56 mg/g) found in brown BGN. Trans-cinnamic and ferulic acids were dominant phenolic acid. Cotyledons of brown and brown-eyed BGN (317.71 and 378.59 µg/g) had the highest trans-cinnamic acid content, while red seeds had the highest ferulic acid (314.76 µg/g) content. Colored BGN had a significantly (p < 0.05) higher content of these components. Whole BGN contained significantly (p < 0.05) higher amount of flavonoids and phenolic acids, except for the trans-cinnamic acid. The rich flavonoid and phenolic acid content of BGN seeds highlights the fact that it is a good source of dietary phenolics with potential health-promoting properties.
Collapse
|
16
|
Brito LD, Araujo CDS, Cavalcante DGSM, Gomes AS, Zocoler MA, Yoshihara E, Job AE, Kerche LE. In vivo assessment of antioxidant, antigenotoxic, and antimutagenic effects of bark ethanolic extract from Spondias purpurea L. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:336-352. [PMID: 34903147 DOI: 10.1080/15287394.2021.2013373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Medicinal plants have always been used for therapeutic purposes; however, some plants may contain toxic and mutagenic substances. The aim of this study was to assess the cytotoxic, genotoxic, mutagenic, antioxidant, antigenotoxic, and antimutagenic effects of the bark ethanolic extract of Spondias purpurea L. using male and female Swiss albino mice. To determine the protective effects of the extract, benzo[a]pyrene (B[a]P) and cyclophosphamide (CP) were selected as cell damage inducers. The extract was examined at doses of 500, 1000, or 1500 mg/kg body weight (BW)via gavage alone or concomitant with B[a]P or CP. Oxidative stress was measured by quantification of blood catalase activity (CAT), reduced glutathione (GSH) levels in total blood, liver, and kidney, and concentrations of malondiadehyde (MDA) in liver and kidney. Genotoxicity and antigenotoxicity were evaluated by the comet assay using peripheral blood. Cytotoxicity, mutagenicity, and antimutagenicity were determined utilizing the micronucleus test in bone marrow and peripheral blood. The S. purpurea L extract increased CAT activity and GSH levels accompanied by a decrease in MDA levels after treatment with B[a]P and CP. No genotoxic, cytotoxic, or mutagenic effects were found in mice exposed only to the extract. These results indicate that the extract of S. purpurea exhibited protective effects against oxidative and DNA damage induced by B[a]P and CP.
Collapse
Affiliation(s)
- Lorrane Davi Brito
- Faculdade de Artes, Ciências, Letras E Educação, Universidade Do Oeste Paulista, Presidente Prudente, Brazil
| | - Caroline de Souza Araujo
- Faculdade de Artes, Ciências, Letras E Educação, Universidade Do Oeste Paulista, Presidente Prudente, Brazil
| | | | - Andressa Silva Gomes
- Departamento de Física, Química E Biologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | | | - Eidi Yoshihara
- Department of Animal Health, Agência Paulista de Tecnologia Dos Agronegócios (Apta), Presidente Prudente, Brazil
| | - Aldo Eloizo Job
- Departamento de Física, Química E Biologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - Leandra Ernst Kerche
- Faculdade de Medicina, Universidade Do Oeste Paulista, Presidente Prudente, Brazil
| |
Collapse
|
17
|
Chang CC, Houng JY, Peng WH, Yeh TW, Wang YY, Chen YL, Chang TH, Hung WC, Yu TH. Effects of Abelmoschus manihot Flower Extract on Enhancing Sexual Arousal and Reproductive Performance in Zebrafish. Molecules 2022; 27:molecules27072218. [PMID: 35408615 PMCID: PMC9000255 DOI: 10.3390/molecules27072218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023] Open
Abstract
The flower of Abelmoschus manihot L. is mainly used for the treatment of chronic kidney diseases, and has been reported to have bioactivities such as antioxidant, anti-inflammatory, antiviral, and antidepressant activities. This study used wild-type adult zebrafish as an animal model to elucidate the potential bioactivity of A. manihot flower ethanol extract (AME) in enhancing their sexual and reproductive functions. Zebrafish were fed AME twice a day at doses of 0.2%, 1%, and 10% for 28 days, and were then given the normal feed for an additional 14 days. The hormone 17-β estradiol was used as the positive control. Sexual behavioral parameters such as the number of times males chased female fish, the production of fertilized eggs, and the hatching rate of the fertilized eggs were recorded at days 0.33, 7, 14, 21, 28, and 42. The expression levels of sex-related genes—including lhcgr, ar, cyp19a1a, and cyp19a1b—were also examined. The results showed that the chasing number, fertilized egg production, and hatching rate were all increased with the increase in the AME treatment dose and treatment time. After feeding with 1% and 10% AME for 28 days, the chasing number in the treated group as compared to the control group increased by 1.52 times and 1.64 times, respectively; the yield of fertilized eggs increased by 1.59 times and 2.31 times, respectively; and the hatching rate increased by 1.26 times and 1.69 times, respectively. All three parameters exhibited strong linear correlations with one another (p < 0.001). The expression of all four genes was also upregulated with increasing AME dose and treatment duration. When feeding with 0.2%, 1%, and 10% AME for 28 days, the four sex-related genes were upregulated at ranges of 1.79−2.08-fold, 2.74−3.73-fold, and 3.30−4.66-fold, respectively. Furthermore, the effect of AME was persistent, as the promotion effect continued after the treatment was stopped for at least two weeks. The present findings suggest that AME can enhance the endocrine system and may improve libido and reproductive performance in zebrafish.
Collapse
Affiliation(s)
- Chi-Chang Chang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
- Department of Obstetrics & Gynecology, E-Da Hospital/E-Da Dachang Hospital, Kaohsiung 82445, Taiwan; (Y.-L.C.); (T.-H.C.)
- Correspondence: ; Tel.: +886-7-5599123 (ext. 1014)
| | - Jer-Yiing Houng
- Department of Nutrition, I-Shou University, Kaohsiung 82445, Taiwan;
- Department of Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan
| | - Wei-Hao Peng
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Tien-Wei Yeh
- School of Chinese Medicine for Post-Baccalaureate, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (T.-W.Y.); (Y.-Y.W.)
| | - Yun-Ya Wang
- School of Chinese Medicine for Post-Baccalaureate, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (T.-W.Y.); (Y.-Y.W.)
| | - Ya-Ling Chen
- Department of Obstetrics & Gynecology, E-Da Hospital/E-Da Dachang Hospital, Kaohsiung 82445, Taiwan; (Y.-L.C.); (T.-H.C.)
| | - Tzu-Hsien Chang
- Department of Obstetrics & Gynecology, E-Da Hospital/E-Da Dachang Hospital, Kaohsiung 82445, Taiwan; (Y.-L.C.); (T.-H.C.)
| | - Wei-Chin Hung
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (W.-C.H.); (T.-H.Y.)
