1
|
Zhen LL, Feng L, Jiang WD, Wu P, Liu Y, Tang L, Li SW, Zhong CB, Zhou XQ. Exploring the novel benefits of leucine: Protecting nitrite-induced liver damage in sub-adult grass carp (Ctenopharyngodon idella) through regulating mitochondria quality control. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109690. [PMID: 38866347 DOI: 10.1016/j.fsi.2024.109690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Leucine is an essential amino acid for fish. The ability of leucine to resist stress in fish has not been reported. Nitrite is a common pollutant in the aquatic environment. Therefore, we investigated the effects of dietary leucine on growth performance and nitrite-induced liver damage, mitochondrial dysfunction, autophagy, and apoptosis for sub-adult grass carp. A total of 450 grass carp (615.91 ± 1.15 g) were selected and randomly placed into 18 net cages. The leucine contents of the six diets were 2.91, 5.90, 8.92, 11.91, 14.93, and 17.92 g/kg, respectively. After a 9-week feeding trial, the nitrite exposure experiment was set up for 96 h. These results indicated that dietary leucine significantly promoted FW, WG, PWG, and SGR of sub-adult grass carp (P < 0.05). Appropriate levels of dietary leucine (11.91-17.92 g/kg) decreased the activities of serum parameters (glucose, cortisol, and methemoglobin contents, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and lactate dehydrogenase), the contents of reactive oxygen species (ROS), nitric oxide (NO) and peroxynitrite (ONOO-). In addition, appropriate levels of dietary leucine (11.91-17.92 g/kg) increased the mRNA levels of mitochondrial biogenesis genes (PGC-1α, Nrf1/2, TFAM), fusion-related genes (Opa1, Mfn1/2) (P < 0.05), and decreased the mRNA levels of caspase 3, caspase 8, caspase 9, fission-related gene (Drp1), mitophagy-related genes (Pink1, Parkin) and autophagy-related genes (Beclin1, Ulk1, Atg5, Atg7, Atg12) (P < 0.05). Appropriate levels of dietary leucine (8.92-17.92 g/kg) also increased the protein levels of AMP-activated protein kinase (AMPK), prostacyclin (p62) and decreased the protein levels of protein light chain 3 (LC3), E3 ubiquitin ligase (Parkin), and Cytochrome c (Cytc). Appropriate levels of leucine (8.92-17.92 g/kg) could promote growth performance and alleviate nitrite-induced mitochondrial dysfunction, autophagy, apoptosis for sub-adult grass carp. Based on quadratic regression analysis of PWG and serum GPT activity, dietary leucine requirements of sub-adult grass carp were recommended to be 12.47 g/kg diet and 12.55 g/kg diet, respectively.
Collapse
Affiliation(s)
- Lu-Lu Zhen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Cheng-Bo Zhong
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| |
Collapse
|
2
|
VanDerStad LR, Wyatt EC, Vaughan RA. Excess Branched-Chain Amino Acids Suppress Mitochondrial Function and Biogenic Signaling but Not Mitochondrial Dynamics in a Myotube Model of Skeletal Muscle Insulin Resistance. Metabolites 2024; 14:389. [PMID: 39057712 PMCID: PMC11279211 DOI: 10.3390/metabo14070389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Branched-chain amino acids (BCAA) are correlated with severity of insulin resistance, which may partially result from mitochondrial dysfunction. Mitochondrial dysfunction is also common during insulin resistance and is regulated in part by altered mitochondrial fusion and fission (mitochondrial dynamics). To assess the effect of BCAA on mitochondrial dynamics during insulin resistance, the present study examined the effect of BCAA on mitochondrial function and indicators of mitochondrial dynamics in a myotube model of insulin resistance. C2C12 myotubes were treated with stock DMEM or DMEM with additional BCAA at 0.2 mM, 2 mM, or 20 mM to achieve a continuum of concentrations ranging from physiologically attainable to supraphysiological (BCAA overload) both with and without hyperinsulinemia-mediated insulin resistance. qRT-PCR and Western blot were used to measure gene and protein expression of targets associated with mitochondrial dynamics. Mitochondrial function was assessed by oxygen consumption, and mitochondrial content was measured using mitochondrial-specific staining. Insulin resistance reduced mitochondrial function, peroxisome proliferator-activated receptor gamma coactivator 1-alpha mRNA, and citrate synthase expression mRNA, but not protein expression. Excess BCAA at 20 mM also independently reduced mitochondrial function in insulin-sensitive cells. BCAA did not alter indicators of mitochondrial dynamics at the mRNA or protein level, while insulin resistance reduced mitochondrial fission protein 1 mRNA, but not protein expression. Collectively, BCAA at excessively high levels or coupled with insulin resistances reduce mitochondrial function and content but do not appear to alter mitochondrial dynamics under the tested conditions.
