1
|
Tsai CH, Huang HC, Lin KJ, Liu JM, Chen GL, Yeh YH, Lu TL, Lin HW, Lu MT, Chu PC. Inhibition of Autophagy Aggravates Arachis hypogaea L. Skin Extracts-Induced Apoptosis in Cancer Cells. Int J Mol Sci 2024; 25:1345. [PMID: 38279345 PMCID: PMC10816816 DOI: 10.3390/ijms25021345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
The skin of Arachis hypogaea L. (peanut or groundnut) is a rich source of polyphenols, which have been shown to exhibit a wider spectrum of noteworthy biological activities, including anticancer effects. However, the anticancer activity of peanut skin extracts against melanoma and colorectal cancer (CRC) cells remains elusive. In this study, we systematically investigated the cytotoxic, antiproliferative, pro-apoptotic, and anti-migration effects of peanut skin ethanolic extract and its fractions on melanoma and CRC cells. Cell viability results showed that the ethyl acetate fraction (AHE) of peanut skin ethanolic crude extract and one of the methanolic fractions (AHE-2) from ethyl acetate extraction exhibited the highest cytotoxicity against melanoma and CRC cells but not in nonmalignant human skin fibroblasts. AHE and AHE-2 effectively modulated the cell cycle-related proteins, including the suppression of cyclin-dependent kinase 4 (CDK4), cyclin-dependent kinase 6 (CDK6), phosphorylation of Retinoblastoma (p-Rb), E2F1, Cyclin A, and activation of tumor suppressor p53, which was associated with cell cycle arrest and paralleled their antiproliferative efficacies. AHE and AHE-2 could also induce caspase-dependent apoptosis and inhibit migration activities in melanoma and CRC cells. Moreover, it is noteworthy that autophagy, manifested by microtubule-associated protein light chain 3B (LC3B) conversion and the aggregation of GFP-LC3, was detected after AHE and AHE-2 treatment and provided protective responses in cancer cells. Significantly, inhibition of autophagy enhanced AHE- and AHE-2-induced cytotoxicity and apoptosis. Together, these findings not only elucidate the anticancer potential of peanut skin extracts against melanoma and CRC cells but also provide a new insight into autophagy implicated in peanut skin extracts-induced cancer cell death.
Collapse
Affiliation(s)
- Chia-Hung Tsai
- Department of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan;
| | - Hui-Chi Huang
- School of Chinese Medicine & Graduate Institute of Chinese Medicine, China Medical University, Taichung 406040, Taiwan;
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 406040, Taiwan;
| | - Kuan-Jung Lin
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan;
- Department of Urology, College of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jui-Ming Liu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan;
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Guan-Lin Chen
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung 406040, Taiwan; (G.-L.C.); (M.-T.L.)
| | - Yi-Hsien Yeh
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 406040, Taiwan;
| | - Te-Ling Lu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 406040, Taiwan; (T.-L.L.); (H.-W.L.)
- Department of Pharmacy, China Medical University Hospital, Taichung 406040, Taiwan
| | - Hsiang-Wen Lin
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 406040, Taiwan; (T.-L.L.); (H.-W.L.)
- Department of Pharmacy, China Medical University Hospital, Taichung 406040, Taiwan
| | - Meng-Tien Lu
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung 406040, Taiwan; (G.-L.C.); (M.-T.L.)
| | - Po-Chen Chu
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung 406040, Taiwan; (G.-L.C.); (M.-T.L.)
| |
Collapse
|
2
|
Ibarra-Berumen J, Moreno-Eutimio MA, Rosales-Castro M, Ordaz-Pichardo C. Cytotoxic effect and induction of apoptosis in human cervical cancer cells by a wood extract from Prosopis laevigata. Drug Chem Toxicol 2023; 46:931-943. [PMID: 35950554 DOI: 10.1080/01480545.2022.2109046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/31/2022]
Abstract
Cervical cancer ranks fourth in incidence among women worldwide. Cisplatin is currently the first-line drug of treatment for cervical cancer; however, it causes serious adverse effects. Therefore, it is crucial to explore natural products for cervical cancer treatment. Prosopis laevigata is a medicinal plant frequently used for ophthalmological and gastrointestinal infections. In this study, we used the MTT cell viability assay to evaluate the cytotoxic effect of a wood extract from Prosopis laevigata (Extract T7) in SiHa, HeLa, Ca Ski, and C-33 A cancer cell lines. Phosphatidylserine translocation and cell cycle evaluations were performed to determine the mechanism of cellular death. The extract's safety was evaluated using the Ames test with Salmonella typhimurium strains, in vivo acute toxicity assay, and repeated dose toxicity assay in mice. We also identified phenolic compounds of Extract T7 through liquid chromatography/mass spectrometry. Naringin, catechin, and eriodictyol demonstrated a higher concentration in Extract T7. Additionally, Extract T7 exhibited a cytotoxic effect against cervical cancer cells, where C-33 A was the most sensitive (IC50= 22.58 ± 1.10 µg/mL and 14.26 ± 1.11 µg/mL at 24 h and 48 h respectively). Extract T7 induced death by apoptosis and cell cycle arrest in the G2 phase in C-33 A. Extract T7 was not mutagenic. No toxicological effects were observed during acute toxicity and repeated dose toxicity for 28 days. Therefore, further evaluations of Extract T7 should be conducted to identify the complete mechanism of action for potential anti-tumoral activity and safety before conducting studies in animal models.