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Teng-Hung Yu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (W.-C.H.); (T.-H.Y.)
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan
| |
Collapse
|
18
|
Ellagic Acid prevents vascular dysfunction in small mesenteric arteries of ovariectomized hypertensive rats. J Nutr Biochem 2022; 105:108995. [DOI: 10.1016/j.jnutbio.2022.108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/20/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022]
|
19
|
Lyu X, Lyu Y, Yu H, Chen W, Ye L, Yang R. Biotechnological advances for improving natural pigment production: a state-of-the-art review. BIORESOUR BIOPROCESS 2022; 9:8. [PMID: 38647847 PMCID: PMC10992905 DOI: 10.1186/s40643-022-00497-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In current years, natural pigments are facing a fast-growing global market due to the increase of people's awareness of health and the discovery of novel pharmacological effects of various natural pigments, e.g., carotenoids, flavonoids, and curcuminoids. However, the traditional production approaches are source-dependent and generally subject to the low contents of target pigment compounds. In order to scale-up industrial production, many efforts have been devoted to increasing pigment production from natural producers, via development of both in vitro plant cell/tissue culture systems, as well as optimization of microbial cultivation approaches. Moreover, synthetic biology has opened the door for heterologous biosynthesis of pigments via design and re-construction of novel biological modules as well as biological systems in bio-platforms. In this review, the innovative methods and strategies for optimization and engineering of both native and heterologous producers of natural pigments are comprehensively summarized. Current progress in the production of several representative high-value natural pigments is also presented; and the remaining challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - WeiNing Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
20
|
Collins AE, Saleh TM, Kalisch BE. Naturally Occurring Antioxidant Therapy in Alzheimer's Disease. Antioxidants (Basel) 2022; 11:213. [PMID: 35204096 PMCID: PMC8868221 DOI: 10.3390/antiox11020213] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
It is estimated that the prevalence rate of Alzheimer's disease (AD) will double by the year 2040. Although currently available treatments help with symptom management, they do not prevent, delay the progression of, or cure the disease. Interestingly, a shared characteristic of AD and other neurodegenerative diseases and disorders is oxidative stress. Despite profound evidence supporting the role of oxidative stress in the pathogenesis and progression of AD, none of the currently available treatment options address oxidative stress. Recently, attention has been placed on the use of antioxidants to mitigate the effects of oxidative stress in the central nervous system. In preclinical studies utilizing cellular and animal models, natural antioxidants showed therapeutic promise when administered alone or in combination with other compounds. More recently, the concept of combination antioxidant therapy has been explored as a novel approach to preventing and treating neurodegenerative conditions that present with oxidative stress as a contributing factor. In this review, the relationship between oxidative stress and AD pathology and the neuroprotective role of natural antioxidants from natural sources are discussed. Additionally, the therapeutic potential of natural antioxidants as preventatives and/or treatment for AD is examined, with special attention paid to natural antioxidant combinations and conjugates that are currently being investigated in human clinical trials.
Collapse
Affiliation(s)
| | | | - Bettina E. Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.E.C.); (T.M.S.)
| |
Collapse
|
21
|
WANG S, LIU P, FENG L, TENG J, YE F, GUI A, WANG X, ZHENG L, GAO S, ZHENG P. Rapid determination of tea polyphenols content in Qingzhuan tea based on near infrared spectroscopy in conjunction with three different PLS algorithms. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.94322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Panpan LIU
- Hubei Academy of Agricultural Sciences, China
| | - Lin FENG
- Hubei Academy of Agricultural Sciences, China
| | - Jing TENG
- Hubei Academy of Agricultural Sciences, China
| | - Fei YE
- Hubei Academy of Agricultural Sciences, China
| | - Anhui GUI
- Hubei Academy of Agricultural Sciences, China
| | | | - Lin ZHENG
- Hubei Academy of Agricultural Sciences, China
| | - Shiwei GAO
- Hubei Academy of Agricultural Sciences, China
| | | |
Collapse
|
22
|
El-Sayed SS, Shahin RM, Fahmy A, Elshazly SM. Quercetin ameliorated remote myocardial injury induced by renal ischemia/reperfusion in rats: Role of Rho-kinase and hydrogen sulfide. Life Sci 2021; 287:120144. [PMID: 34785193 DOI: 10.1016/j.lfs.2021.120144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/30/2021] [Accepted: 11/09/2021] [Indexed: 10/24/2022]
Abstract
AIMS This study was designated to investigate the means through which quercetin confers its cardioprotective action against remote cardiomyopathy elicited by renal ischemia/reperfusion (I/R). Potential involvement of hydrogen sulfide (H2S) and its related mechanisms were accentuated herein. MAIN METHODS In anesthetized male Wistar rats, renal I/R was induced by bilateral renal pedicles occlusion for 30 min (ischemia) followed by 24 h reperfusion. Quercetin (50 mg/kg, gavage) was administered at 5 h post reperfusion initiation and 2 h before euthanasia. Cystathionine β-synthase (CBS) inhibitor, amino-oxyacetic acid (AOAA; 10 mg/kg, i.p) was given 30 min prior to each quercetin dose. KEY FINDINGS Quercetin reversed renal I/R induced derangements; as quercetin administration improved renal function and reversed I/R induced histopathological changes in both myocardium and kidney. Further, quercetin enhanced renal CBS content/activity, while mitigated myocardial cystathionine ɤ-lyase (CSE) content/activity as well as myocardial H2S. On the other hand, quercetin augmented myocardial nitric oxide (NO), nuclear factor erythroid 2-related factor 2 (Nrf2) and its nuclear trasnslocation, glutamate cysteine ligase (GCL), reduced glutathione (GSH) and peroxiredoxin-2 (Prx2), while further reduced lipid peroxidation measured as malondialdehyde (MDA) as well as nuclear factor-kappa B (NF-κB), caspase-3 content and activity, and Rho-kinase activity. SIGNIFICANCE Cardioprotective effects of quercetin may be mediated through regulation of Rho-kinase pathway and H2S production.