Collapse
Affiliation(s)
| | | | - Roger A. Vaughan
- Department of Health and Human Performance, High Point University, High Point, NC 27268, USA; (L.R.V.); (E.C.W.)
| |
Collapse
|
3
|
Li A, Han X, Liu L, Zhang G, Du P, Zhang C, Li C, Chen B. Dairy products and constituents: a review of their effects on obesity and related metabolic diseases. Crit Rev Food Sci Nutr 2023; 64:12820-12840. [PMID: 37724572 DOI: 10.1080/10408398.2023.2257782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Obesity has become a global public health problem that seriously affects the quality of life. As an important part of human diet, dairy products contain a large number of nutrients that are essential for maintaining human health, such as proteins, peptides, lipids, vitamins, and minerals. A growing number of epidemiological investigations provide strong evidence on dairy interventions for weight loss in overweight/obese populations. Therefore, this paper outlines the relationship between the consumption of different dairy products and obesity and related metabolic diseases. In addition, we dive into the mechanisms related to the regulation of glucose and lipid metabolism by functional components in dairy products and the interaction with gut microbes. Lastly, the role of dairy products on obesity of children and adolescents is revisited. We conclude that whole dairy products exert more beneficial effect than single milk constituent on alleviating obesity and that dairy matrix has important implications for metabolic health.
Collapse
Affiliation(s)
- Aili Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xueting Han
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Libo Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Guofang Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Peng Du
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Research Institute, Harbin, China
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
4
|
Gorji AE, Ostaszewski P, Urbańska K, Sadkowski T. Does β-Hydroxy-β-Methylbutyrate Have Any Potential to Support the Treatment of Duchenne Muscular Dystrophy in Humans and Animals? Biomedicines 2023; 11:2329. [PMID: 37626825 PMCID: PMC10452677 DOI: 10.3390/biomedicines11082329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Skeletal muscle is the protein reservoir of our body and an important regulator of glucose and lipid homeostasis. The dystrophin gene is the largest gene and has a key role in skeletal muscle construction and function. Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy in humans, mice, dogs, and cats. Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular condition causing progressive muscle weakness and premature death. β-hydroxy β-methylbutyrate (HMB) prevents deleterious muscle responses under pathological conditions, including tumor and chronic steroid therapy-related muscle losses. The use of HMB as a dietary supplement allows for increasing lean weight gain; has a positive immunostimulatory effect; is associated with decreased mortality; and attenuates sarcopenia in elderly animals and individuals. This study aimed to identify some genes, metabolic pathways, and biological processes which are common for DMD and HMB based on existing literature and then discuss the consequences of that interaction.
Collapse
Affiliation(s)
- Abdolvahab Ebrahimpour Gorji
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.G.); (P.O.)
| | - Piotr Ostaszewski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.G.); (P.O.)
| | - Kaja Urbańska
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.E.G.); (P.O.)
| |
Collapse
|
5
|
Duan G, Zheng C, Yu J, Zhang P, Wan M, Zheng J, Duan Y. β-Hydroxy-β-methyl Butyrate Regulates the Lipid Metabolism, Mitochondrial Function, and Fat Browning of Adipocytes. Nutrients 2023; 15:nu15112550. [PMID: 37299513 DOI: 10.3390/nu15112550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
A growing number of in vivo studies demonstrated that β-hydroxy-β-methyl butyrate (HMB) can serve as a lipid-lowering nutrient. Despite this interesting observation, the use of adipocytes as a model for research is yet to be explored. To ascertain the effects of HMB on the lipid metabolism of adipocytes and elucidate the underlying mechanisms, the 3T3-L1 cell line was employed. Firstly, serial doses of HMB were added to 3T3-L1 preadipocytes to evaluate the effects of HMB on cell proliferation. HMB (50 µM) significantly promoted the proliferation of preadipocytes. Next, we investigated whether HMB could attenuate fat accumulation in adipocytes. The results show that HMB treatment (50 µM) reduced the triglyceride (TG) content. Furthermore, HMB was found to inhibit lipid accumulation by suppressing the expression of lipogenic proteins (C/EBPα and PPARγ) and increasing the expression of lipolysis-related proteins (p-AMPK, p-Sirt1, HSL, and UCP3). We also determined the concentrations of several lipid metabolism-related enzymes and fatty acid composition in adipocytes. The HMB-treated cells showed reduced G6PD, LPL, and ATGL concentrations. Moreover, HMB improved the fatty acid composition in adipocytes, manifested by increases in the contents of n6 and n3 PUFAs. The enhancement of the mitochondrial respiratory function of 3T3-L1 adipocytes was confirmed via Seahorse metabolic assay, which showed that HMB treatment elevated basal mitochondrial respiration, ATP production, H+ leak, maximal respiration, and non-mitochondrial respiration. In addition, HMB enhanced fat browning of adipocytes, and this effect might be associated with the activation of the PRDM16/PGC-1α/UCP1 pathway. Taken together, HMB-induced changes in the lipid metabolism and mitochondrial function may contribute to preventing fat deposition and improving insulin sensitivity.
Collapse
Affiliation(s)
- Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiayi Yu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengliao Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Miao M, Wang X, Liu T, Li YJ, Yu WQ, Yang TM, Guo SD. Targeting PPARs for therapy of atherosclerosis: A review. Int J Biol Macromol 2023:125008. [PMID: 37217063 DOI: 10.1016/j.ijbiomac.2023.125008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Atherosclerosis, a chief pathogenic factor of cardiovascular disease, is associated with many factors including inflammation, dyslipidemia, and oxidative stress. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and are widely expressed with tissue- and cell-specificity. They control multiple genes that are involved in lipid metabolism, inflammatory response, and redox homeostasis. Given the diverse biological functions of PPARs, they have been extensively studied since their discovery in 1990s. Although controversies exist, accumulating evidence have demonstrated that PPAR activation attenuates atherosclerosis. Recent advances are valuable for understanding the mechanisms of action of PPAR activation. This article reviews the recent findings, mainly from the year of 2018 to present, including endogenous molecules in regulation of PPARs, roles of PPARs in atherosclerosis by focusing on lipid metabolism, inflammation, and oxidative stress, and synthesized PPAR modulators. This article provides information valuable for researchers in the field of basic cardiovascular research, for pharmacologists that are interested in developing novel PPAR agonists and antagonists with lower side effects as well as for clinicians.
Collapse
Affiliation(s)
- Miao Miao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wen-Qian Yu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tong-Mei Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
7
|
Matsunaga Y, Tamura Y, Takahashi K, Kitaoka Y, Takahashi Y, Hoshino D, Kadoguchi T, Hatta H. Branched-chain amino acid supplementation suppresses the detraining-induced reduction of mitochondrial content in mouse skeletal muscle. FASEB J 2022; 36:e22628. [PMID: 36322028 DOI: 10.1096/fj.202200588r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
Exercise training enhances oxidative capacity whereas detraining reduces mitochondrial content in skeletal muscle. The strategy to suppress the detraining-induced reduction of mitochondrial content has not been fully elucidated. As previous studies reported that branched-chain amino acid (BCAA) ingestion increased mitochondrial content in skeletal muscle, we evaluated whether BCAA supplementation could suppress the detraining-induced reduction of mitochondrial content. Six-week-old male Institute of Cancer Research (ICR) mice were randomly divided into four groups as follows: control (Con), endurance training (Tr), detraining (DeTr), and detraining with BCAA supplementation (DeTr + BCAA). Mice in Tr, DeTr, and DeTr + BCAA performed treadmill running exercises [20-30 m/min, 60 min, 5 times/week, 4 weeks]. Then, mice in DeTr and DeTr + BCAA were administered with water or BCAA [0.6 mg/g of body weight, twice daily] for 2 weeks of detraining. In whole skeletal muscle, mitochondrial enzyme activities and protein content were decreased after 2 weeks of detraining, but the reduction was suppressed by BCAA supplementation. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein content, a master regulator of mitochondrial biogenesis, was decreased by detraining irrespective of BCAA ingestion. Regarding mitochondrial degradation, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), a mitophagy-related protein, was significantly higher in the Tr group than in the DeTr + BCAA group, but not different from in the DeTr group. With respect to mitochondrial quality, BCAA ingestion did not affect oxygen consumption rate (OCR) and reactive oxygen species (ROS) production in isolated mitochondria. Our findings suggest that BCAA ingestion suppresses the detraining-induced reduction of mitochondrial content partly through inhibiting mitophagy.