Collapse
Affiliation(s)
- Shaimaa S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Rania M Shahin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Ahmed Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Shimaa M Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
23
|
Monfoulet LE, Martinez MC. Dietary modulation of large extracellular vesicles: the good and the bad for human health. Nutr Rev 2021; 80:1274-1293. [PMID: 34875084 DOI: 10.1093/nutrit/nuab106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Extracellular vesicles (EVs) encompassing nanovesicles derived from the endosome system and generated by plasmatic membrane shedding are of increasing interest in view of their ability to sustain cell-to-cell communication and the possibility that they could be used as surrogate biomarkers of healthy and unhealthy trajectories. Nutritional strategies have been developed to preserve health, and the impact of these strategies on circulating EVs is arousing growing interest. Data available from published studies are now sufficient for a first integration to better understand the role of EVs in the relationship between diet and health. Thus, this review focuses on human intervention studies investigating the impact of diet or its components on circulating EVs. Because of analytical bias, only large EVs have been assessed so far. The analysis highlights that poor-quality diets with elevated fat and sugar content increase levels of circulating large EVs, and these can be partly counteracted by healthy food or some food micronutrients and bioactive compounds. However, knowledge of the content and the biological functions of these diet-induced EVs is still missing. It is important to address these aspects in new research in order to state if EVs are mediators of the effects of diet on health.
Collapse
Affiliation(s)
- Laurent-Emmanuel Monfoulet
- L.-E. Monfoulet is with the Université Clermont Auvergne, INRAE, Human Nutrition Unit, Clermont-Ferrand, France M.C. Martinez is with the oxidative stress and metabolic pathologies laboratory (SOPAM), U1063, INSERM, Université Angers, Angers, France
| | - Maria Carmen Martinez
- L.-E. Monfoulet is with the Université Clermont Auvergne, INRAE, Human Nutrition Unit, Clermont-Ferrand, France M.C. Martinez is with the oxidative stress and metabolic pathologies laboratory (SOPAM), U1063, INSERM, Université Angers, Angers, France
| |
Collapse
|
24
|
Stadler JT, Marsche G. Dietary Strategies to Improve Cardiovascular Health: Focus on Increasing High-Density Lipoprotein Functionality. Front Nutr 2021; 8:761170. [PMID: 34881279 PMCID: PMC8646038 DOI: 10.3389/fnut.2021.761170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of morbidity and mortality worldwide, with increasing incidence. A cornerstone of cardiovascular disease prevention is lifestyle modification through dietary changes to influence various risk factors such as obesity, hypertension and diabetes. The effects of diet on cardiovascular health are complex. Some dietary components and metabolites directly affect the composition and structure of high-density lipoproteins (HDL) and increase anti-inflammatory and vasoprotective properties. HDLs are composed of distinct subpopulations of particles of varying size and composition that have several dynamic and context-dependent functions. The identification of potential dietary components that improve HDL functionality is currently an important research goal. One of the best-studied diets for cardiovascular health is the Mediterranean diet, consisting of fish, olive oil, fruits, vegetables, whole grains, legumes/nuts, and moderate consumption of alcohol, most commonly red wine. The Mediterranean diet, especially when supplemented with extra virgin olive oil rich in phenolic compounds, has been shown to markedly improve metrics of HDL functionality and reduce the burden, or even prevent the development of cardiovascular disease. Particularly, the phenolic compounds of extra virgin olive oil seem to exert the significant positive effects on HDL function. Moreover, supplementation of anthocyanins as well as antioxidants such as lycopene or the omega-3 fatty acid eicosapentaenoic acid improve parameters of HDL function. In this review, we aim to highlight recent discoveries on beneficial dietary patterns as well as nutritional components and their effects on cardiovascular health, focusing on HDL function.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
25
|
Pérez-Navarro J, Izquierdo-Cañas PM, Mena-Morales A, Martínez-Gascueña J, Chacón-Vozmediano JL, García-Romero E, Hermosín-Gutiérrez I, Gómez-Alonso S. Genotypic variation in phenolic composition of novel white grape genotypes (Vitis vinifera L.). J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Visuthiwan S, Assatarakul K. Kinetic modeling of microbial degradation and antioxidant reduction in lychee juice subjected to UV radiation and shelf life during cold storage. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Ben Jeddou K, Kammoun M, Hellström J, Gutiérrez‐Quequezana L, Rokka V, Gargouri‐Bouzid R, Ellouze‐Chaabouni S, Nouri‐Ellouz O. Profiling beneficial phytochemicals in a potato somatic hybrid for tuber peels processing: phenolic acids and anthocyanins composition. Food Sci Nutr 2021; 9:1388-1398. [PMID: 33747453 PMCID: PMC7958572 DOI: 10.1002/fsn3.2100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022] Open
Abstract
The purpose of this study was to characterize the peels of a CN1 somatic hybrid obtained from two dihaploid potato lines (Cardinal H14 and Nicola H1) in terms of the health-promoting phenolic compounds (phenolic acids and anthocyanins). The CN1 hybrid is defined by a pink tuber skin color making it different from the light-yellow-skinned "Spunta," which is the most commonly grown potato cultivar in Tunisia. Oven-dried peel samples derived from CN1 hybrid and cv. Spunta were ground, and phenolic compounds were extracted with water or methanol for quantification. Lyophilized peels were used for the phenolic acid and anthocyanin analyses. Higher total quantities of phenolic compounds were recovered in methanol extracts compared with water extracts. A slightly higher concentration of phenolic acids (100 mg/100 g DW) was obtained in the lyophilized peels extract of CN1 hybrid than in the cv. Spunta corresponding sample (83 mg/100 g DW). The profiles of the chlorogenic acid isomers were almost identical in both of CN1 hybrid and cv. Spunta. Caffeic acid (CA) and three caffeoylquinic acids (CQAs): 3-CQA, 4-CQA, and 5-CQA, were identified from both genotypes, 5-CQA being the dominant form in both potatoes. Since the CN1 hybrid has a pink skin color, its anthocyanin profile was also determined. The anthocyanin quantity in the CN1 peels was 5.07 mg/100 g DW, involving six different anthocyanins that were identified within the extract, namely, Pelargonidin-3-rutinoside-5-glucoside, peonidin-3-rutinoside-5-glucoside, coumaroyl ester of pelargonidin-3-rutinoside-5-glucoside, coumaroyl ester of peonidin-3-rutinoside-5-glucoside, feruloyl ester of pelargonidin-3-rutinoside-5-glucoside, and feruloyl ester of peonidin-3-rutinoside-5-glucoside. These results suggest that the peel waste of CN1 somatic hybrid can be considered as a promising source of high-value compounds for food industry.