Collapse
Affiliation(s)
- Yutaka Matsunaga
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Tamura
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Kenya Takahashi
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu Kitaoka
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan.,Department of Human Sciences, Kanagawa University, Yokohama, Japan
| | - Yumiko Takahashi
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan
| | - Daisuke Hoshino
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan.,Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
| | | | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Fairfield WD, Minton DM, Elliehausen CJ, Nichol AD, Cook TL, Rathmacher JA, Pitchford LM, Paluska SA, Kuchnia AJ, Allen JM, Konopka AR. Small-Scale Randomized Controlled Trial to Explore the Impact of β-Hydroxy-β-Methylbutyrate Plus Vitamin D 3 on Skeletal Muscle Health in Middle Aged Women. Nutrients 2022; 14:4674. [PMID: 36364934 PMCID: PMC9658601 DOI: 10.3390/nu14214674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
β-Hydroxy-β-methylbutyrate (HMB), a leucine metabolite, can increase skeletal muscle size and function. However, HMB may be less effective at improving muscle function in people with insufficient Vitamin D3 (25-OH-D < 30 ng/mL) which is common in middle-aged and older adults. Therefore, we tested the hypothesis that combining HMB plus Vitamin D3 (HMB + D) supplementation would improve skeletal muscle size, composition, and function in middle-aged women. In a double-blinded fashion, women (53 ± 1 yrs, 26 ± 1 kg/m2, n = 43) were randomized to take placebo or HMB + D (3 g Calcium HMB + 2000 IU D per day) during 12 weeks of sedentary behavior (SED) or resistance exercise training (RET). On average, participants entered the study Vitamin D3 insufficient while HMB + D increased 25-OH-D to sufficient levels after 8 and 12 weeks. In SED, HMB + D prevented the loss of arm lean mass observed with placebo. HMB + D increased muscle volume and decreased intermuscular adipose tissue (IMAT) volume in the thigh compared to placebo but did not change muscle function. In RET, 12-weeks of HMB + D decreased IMAT compared to placebo but did not influence the increase in skeletal muscle volume or function. In summary, HMB + D decreased IMAT independent of exercise status and may prevent the loss or increase muscle size in a small cohort of sedentary middle-aged women. These results lend support to conduct a longer duration study with greater sample size to determine the validity of the observed positive effects of HMB + D on IMAT and skeletal muscle in a small cohort of middle-aged women.
Collapse
Affiliation(s)
- William D. Fairfield
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Dennis M. Minton
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Geriatrics Research Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Christian J. Elliehausen
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Geriatrics Research Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Alexander D. Nichol
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Taylor L. Cook
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | - Scott A. Paluska
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Adam J. Kuchnia
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jacob M. Allen
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Adam R. Konopka
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Geriatrics Research Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| |
Collapse
|
9
|
Hinkle JS, Rivera CN, Vaughan RA. Branched-Chain Amino Acids and Mitochondrial Biogenesis: An Overview and Mechanistic Summary. Mol Nutr Food Res 2022; 66:e2200109. [PMID: 36047448 PMCID: PMC9786258 DOI: 10.1002/mnfr.202200109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/17/2022] [Indexed: 12/30/2022]
Abstract
Branched-chain amino acids (BCAA) are essential in the diet and promote several vital cell responses which may have benefits for health and athletic performance, as well as disease prevention. While BCAA are well-known for their ability to stimulate muscle protein synthesis, their effects on cell energetics are also becoming well-documented, but these receive less attention. In this review, much of the current evidence demonstrating BCAA ability (as individual amino acids or as part of dietary mixtures) to alter regulators of cellular energetics with an emphasis on mitochondrial biogenesis and related signaling is highlighted. Several studies have shown, both in vitro and in vivo, that BCAA (either individual or as a mixture) may promote signaling associated with increased mitochondrial biogenesis including the upregulation of master regulator of mitochondrial biogenesis peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), as well as numerous downstream targets and related function. However, sparse data in humans and the difficulty of controlling variables associated with feeding studies leave the physiological relevance of these findings unclear. Future well-controlled diet studies will be needed to assess if BCAA consumption is associated with increased mitochondrial biogenesis and improved metabolic outcomes in healthy and/or diseased human populations.
Collapse
Affiliation(s)
- Jason S. Hinkle
- Department of Exercise ScienceHigh Point UniversityHigh PointNC27262‐3598USA
| | - Caroline N. Rivera
- Department of Exercise ScienceHigh Point UniversityHigh PointNC27262‐3598USA
| | - Roger A. Vaughan
- Department of Exercise ScienceHigh Point UniversityHigh PointNC27262‐3598USA
| |
Collapse
|
10
|
Rivera ME, Rivera CN, Vaughan RA. Excess branched-chain amino acids alter myotube metabolism and substrate preference which is worsened by concurrent insulin resistance. Endocrine 2022; 76:18-28. [PMID: 34811646 DOI: 10.1007/s12020-021-02939-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Branched-chain amino acids (BCAA) have been shown to enhance several cellular signaling pathways including protein synthesis and mitochondrial biogenesis, yet population data demonstrate a correlation between circulating BCAA and severity of insulin resistance which has been hypothesized to be, in part, a byproduct of BCAA inhibition of mitochondrial function. The purpose of this study is to examine the effect of a BCAA mixture on muscle metabolism and related gene expression in vitro. METHODS C2C12 myotubes were treated with a BCAA mixture containing leucine:isoleucine:valine at a ratio of 2:1:1 at 0.2, 2, or 20 mM (based on leucine content) for 6 days. qRT-PCR was used to measure metabolic gene expression. Oxygen consumption and extracellular acidification were used to assess mitochondrial and glycolytic metabolism, respectively. Mitochondrial content was determined via mitochondrial-specific staining. RESULTS Despite significantly elevated mitochondrial staining, 6-day BCAA treatment reduced basal mitochondrial metabolism at a supraphysiological concentration (20 mM) in both insulin sensitive and resistant cells. Peak mitochondrial capacity was also reduced in insulin-resistant (but not insulin sensitive) cells. Conversely, basal glycolytic metabolism was elevated following 20 mM BCAA treatment, regardless of insulin resistance. In addition, insulin-resistant cells treated with 20 mM BCAA exhibited reduced gene expression of Ppargc1a, Cytc, Atp5b, Glut4, and several glycolytic enzymes versus insulin sensitive cells treated with 20 mM BCAA. CONCLUSIONS Collectively, these findings suggest BCAA at supraphysiologically high levels may negatively alter mitochondrial metabolism, and concurrent insulin resistance may also diminish peak mitochondrial capacity, as well as impede molecular adaptations that support a transition to a glycolytic preference/compensation.
Collapse
Affiliation(s)
- Madison E Rivera
- Department of Exercise Science, High Point University, High Point, NC, USA
| | - Caroline N Rivera
- Department of Exercise Science, High Point University, High Point, NC, USA
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, High Point, NC, USA.
| |
Collapse
|
11
|
Cui C, Wu C, Wang J, Zheng X, Ma Z, Zhu P, Guan W, Zhang S, Chen F. Leucine supplementation during late gestation globally alters placental metabolism and nutrient transport via modulation of the PI3K/AKT/mTOR signaling pathway in sows. Food Funct 2022; 13:2083-2097. [PMID: 35107470 DOI: 10.1039/d1fo04082k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a previously published study we reported that sow dietary leucine supplementation during late pregnancy significantly improved newborn piglet birth weight by stimulating protein synthesis in the longissimus dorsi muscle. However, there is still limited knowledge as to whether leucine can exert its effects on the placenta, one of the most important temporal organs during pregnancy, to promote maternal-fetal nutrient supply and thus contribute to fetal intrauterine development. Therefore, we tested this hypothesis in the present study. In total, 150 sows at day 90 of gestation were divided into three groups and fed with either a control diet (CON), CON + 0.4% Leu or CON + 0.8% Leu, respectively, until parturition. Placental metabolomics, full spectrum amino acids and nutrient transporters were systematically analyzed after sample collection. The results indicated that Leu supplementation led to an altered placental metabolism with an increased number of metabolites related to glycolysis and the oxidation of fatty acids, as well as elevated levels of amino acid accumulation in the placenta. In addition, nutrient transporters of amino acids, glucose and fatty acids in the placenta were globally up-regulated and several enzymes related to energy metabolism, including hexokinase, succinate dehydrogenase, lactated hydrogenase, glycogen phosphorylase and hydroxyacyl-CoA-dehydrogenase, were also significantly increased with no change observed in the antioxidative status of those groups with Leu supplementation. Furthermore, the phosphorylation of PI3K, Akt, and mTOR was enhanced in the placenta of sows undergoing Leu treatment. Collectively, we concluded that supplementing the diets of sows with Leu during late gestation globally altered placental metabolism and promoted maternal-fetus nutrient transport (amino acids, glucose, and fatty acids) via modulation of the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Chang Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Caichi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Ziwei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Pengwei Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Cannataro R, Carbone L, Petro JL, Cione E, Vargas S, Angulo H, Forero DA, Odriozola-Martínez A, Kreider RB, Bonilla DA. Sarcopenia: Etiology, Nutritional Approaches, and miRNAs. Int J Mol Sci 2021; 22:9724. [PMID: 34575884 PMCID: PMC8466275 DOI: 10.3390/ijms22189724] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia, an age-related decline in skeletal muscle mass and function, dramatically affects the quality of life. Although there is a consensus that sarcopenia is a multifactorial syndrome, the etiology and underlying mechanisms are not yet delineated. Moreover, research about nutritional interventions to prevent the development of sarcopenia is mainly focused on the amount and quality of protein intake. The impact of several nutrition strategies that consider timing of food intake, anti-inflammatory nutrients, metabolic control, and the role of mitochondrial function on the progression of sarcopenia is not fully understood. This narrative review summarizes the metabolic background of this phenomenon and proposes an integral nutritional approach (including dietary supplements such as creatine monohydrate) to target potential molecular pathways that may affect reduce or ameliorate the adverse effects of sarcopenia. Lastly, miRNAs, in particular those produced by skeletal muscle (MyomiR), might represent a valid tool to evaluate sarcopenia progression as a potential rapid and early biomarker for diagnosis and characterization.