Collapse
Affiliation(s)
- Khawla Ben Jeddou
- Laboratory of Plant Improvement and Valorization of Agricultural ResourcesNational Engineering School of Sfax (ENIS)University of SfaxSfaxTunisia
| | - Mariem Kammoun
- Laboratory of Plant Improvement and Valorization of Agricultural ResourcesNational Engineering School of Sfax (ENIS)University of SfaxSfaxTunisia
| | - Jarkko Hellström
- Production SystemsNatural Resources Institute Finland (Luke)JokioinenFinland
| | | | - Veli‐Matti Rokka
- Production SystemsNatural Resources Institute Finland (Luke)JokioinenFinland
| | - Radhia Gargouri‐Bouzid
- Laboratory of Plant Improvement and Valorization of Agricultural ResourcesNational Engineering School of Sfax (ENIS)University of SfaxSfaxTunisia
| | - Semia Ellouze‐Chaabouni
- Laboratory of Plant Improvement and Valorization of Agricultural ResourcesNational Engineering School of Sfax (ENIS)University of SfaxSfaxTunisia
| | - Oumèma Nouri‐Ellouz
- Laboratory of Plant Improvement and Valorization of Agricultural ResourcesNational Engineering School of Sfax (ENIS)University of SfaxSfaxTunisia
- Department of Biology and GeologyPreparatory Institute for Engineering Studies of SfaxSfaxTunisia
| |
Collapse
|
28
|
Morris G, Puri BK, Bortolasci CC, Carvalho A, Berk M, Walder K, Moreira EG, Maes M. The role of high-density lipoprotein cholesterol, apolipoprotein A and paraoxonase-1 in the pathophysiology of neuroprogressive disorders. Neurosci Biobehav Rev 2021; 125:244-263. [PMID: 33657433 DOI: 10.1016/j.neubiorev.2021.02.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Lowered high-density lipoprotein (HDL) cholesterol has been reported in major depressive disorder, bipolar disorder, first episode of psychosis, and schizophrenia. HDL, its major apolipoprotein component, ApoA1, and the antioxidant enzyme paraoxonase (PON)1 (which is normally bound to ApoA1) all have anti-atherogenic, antioxidant, anti-inflammatory, and immunomodulatory roles, which are discussed in this paper. The paper details the pathways mediating the anti-inflammatory effects of HDL, ApoA1 and PON1 and describes the mechanisms leading to compromised HDL and PON1 levels and function in an environment of chronic inflammation. The molecular mechanisms by which changes in HDL, ApoA1 and PON1 might contribute to the pathophysiology of the neuroprogressive disorders are explained. Moreover, the anti-inflammatory actions of ApoM-mediated sphingosine 1-phosphate (S1P) signalling are reviewed as well as the deleterious effects of chronic inflammation and oxidative stress on ApoM/S1P signalling. Finally, therapeutic interventions specifically aimed at improving the levels and function of HDL and PON1 while reducing levels of inflammation and oxidative stress are considered. These include the so-called Mediterranean diet, extra virgin olive oil, polyphenols, flavonoids, isoflavones, pomegranate juice, melatonin and the Mediterranean diet combined with the ketogenic diet.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Chiara C Bortolasci
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.
| | - Andre Carvalho
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Estefania G Moreira
- Post-Graduation Program in Health Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Michael Maes
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
29
|
Immunomodulatory Effects of Dietary Polyphenols. Nutrients 2021; 13:nu13030728. [PMID: 33668814 PMCID: PMC7996139 DOI: 10.3390/nu13030728] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Functional and nutraceutical foods provide an alternative way to improve immune function to aid in the management of various diseases. Traditionally, many medicinal products have been derived from natural compounds with healing properties. With the development of research into nutraceuticals, it is becoming apparent that many of the beneficial properties of these compounds are at least partly due to the presence of polyphenols. There is evidence that dietary polyphenols can influence dendritic cells, have an immunomodulatory effect on macrophages, increase proliferation of B cells, T cells and suppress Type 1 T helper (Th1), Th2, Th17 and Th9 cells. Polyphenols reduce inflammation by suppressing the pro-inflammatory cytokines in inflammatory bowel disease by inducing Treg cells in the intestine, inhibition of tumor necrosis factor-alpha (TNF-α) and induction of apoptosis, decreasing DNA damage. Polyphenols have a potential role in prevention/treatment of auto-immune diseases like type 1 diabetes, rheumatoid arthritis and multiple sclerosis by regulating signaling pathways, suppressing inflammation and limiting demyelination. In addition, polyphenols cause immunomodulatory effects against allergic reaction and autoimmune disease by inhibition of autoimmune T cell proliferation and downregulation of pro-inflammatory cytokines (interleukin-6 (IL-6), IL-1, interferon-γ (IFN-γ)). Herein, we summarize the immunomodulatory effects of polyphenols and the underlying mechanisms involved in the stimulation of immune responses.
Collapse
|
30
|
Zhang J, Chen Z, Zhang L, Zhao X, Liu Z, Zhou W. A systems-based analysis to explore the multiple mechanisms of Shan Zha for treating human diseases. Food Funct 2021; 12:1176-1191. [PMID: 33432314 DOI: 10.1039/d0fo02433c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Shan Zha has garnered increasing attention in the field of functional foods and medicines due to its widely reported healing effects. However, the potential mechanisms of Shan Zha for human health benefits have not been fully interpreted. Therefore, in the current study, a systems-based method that integrates ADME evaluation, target fishing, gene ontology enrichment analysis, network pharmacology, and pathway analysis is proposed to clarify the underlying pharmacological mechanisms of Shan Zha. As a result, 45 active components of Shan Zha that interacted with 161 protein targets were screened and identified. Moreover, gene ontology enrichment, network and pathway analysis indicated that Shan Zha is beneficial for the treatment of cardiovascular system diseases, digestive system diseases, immune system diseases, inflammatory diseases, cancer, and other diseases through multiple mechanisms. Our study not only proposed an integrated method to comprehensively elucidate the complicated mechanisms of Shan Zha for the treatment of various disorders at the system level, but also provided a reference approach for the mechanistic research of other functional foods.
Collapse
Affiliation(s)
- Jingxiao Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin 999077, Hong Kong Special Administrative Region
| | - Lilei Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Xiaoxiao Zhao
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, China
| | - Wei Zhou
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China. and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
31
|
Yao ZD, Cao YN, Peng LX, Yan ZY, Zhao G. Coarse Cereals and Legume Grains Exert Beneficial Effects through Their Interaction with Gut Microbiota: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:861-877. [PMID: 33264009 DOI: 10.1021/acs.jafc.0c05691] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coarse cereals and legume grains (CCLGs) are rich in specific macro- and functional elements that are considered important dietary components for maintaining human health. Therefore, determining the precise nutritional mechanism involved in exerting the health benefits of CCLGs can help understand dietary nutrition in a better manner. Evidence suggests that gut microbiota play a crucial role in the function of CCLGs via their complicated interplay with CCLGs. First, CCLGs modulate gut microbiota and function. Second, gut microbiota convert CCLGs into compounds that perform different functions. Third, gut microbiota mediate interactions among different CCLG components. Therefore, using gut microbiota to expound the nutritional mechanism of CCLGs is important for future studies. A precise and rapid gut microbiota research model is required to screen and evaluate the quality of CCLGs. The outcomes of such research may promote the rapid discovery, classification, and evaluation of CCLG resources, thereby opening a new opportunity to guide nutrition-based development of CCLG products.
Collapse
Affiliation(s)
- Zhen-Dong Yao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Zhu-Yun Yan
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| |
Collapse
|
32
|
Bouchez A, Vauchel P, D’Alessandro LG, Dimitrov K. Multi-objective optimization tool for ultrasound-assisted extraction including environmental impacts. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Xie Y, Wang H, He Z. Recent advances in polyphenols improving vascular endothelial dysfunction induced by endogenous toxicity. J Appl Toxicol 2020; 41:701-712. [PMID: 33251608 DOI: 10.1002/jat.4123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Yixi Xie
- Department of Burns and Reconstructive Surgery, Xiangya Hospital Central South University Changsha China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Xiangtan University Xiangtan China
| | - Hui Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Xiangtan University Xiangtan China
| | - Zhiyou He
- Department of Burns and Reconstructive Surgery, Xiangya Hospital Central South University Changsha China
| |
Collapse
|
34
|
Abstract
Purpose of Review In this review, we focus on microbiota modulation using non-digestible carbohydrate and polyphenols (i.e., prebiotics) that have the potential to modulate body weight. Recent Findings Prebiotics derived from plants have gained the interest of public and scientific communities as they may prevent diseases and help maintain health. Summary Maintaining a healthy body weight is key to reducing the risk of developing chronic metabolic complications. However, the prevalence of obesity has increased to pandemic proportions and is now ranked globally in the top five risk factors for death. While diet and behavioral modification programs aiming to reduce weight gain and promote weight loss are effective in the short term, they remain insufficient over the long haul as compliance is often low and weight regain is very common. As a result, novel dietary strategies targeting the gut microbiota have been successful in decreasing obesity and metabolic disorders via different molecular mechanisms.
Collapse
|
35
|
Simultaneous determination of antioxidant properties and total phenolic content of Siraitia grosvenorii by near infrared spectroscopy. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Gong X, Jiang S, Tian H, Xiang D, Zhang J. Polyphenols in the Fermentation Liquid of Dendrobium candidum Relieve Intestinal Inflammation in Zebrafish Through the Intestinal Microbiome-Mediated Immune Response. Front Immunol 2020; 11:1542. [PMID: 32765533 PMCID: PMC7379839 DOI: 10.3389/fimmu.2020.01542] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/11/2020] [Indexed: 01/04/2023] Open
Abstract
Previous studies of Dendrobium candidum (D. candidum), which is mainly distributed in tropical areas, have mainly focused on its functional polysaccharide; the effects of D. candidum polyphenols, the chemical composition of which may be improved by fermentation, have received limited attention, especially in in vivo models, which inevitably involve interactions with intestinal microorganisms. To address this challenge, metagenomic and metabolomic techniques, were applied, and immune factors and mucosal barrier-related proteins were determined to reveal the effects of fermented D. candidum polyphenols (FDC) on intestinal inflammation induced by oxazolone in zebrafish. The results showed that fermentation significantly changed the chemical composition of D. candidum and that FDC significantly improved the intestinal immune index. After the 21st day of FDC intervention, the abundance of Lactobacillus, Faecalibacterium, and Rummeliibacillus increased, but the abundance of the genera Shewanella, Geodermatophilus, Peptostreptococcaceae, and Mycobacterium decreased. At the same time, FDC significantly increased intestinal short-chain fatty acids (SCFAs). In addition, network analysis based on multi-omics indicated that FDC intake leads to changes in intestinal microbiota and intestinal metabolites, resulting in enhanced host immune function. These results indicate that FDC can improve intestinal health by regulating the intestinal microbiota and its metabolites to treat intestinal inflammation and regulate the host immune system. The present research improved our understanding of the utilization of D. candidum polyphenols and provided new evidence for the impacts of fermented D. candidum on host health.