Collapse
Affiliation(s)
- Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
| | - Leandro Carbone
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Faculty of Medicine, University of Salvador, Buenos Aires 1020, Argentina
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
| | - Salvador Vargas
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain
| | - Heidy Angulo
- Grupo de Investigación Programa de Medicina (GINUMED), Corporación Universitaria Rafael Núñez, Cartagena 130001, Colombia;
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Adrián Odriozola-Martínez
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Diego A. Bonilla
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| |
Collapse
|
13
|
Singh SS, Kumar A, Welch N, Sekar J, Mishra S, Bellar A, Gangadhariah M, Attaway A, Al Khafaji H, Wu X, Pathak V, Agrawal V, McMullen MR, Hornberger TA, Nagy LE, Davuluri G, Dasarathy S. Multiomics-Identified Intervention to Restore Ethanol-Induced Dysregulated Proteostasis and Secondary Sarcopenia in Alcoholic Liver Disease. Cell Physiol Biochem 2021; 55:91-116. [PMID: 33543862 DOI: 10.33594/000000327] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS Signaling and metabolic perturbations contribute to dysregulated skeletal muscle protein homeostasis and secondary sarcopenia in response to a number of cellular stressors including ethanol exposure. Using an innovative multiomics-based curating of unbiased data, we identified molecular and metabolic therapeutic targets and experimentally validated restoration of protein homeostasis in an ethanol-fed mouse model of liver disease. METHODS Studies were performed in ethanol-treated differentiated C2C12 myotubes and physiological relevance established in an ethanol-fed mouse model of alcohol-related liver disease (mALD) or pair-fed control C57BL/6 mice. Transcriptome and proteome from ethanol treated-myotubes and gastrocnemius muscle from mALD and pair-fed mice were analyzed to identify target pathways and molecules. Readouts including signaling responses and autophagy markers by immunoblots, mitochondrial oxidative function and free radical generation, and metabolic studies by gas chromatography-mass spectrometry and sarcopenic phenotype by imaging. RESULTS Multiomics analyses showed that ethanol impaired skeletal muscle mTORC1 signaling, mitochondrial oxidative pathways, including intermediary metabolite regulatory genes, interleukin-6, and amino acid degradation pathways are β-hydroxymethyl-butyrate targets. Ethanol decreased mTORC1 signaling, increased autophagy flux, impaired mitochondrial oxidative function with decreased tricarboxylic acid cycle intermediary metabolites, ATP synthesis, protein synthesis and myotube diameter that were reversed by HMB. Consistently, skeletal muscle from mALD had decreased mTORC1 signaling, reduced fractional and total muscle protein synthesis rates, increased autophagy markers, lower intermediary metabolite concentrations, and lower muscle mass and fiber diameter that were reversed by β-hydroxymethyl-butyrate treatment. CONCLUSION An innovative multiomics approach followed by experimental validation showed that β-hydroxymethyl-butyrate restores muscle protein homeostasis in liver disease.
Collapse
Affiliation(s)
| | - Avinash Kumar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA.,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Jinendiran Sekar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Saurabh Mishra
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Annette Bellar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | | | - Amy Attaway
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA.,Department of Pulmonology, Cleveland Clinic, Cleveland, OH, USA
| | - Hayder Al Khafaji
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaoqin Wu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Vai Pathak
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Vandana Agrawal
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Megan R McMullen
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Troy A Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | | | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA, .,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
14
|
Gonzalez-Armenta JL, Li N, Lee RL, Lu B, Molina AJA. Heterochronic Parabiosis: Old Blood Induces Changes in Mitochondrial Structure and Function of Young Mice. J Gerontol A Biol Sci Med Sci 2021; 76:434-439. [PMID: 33377482 PMCID: PMC8177798 DOI: 10.1093/gerona/glaa299] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Heterochronic parabiosis models have been utilized to demonstrate the role of blood-borne circulating factors in systemic effects of aging. In previous studies, heterochronic parabiosis has shown positive effects across multiple tissues in old mice. More recently, a study demonstrated old blood had a more profound negative effect on muscle performance and neurogenesis of young mice. In this study, we used heterochronic parabiosis to test the hypothesis that circulating factors mediate mitochondrial bioenergetic decline, a well-established biological hallmark of aging. We examined mitochondrial morphology, expression of mitochondrial complexes, and mitochondrial respiration from skeletal muscle of mice connected as heterochronic pairs, as well as young and old isochronic controls. Our results indicate that young heterochronic mice had significantly lower total mitochondrial content and on average had significantly smaller mitochondria compared to young isochronic controls. Expression of complex IV followed a similar pattern: young heterochronic mice had a trend for lower expression compared to young isochronic controls. Additionally, respirometric analyses indicate that young heterochronic mice had significantly lower complex I, complex I + II, and maximal mitochondrial respiration and a trend for lower complex II-driven respiration compared to young isochronic controls. Interestingly, we did not observe significant improvements in old heterochronic mice compared to old isochronic controls, demonstrating the profound deleterious effects of circulating factors from old mice on mitochondrial structure and function. We also found no significant differences between the young and old heterochronic mice, demonstrating that circulating factors can be a driver of age-related differences in mitochondrial structure and function.