Collapse
Affiliation(s)
- Xiaoyue Gong
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Shuaiming Jiang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Haiyan Tian
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Dong Xiang
- College of Food Science and Engineering, Hainan University, Haikou, China.,Key Laboratory of Food Nutrition and Functional Food in Hainan Province, Hainan University, Haikou, China
| | - Jiachao Zhang
- College of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
37
|
Krueger E, Brown AC. Aggregatibacter actinomycetemcomitans leukotoxin: From mechanism to targeted anti-toxin therapeutics. Mol Oral Microbiol 2020; 35:85-105. [PMID: 32061022 PMCID: PMC7359886 DOI: 10.1111/omi.12284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium associated with localized aggressive periodontitis, as well as other systemic diseases. This organism produces a number of virulence factors, all of which provide some advantage to the bacterium. Several studies have demonstrated that clinical isolates from diseased patients, particularly those of African descent, frequently belong to specific clones of A. actinomycetemcomitans that produce significantly higher amounts of a protein exotoxin belonging to the repeats-in-toxin (RTX) family, leukotoxin (LtxA), whereas isolates from healthy patients harbor minimally leukotoxic strains. This finding suggests that LtxA might play a key role in A. actinomycetemcomitans pathogenicity. Because of this correlation, much work over the past 30 years has been focused on understanding the mechanisms by which LtxA interacts with and kills host cells. In this article, we review those findings, highlight the remaining open questions, and demonstrate how knowledge of these mechanisms, particularly the toxin's interactions with lymphocyte function-associated antigen-1 (LFA-1) and cholesterol, enables the design of targeted anti-LtxA strategies to prevent/treat disease.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
38
|
Platelet Responses in Cardiovascular Disease: Sex-Related Differences in Nutritional and Pharmacological Interventions. Cardiovasc Ther 2020; 2020:2342837. [PMID: 32547635 PMCID: PMC7273457 DOI: 10.1155/2020/2342837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVD) represent one of the biggest causes of death globally, and their prevalence, aetiology, and outcome are related to genetic, metabolic, and environmental factors, among which sex- and age-dependent differences may play a key role. Among CVD risk factors, platelet hyperactivity deserves particular mention, as it is involved in the pathophysiology of main cardiovascular events (including stroke, myocardial infarction, and peripheral vascular injury) and is closely related to sex/age differences. Several determinants (e.g., hormonal status and traditional cardiovascular risk factors), together with platelet-related factors (e.g., plasma membrane composition, receptor signaling, and platelet-derived microparticles) can elucidate sex-related disparity in platelet functionality and CVD onset and outcome, especially in relation to efficacy of current primary and secondary interventional strategies. Here, we examined the state of the art concerning sex differences in platelet biology and their relationship with specific cardiovascular events and responses to common antiplatelet therapies. Moreover, as healthy nutrition is widely recognized to play a key role in CVD, we also focused our attention on specific dietary components (especially polyunsaturated fatty acids and flavonoids) and patterns (such as Mediterranean diet), which also emerged to impact platelet functions in a sex-dependent manner. These results highlight that full understanding of gender-related differences will be useful for designing personalized strategies, in order to prevent and/or treat platelet-mediated vascular damage.
Collapse
|
39
|
Tumova S, Houghton MJ, Williamson G. The effect of quercetin on endothelial cells is modified by heterocellular interactions. Food Funct 2020; 11:3916-3925. [PMID: 32363357 DOI: 10.1039/d0fo00141d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Single cell-type models are useful for determining mechanisms, but in vivo, cell-cell interactions are important, and neighbouring cells can impact endothelial cell function. Quercetin can attenuate endothelial dysfunction by modulating vascular tone and reducing inflammation. We determined the effect of quercetin on a co-culture between Human Umbilical Vein Endothelial Cells (HUVEC) and human HepG2 hepatic cells or human LHCN-M2 muscle cells. Heme oxygenase-1 (HO-1) mRNA and protein were decreased, pyruvate dehydrogenase kinase (PDK) 4 and glucose transporter (GLUT) 3 mRNA increased, and GLUT1 protein decreased in HUVEC when cultured with HepG2. GLUT transporters, but not the other targets, were similarly regulated in co-culture with muscle cells. Some but not all of the effects were mediated by lactate and transforming growth factor β1. Quercetin added apically to the endothelial cells upregulated HO-1 and downregulated PDK4 both in monoculture and in co-culture, but the total PDK4 levels were higher in the presence of HepG2 cells. In the absence of general permeability changes, glucose transport across the endothelial monolayer was elevated in the presence of HepG2 cells, however this effect was moderated by quercetin applied on the apical side of the endothelial cells. At lower glucose concentration, apical quercetin also promoted glucose uptake in HepG2 cells. Co-culturing HUVEC with the HepG2 cells showed capacity to modulate quercetin-elicited changes in endothelial gene transcription and glucose transport.
Collapse
|
40
|
|
41
|
Aguiar J, Gonçalves JL, Alves VL, Câmara JS. Chemical Fingerprint of Free Polyphenols and Antioxidant Activity in Dietary Fruits and Vegetables Using a Non-Targeted Approach Based on QuEChERS Ultrasound-Assisted Extraction Combined with UHPLC-PDA. Antioxidants (Basel) 2020; 9:antiox9040305. [PMID: 32283793 PMCID: PMC7222190 DOI: 10.3390/antiox9040305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023] Open
Abstract
Fruits and vegetables are considered a good source of antioxidants, which are beneficial in protecting the human body against damage induced by free radicals and other reactive oxygen (ROS) and nitrogen (RNS) species. In this work, we aimed to evaluate the integral antioxidant activity (AOA) and determine individual polyphenols in fruits and vegetables of frequent consumption. For this purpose, an innovative and high throughput analytical approach based on original QuEChERS assisted by ultrasound extraction (USAE), instead of the manual agitation used in the classical procedure, was optimized and implemented for the isolation of polyphenols. The total phenolic content (TPC), flavonoids, anthocyanins, and betalains were evaluated using different spectrophotometric assays. In addition, free radical scavenging by methods 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) were used to estimate the AOA of the investigated fruit and vegetable extracts. Red onion, tamarillo, and beetroot were the samples with the highest AOA. The quantification and identification of free low molecular weight polyphenols from QuEChERS-USAE extracts was carried out by ultra-high-pressure liquid chromatography equipped with a photodiode array detection system (UHPLC-PDA). Catechin was the most abundant polyphenol, followed by gentisic and ferulic acids, mainly in the watercress sample. In relation to flavonols, quercetin and kaempferol were found mostly in onion samples, and in small quantities in tomato and watercress. The improved analytical approach, QuEChERS-USAE/UHPLC-PDA, offers an attractive alternative for the analysis of polyphenols from fruit and vegetable samples, providing several advantages over traditional extraction techniques, in terms of reproducibility, simplicity, low cost, analysis speed, and analytical performance.
Collapse
Affiliation(s)
- Joselin Aguiar
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (V.L.A.)
| | - João L. Gonçalves
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (V.L.A.)
| | - Vera L. Alves
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (V.L.A.)
| | - José S. Câmara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (V.L.A.)
- Faculdade de Ciências Exactas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Correspondence: ; Tel.: +351-291705112; Fax: +351-291705149
| |
Collapse
|
42
|
Araujo CDS, Brito LD, Tarifa MO, Silva NJFD, Rodrigues KS, Cavalcante DGSM, Gomes AS, Zocoler MA, Yoshihara E, Camparoto ML, Job AE, Kerche LE. Protective effects of bark ethanolic extract from Spondias dulcis Forst F. against DNA damage induced by benzo[a]pyrene and cyclophosphamide. Genet Mol Biol 2019; 42:643-654. [PMID: 31188923 PMCID: PMC6905452 DOI: 10.1590/1678-4685-gmb-2018-0038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 01/15/2019] [Indexed: 12/27/2022] Open
Abstract
This study evaluated the genotoxicity, mutagenicity, antigenotoxicity, and
antimutagenicity effects on biochemical parameters of oxidative stress of the
Spondias dulcis bark ethanolic extract on mice. The extract
was evaluated in the doses of 500, 1000, and 1500 mg/kg bw via gavage. To
evaluate the protective effects of the extract, benzo[a]pyrene
(B[a]P) and cyclophosphamide (CP) were chosen as DNA damage
inducers. Genotoxicity and antigenotoxicity were evaluated by the comet assay.
Cytotoxicity, mutagenicity, and antimutagenicity were evaluated by the
micronucleus test in bone marrow and peripheral blood. The biochemical
parameters of oxidative stress were evaluated by the quantification of catalase
activity (CAT) and reduced glutathione (GSH) in total blood, liver and kidney,
and malondialdehyde (MDA), in liver and kidney. No genotoxic, cytotoxic, or
mutagenic effect was found on mice exposed to the extract. The extract depleted
the number of damaged nucleoids in total blood and the number of micronucleus
(MN) in both cell types. The extract was able to increase CAT activity and GSH
levels and decrease MDA levels after treatment with B[a]P and CP. The results
indicate that the S. dulcis extract has potential to be used as
preventive compound against DNA damage caused by CP and B[a]P.
Collapse
Affiliation(s)
- Caroline de S Araujo
- Faculdade de Artes, Ciências, Letras e Educação, Universidade do Oeste Paulista, Presidente Prudente, SP, Brazil
| | - Lorrane D Brito
- Faculdade de Artes, Ciências, Letras e Educação, Universidade do Oeste Paulista, Presidente Prudente, SP, Brazil
| | - Marina O Tarifa
- Faculdade de Medicina, Universidade do Oeste Paulista, Presidente Prudente, SP, Brazil
| | | | - Karoline S Rodrigues
- Faculdade de Farmácia, Universidade do Oeste Paulista, Presidente Prudente, SP, Brazil
| | - Dalita G S M Cavalcante
- Departmento de Física, Química e Biologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, SP, Brazil
| | - Andressa S Gomes
- Departmento de Física, Química e Biologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, SP, Brazil
| | - Marcos A Zocoler
- Faculdade de Farmácia, Universidade do Oeste Paulista, Presidente Prudente, SP, Brazil
| | - Eidi Yoshihara
- Agência Paulista de Tecnologia dos Agronegócios (APTA), Presidente Prudente, SP, Brazil
| | - Marjori L Camparoto
- Faculdade de Medicina, Universidade do Oeste Paulista, Presidente Prudente, SP, Brazil
| | - Aldo E Job
- Departmento de Física, Química e Biologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, SP, Brazil
| | - Leandra E Kerche
- Faculdade de Artes, Ciências, Letras e Educação, Universidade do Oeste Paulista, Presidente Prudente, SP, Brazil.,Faculdade de Medicina, Universidade do Oeste Paulista, Presidente Prudente, SP, Brazil
| |
Collapse
|
43
|
Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair (Amst) 2019; 82:102679. [PMID: 31450085 DOI: 10.1016/j.dnarep.2019.102679] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/27/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
|
44
|
|
45
|
HPLC-ESI-qTOF-MS/MS Characterization, Antioxidant Activities and Inhibitory Ability of Digestive Enzymes with Molecular Docking Analysis of Various Parts of Raspberry ( Rubus ideaus L.). Antioxidants (Basel) 2019; 8:antiox8080274. [PMID: 31382647 PMCID: PMC6719955 DOI: 10.3390/antiox8080274] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022] Open
Abstract
The anti-oxidative phenolic compounds in plant extracts possess multiple pharmacological functions. However, the phenolic characterization and in vitro bio-activities in various parts of raspberry (Rubus idaeus L.) have not been investigated systematically. In the present study, the phenolic profiles of leaves (LE), fruit pulp (FPE), and seed extracts (SE) in raspberry were analyzed by HR-HPLC-ESI-qTOF-MS/MS method, and their antioxidant activities and digestive enzymes inhibitory abilities were also investigated. The molecular docking analysis was used to delineate their inhibition mechanisms toward type II diabetes related digestive enzymes. Regardless of LE, FPE, or SE, 50% methanol was the best solvent for extracting high contents of phenolic compounds, followed by 50% ethanol and 100% methanol. The LE of raspberry displayed the highest total phenolic content (TPC) and total flavonoid content (TFC). A total of nineteen phenolic compounds were identified. The quantitative results showed that gallic acid, ellagic acid, and procyanidin C3 were the major constituents in the three extracts. The various parts extracts of raspberry all exhibited the strong antioxidant activities, especially for LE. Moreover, the powerful inhibitory effects of the three extracts against digestive enzymes (α-glucosidase and α-amylase) were observed. The major phenolic compounds of the three extracts also showed good inhibitory activities of digestive enzyme in a dose-dependent manner. The underlying inhibitory mechanisms of the main phenolic compounds against digestive enzymes were clarified by molecular docking analysis. The present study demonstrated that the various parts of raspberry had strong antioxidant activities and inhibitory effects on digestive enzymes, and can potentially prevent oxidative damage or diabetes-related problems.