Collapse
Affiliation(s)
- Jenny L Gonzalez-Armenta
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Section on Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- J Paul Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ning Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rae-Ling Lee
- Section on Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- J Paul Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Anthony J A Molina
- Division of Geriatrics and Gerontology, Department of Medicine, University of California San Diego School of Medicine, La Jolla
| |
Collapse
|
15
|
Zhu L, Li J, Wei C, Luo T, Deng Z, Fan Y, Zheng L. A polysaccharide from Fagopyrum esculentum Moench bee pollen alleviates microbiota dysbiosis to improve intestinal barrier function in antibiotic-treated mice. Food Funct 2020; 11:10519-10533. [PMID: 33179663 DOI: 10.1039/d0fo01948h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antibiotics are the most commonly used clinical drugs for anti-infection, but they can also destroy normal microorganisms and cause intestinal barrier dysfunction. To elucidate the effects and mechanism of a water-soluble polysaccharide from Fagopyrum esculentum Moench bee pollen (WFPP) on intestinal barrier integrity in antibiotic-treated mice, BALB/c mice were exposed to a broad-spectrum antibiotic (ceftriaxone) or not (control), and were administered low-, medium- and high-dose WFFP (100 mg kg-1, 200 mg kg-1 and 400 mg kg-1, respectively) daily by oral gavage for 3 weeks. Mice treated with ceftriaxone displayed symptoms of growth retardation, atrophy of immune organs including thymus and spleen, increased gut permeability, and intestinal barrier damage, which were restored after intervention with WFFP at different doses. Moreover, the beneficial effects of WFFP were closely associated with enhanced intestinal sIgA secretion and reduced inflammatory response. Furthermore 16S rDNA gene sequencing revealed that WFPP elevated microbial diversity and richness and changed the community structure, therefore, alleviating microbiota dysbiosis caused by ceftriaxone. Interestingly, WFPP could modulate the abundance of sIgA secretion-related bacteria (e.g. Proteobacteria) and inflammation-related bacteria (e.g. Enterococcus). Therefore, WFPP can relieve antibiotic-induced microbiota dysbiosis to improve intestinal barrier integrity by increasing intestinal sIgA secretion and inhibiting inflammation.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhang L, Li F, Guo Q, Duan Y, Wang W, Zhong Y, Yang Y, Yin Y. Leucine Supplementation: A Novel Strategy for Modulating Lipid Metabolism and Energy Homeostasis. Nutrients 2020; 12:E1299. [PMID: 32370170 PMCID: PMC7282259 DOI: 10.3390/nu12051299] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Lipid metabolism is an important and complex biochemical process involved in the storage of energy and maintenance of normal biological functions. Leucine, a branched amino acid, has anti-obesity effects on glucose tolerance, lipid metabolism, and insulin sensitivity. Leucine also modulates mitochondrial dysfunction, representing a new strategy to target aging, neurodegenerative disease, obesity, diabetes, and cardiovascular disease. Although various studies have been carried out, much uncertainty still exists and further studies are required to fully elucidate the relationship between leucine and lipid metabolism. This review offers an up-to-date report on leucine, as key roles in both lipid metabolism and energy homeostasis in vivo and in vitro by acceleration of fatty acid oxidation, lipolysis, activation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)-silent information regulator of transcription 1 (SIRT1)-proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, synthesis, and/or secretion of adipokines and stability of the gut microbiota.
Collapse
Affiliation(s)
- Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha 410018, China
| | - Yinzhao Zhong
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China;
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (L.Z.); (Q.G.); (Y.D.); (W.W.); (Y.Y.)
| |
Collapse
|
17
|
Zheng C, Song B, Duan Y, Zhong Y, Yan Z, Zhang S, Li F. Dietary β-hydroxy-β-methylbutyrate improves intestinal function in weaned piglets after lipopolysaccharide challenge. Nutrition 2020; 78:110839. [PMID: 32540677 DOI: 10.1016/j.nut.2020.110839] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 03/15/2020] [Accepted: 04/03/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The aim of this study was to explore the effects of β-hydroxy-β-methylbutyrate (HMB) on intestinal function of lipopolysaccharide (LPS)-challenged piglets. METHODS Forty weaned piglets were used in a 2 × 2 factorial design. The major factors were challenge (saline or LPS) and diet (basal diet or 0.6% HMB-Ca diet). After 15 d of treatment with LPS or HMB, blood and intestine samples were obtained. RESULTS The results showed that in LPS-injected pigs, HMB supplementation significantly increased jejunal villus height and ileal villus height-to-crypt depth ratio and decreased ileal crypt depth (P < 0.05). HMB also improved intestinal function indicated by elevated activities of intestinal mucosal disaccharidase and tricarboxylic acid cycle key enzymes. Furthermore, HMB significantly downregulated mRNA expression of Sirt1 in jejunum and mRNA expression of AMPKα1 and Sirt1 in ileum (P < 0.05), with a concurrent decrease of AMPKα phosphorylation in jejunum and ileum. Microbiota analysis indicated that HMB supplementation significantly increased α-diversity and affected relative abundances of Romboutsia and Sarcina at the genus level, accompanied by increased concentrations of all short-chain fatty acids except propionate in the terminate ileum of LPS-injected piglets. CONCLUSION Dietary HMB supplementation could improve intestinal integrity, function, microbiota communities, and short-chain fatty acid concentrations in LPS-challenged piglets, suggesting its potential usage as a feed additive in weaned piglets to alleviate intestinal dysfunction triggered by immune stress.