Collapse
|
46
|
Mahrooz A, Mackness M, Bagheri A, Ghaffari-Cherati M, Masoumi P. The epigenetic regulation of paraoxonase 1 (PON1) as an important enzyme in HDL function: The missing link between environmental and genetic regulation. Clin Biochem 2019; 73:1-10. [PMID: 31351988 DOI: 10.1016/j.clinbiochem.2019.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Paraoxonase 1 (PON1) is an important antiatherogenic and antioxidant enzyme in the circulation that has been associated with adverse health outcomes particularly cardiovascular disease (CVD) and other metabolic disorders. PON1 is a highly promiscuous enzyme and can hydrolyse a large variety of substrates, however, detailed structure/function studies have concluded that the natural substrates for PON1 are lipophilic lactones. The interindividual variability in PON1 activity has been mainly attributed to genetic determinants; however, it appears that the contribution of epigenetics has been ignored as a result of the lack of adequate research. CONTENT Epigenetic processes, including the histone modifications in the PON1 gene, the methylation of CpG sites in the promoter region of the PON1 gene and the microRNA modulation of PON1 expression can be responsible for the under researched gap between the environmental and genetic regulation of PON1. Environmental factors, including diet, pollution and lifestyle-related factors widely differ between individuals and populations and can cause large differences in the distribution of PON1 and it is important to note that their effects may be exerted through the epigenetic processes. This review discusses and emphasizes the importance of the epigenetic regulation of PON1 as a less-studied subject to highlight future research landscapes. SUMMARY Epigenetic regulation is known as an important contributor to the pathogenesis of human diseases, particularly multifactorial diseases such as CVD, which is life-threatening. Due to the importance of PON1 in the functionality of high-density lipoprotein (HDL) and its association with CVD, further explorations of its epigenetic regulation using advanced methods such as Methyl-Seq may lead to the identification of new epigenetic contributors that in turn may lead to targeted therapies.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mike Mackness
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Abouzar Bagheri
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghaffari-Cherati
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parisa Masoumi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
47
|
Li R, Hao R, Zhu Y. Steam radish sprout (
Raphanus sativus
L.): active substances, antioxidant activities and non‐targeted metabolomics analysis. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ru Li
- College of Food Science & Nutritional Engineering China Agricultural University No. 17 Qinghua East Rd Beijing 100083China
| | - Rui Hao
- College of Food Science & Nutritional Engineering China Agricultural University No. 17 Qinghua East Rd Beijing 100083China
| | - Yi Zhu
- College of Food Science & Nutritional Engineering China Agricultural University No. 17 Qinghua East Rd Beijing 100083China
| |
Collapse
|
48
|
Tumova S, Kerimi A, Williamson G. Long term treatment with quercetin in contrast to the sulfate and glucuronide conjugates affects HIF1α stability and Nrf2 signaling in endothelial cells and leads to changes in glucose metabolism. Free Radic Biol Med 2019; 137:158-168. [PMID: 31029788 DOI: 10.1016/j.freeradbiomed.2019.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Endothelial functionality profoundly contributes to cardiovascular health. The effects of flavonoids shown to improve endothelial performance include regulating blood pressure by modulating endothelial nitric oxide synthase and NADPH oxidases, but their impact on glucose uptake and metabolism has not been explored. We treated human umbilical vein endothelial cells (HUVEC) with the flavonoid quercetin and its circulating metabolites acutely and chronically, then assessed glucose uptake, glucose metabolism, gene transcription and protein expression. Acute treatment had no effect on glucose uptake, ruling out any direct interaction with sugar transporters. Long term treatment with quercetin, but not quercetin 3-O-glucuronide or 3'-O-sulfate, significantly increased glucose uptake. Heme oxygenase-1 (HO-1) was induced by quercetin but not its conjugates, but was not implicated in the glucose uptake stimulation since hemin, a classical inducer of HO-1, did not affect glucose metabolism. Quercetin increased stability of the transcription factor hypoxia induced factor 1α (HIF1α), a powerful stimulant of glucose metabolism, which was also paralleled by treatment with a prolyl-4-hydroxylase inhibitor dimethyloxalylglycine (DMOG). 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which regulates the rate of glycolysis, was upregulated by both quercetin and DMOG. Pyruvate dehydrogenase kinase (PDK) isoforms regulate pyruvate dehydrogenase; PDK2 and PDK4 were down-regulated by both effectors, but only DMOG also upregulated PDK1 and PDK3. Quercetin, but not DMOG, increased glucose-6-phosphate dehydrogenase. Chronic quercetin treatment also stimulated glucose transport across the HUVEC monolyer in a 3D culture model. Gene expression of several flavonoid transporters was repressed by quercetin, but this was either abolished (Organic anion transporter polypeptide 4C1) or reversed (Multidrug resistance gene 1) by both conjugates. We conclude that quercetin and its circulating metabolites differentially modulate glucose uptake/metabolism in endothelial cells, through effects on HIF1α and transcriptional regulation of energy metabolism.
Collapse
Affiliation(s)
- Sarka Tumova
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK; Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Notting Hill BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia.
| |
Collapse
|
49
|
Mileo AM, Nisticò P, Miccadei S. Polyphenols: Immunomodulatory and Therapeutic Implication in Colorectal Cancer. Front Immunol 2019; 10:729. [PMID: 31031748 PMCID: PMC6470258 DOI: 10.3389/fimmu.2019.00729] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Polyphenolic compounds, widely present in fruits, vegetables, and cereals, have potential benefits for human health and are protective agents against the development of chronic/degenerative diseases including cancer. More recently these bioactive molecules have been gaining great interest as anti-inflammatory and immunomodulatory agents, mainly in neoplasia where the pro-inflammatory context might promote carcinogenesis. Colorectal cancer (CRC) is considered a major public healthy issue, a leading cause of cancer mortality and morbidity worldwide. Epidemiological, pre-clinical and clinical investigations have consistently highlighted important relationships between large bowel inflammation, gut microbiota (GM), and colon carcinogenesis. Many experimental studies and clinical evidence suggest that polyphenols have a relevant role in CRC chemoprevention, exhibit cytotoxic capability vs. CRC cells and induce increased sensitization to chemo/radiotherapies. These effects are most likely related to the immunomodulatory properties of polyphenols able to modulate cytokine and chemokine production and activation of immune cells. In this review we summarize recent advancements on immunomodulatory activities of polyphenols and their ability to counteract the inflammatory tumor microenvironment. We focus on potential role of natural polyphenols in increasing the cell sensitivity to colon cancer therapies, highlighting the polyphenol-based combined treatments as innovative immunomodulatory strategies to inhibit the growth of CRC.
Collapse
Affiliation(s)
- Anna Maria Mileo
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefania Miccadei
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
50
|
Rui Q, Ni H, Liu H, Zhu X, Gao R. Coffee and tea consumption and the risk for subarachnoid hemorrhage: A meta-analysis. Nutrition 2019; 59:21-28. [DOI: 10.1016/j.nut.2018.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/03/2018] [Accepted: 06/11/2018] [Indexed: 01/06/2023]
|