Collapse
Affiliation(s)
- Changbing Zheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China; Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Bo Song
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China; Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.
| | - Yinzhao Zhong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China; Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhaoming Yan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Shiyu Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China; Hunan Co-Innovation Center of Animal Production Safety, CICAPS; Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, China
| |
Collapse
|
18
|
Rivera ME, Lyon ES, Johnson MA, Vaughan RA. Leucine increases mitochondrial metabolism and lipid content without altering insulin signaling in myotubes. Biochimie 2020; 168:124-133. [DOI: 10.1016/j.biochi.2019.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/28/2019] [Indexed: 12/29/2022]
|
19
|
Duan Y, Zhong Y, Song B, Zheng C, Xu K, Kong X, Li F. Suppression of protein degradation by leucine requires its conversion to β-hydroxy-β-methyl butyrate in C2C12 myotubes. Aging (Albany NY) 2019; 11:11922-11936. [PMID: 31881014 PMCID: PMC6949090 DOI: 10.18632/aging.102509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/18/2019] [Indexed: 05/05/2023]
Abstract
The aims of this study were to investigate whether the inhibitory effect of Leucine (Leu) on starvation-induced protein degradation was mediated by its metabolite β-hydroxy-β-methyl butyrate (HMB), and to explore the mechanisms involved. The results showed that the beneficial effects of Leu on protein degradation and the oxygen consumption rate (OCR) of cells were observed at low levels (0.5 mM) rather than at high levels (10 mM). However, these effects were inferior to those of HMB. Moreover, HMB was able to increase/decrease the proportion of MyHC I/MyHC IIb protein expression, respectively. In these KICD-transfected cells, Leu was approximately as effective as HMB in inhibiting protein degradation and increasing the OCR as well as MyHC I protein expression of cells, and these effects of Leu were reverted to a normal state by mesotrione, a specific suppressor of KICD. In conclusion, HMB seems to be an active metabolite of Leu to suppress muscle protein degradation in a starvation model, and the mechanisms may be associated with improved mitochondrial oxidative capacity in muscle cells.
Collapse
Affiliation(s)
- Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, P. R. China
| | - Yinzhao Zhong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, P. R. China
| | - Bo Song
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, P. R. China
| | - Changbing Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Kang Xu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, P. R. China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, P. R. China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, P. R. China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, China
| |
Collapse
|
20
|
Duan Y, Zheng C, Zhong Y, Song B, Yan Z, Kong X, Deng J, Li F, Yin Y. Beta-hydroxy beta-methyl butyrate decreases muscle protein degradation via increased Akt/FoxO3a signaling and mitochondrial biogenesis in weanling piglets after lipopolysaccharide challenge. Food Funct 2019; 10:5152-5165. [PMID: 31373594 DOI: 10.1039/c9fo00769e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of this study was to investigate the effects of dietary β-hydroxy-β-methylbutyrate (HMB) on lipopolysaccharide (LPS)-induced muscle atrophy and to investigate the mechanisms involved. Sixty pigs (21 ± 2 days old, 5.86 ± 0.18 kg body weight) were used in a 2 × 3 factorial design and the main factors included diet (0, 0.60%, or 1.20% HMB) and immunological challenge (LPS or saline). After 15 d of treatment with LPS and/or HMB, growth performance, blood parameters, and muscle protein degradation rate were measured. The results showed that in LPS-injected pigs, 0.60% HMB supplementation increased the average daily gain and average daily feed intake and decreased the feed : gain ratio (P < 0.05), with a concurrent increase of lean percentage. Moreover, 0.60% HMB supplementation decreased the serum concentrations of blood urea nitrogen, IL-1β, and TNF-α and the rate of protein degradation as well as cell apoptosis in selected muscles (P < 0.05). In addition, dietary HMB supplementation (0.60%) regulated the expression of genes involved in mitochondrial biogenesis and increased the phosphorylation of Akt and Forkhead Box O3a (FoxO3a) in selected muscles, accompanied by decreased protein expression of muscle RING finger 1 and muscle atrophy F-box. These results indicate that HMB may exert protective effects against LPS-induced muscle atrophy by normalizing the Akt/FoxO3a axis that regulates ubiquitin proteolysis and by improving mitochondrial biogenesis.
Collapse
Affiliation(s)
- Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China.
| | | | | | | | | | | | | | | | | |
Collapse
|