Collapse
Affiliation(s)
- Jorge Ibarra-Berumen
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional - Unidad Durango, Instituto Politécnico Nacional, Durango, Dgo, México
| | - Mario Adán Moreno-Eutimio
- Facultad de Química, Universidad Nacional Autónoma de México, Alc. Coyoacán, Ciudad de México, México
| | - Martha Rosales-Castro
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional - Unidad Durango, Instituto Politécnico Nacional, Durango, Dgo, México
| | - Cynthia Ordaz-Pichardo
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Alc. Gustavo A. Madero, Ciudad de México, México
| |
Collapse
|
3
|
Goel H, Kumar R, Tanwar P, Upadhyay TK, Khan F, Pandey P, Kang S, Moon M, Choi J, Choi M, Park MN, Kim B, Saeed M. Unraveling the therapeutic potential of natural products in the prevention and treatment of leukemia. Biomed Pharmacother 2023; 160:114351. [PMID: 36736284 DOI: 10.1016/j.biopha.2023.114351] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Leukemia is a heterogeneous group of hematological malignancies distinguished by differentiation blockage and uncontrolled proliferation of myeloid or lymphoid progenitor cells in the bone marrow (BM) and peripheral blood (PB). There are various types of leukemia in which intensive chemotherapy regimens or hematopoietic stem cell transplantation (HSCT) are now the most common treatments associated with severe side effects and multi-drug resistance in leukemia cells. Therefore, it is crucial to develop novel therapeutic approaches with adequate therapeutic efficacy and selectively eliminate leukemic cells to improve the consequences of leukemia. Medicinal plants have been utilized for ages to treat multiple disorders due to their diverse bioactive compounds. Plant-derived products have been used as therapeutic medication to prevent and treat many types of cancer. Over the last two decades, 50 % of all anticancer drugs approved worldwide are from natural products and their derivatives. Therefore this study aims to review natural products such as polyphenols, alkaloids, terpenoids, nitrogen-containing, and organosulfur compounds as antileukemic agents. Current investigations have identified natural products efficiently destroy leukemia cells through diverse mechanisms of action by inhibiting proliferation, reactive oxygen species production, inducing cell cycle arrest, and apoptosis in both in vitro, in vivo, and clinical studies. Current investigations have identified natural products as suitable promising chemotherapeutic and chemopreventive agents. It played an essential role in drug development and emerged as a possible source of biologically active metabolites for therapeutic interventions, especially in leukemia. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi 11023, India.
| | - Rahul Kumar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi 11023, India.
| | - Pranay Tanwar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi 11023, India.
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India,.
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India.
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India.
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Myunghan Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Min Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Hail 81411 Saudi Arabia.
| |
Collapse
|
4
|
Ooi KX, Poo CL, Subramaniam M, Cordell GA, Lim YM. Maslinic acid exerts anticancer effects by targeting cancer hallmarks. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154631. [PMID: 36621168 DOI: 10.1016/j.phymed.2022.154631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/14/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Natural products have long been regarded as a source of anticancer compounds with low toxicity. Evidence revealed that maslinic acid (MA), a widely distributed pentacyclic triterpene in common foodstuffs, exhibited pronounced inhibitory effects against various cancer cell lines. Most cancer cells thrive by acquiring cancer hallmarks, as coined by Hanahan and Weinberg in 2000 and 2011. PURPOSE This represents the first systematic review concerning the anticancer properties of MA as these cancer hallmarks are targeted. It aims to summarize the antineoplastic activities of MA, discuss the diverse mechanisms of action based on the effects of MA exerted on each hallmark. METHODS A comprehensive literature search was conducted using the search terms "maslinic," "cancer," "tumor," and "neoplasm," to retrieve articles from the databases MEDLINE, EMBASE, Web of Science, and Scopus published up to September 2022. Study selection was conducted by three reviewers independently from title and abstract screening until full-text evaluation. Data extraction was done by one reviewer and counterchecked by the second reviewer. RESULTS Of the 330 articles assessed, 40 papers met the inclusion criteria and revealed that MA inhibited 16 different cancer cell types. MA impacted every cancer hallmark by targeting multiple pathways. CONCLUSION This review provides insights regarding the inhibitory effects of MA against various cancers and its remarkable biological properties as a pleiotropic bioactive compound, which encourage further investigations.
Collapse
Affiliation(s)
- Kai Xin Ooi
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia
| | - Chin Long Poo
- Herbal Medicine Research Centre, Institute for Medical Research, Setia Alam, 40170, Selangor, Malaysia
| | - Menaga Subramaniam
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia
| | - Geoffrey A Cordell
- Natural Products Inc., Evanston, IL, USA; Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yang Mooi Lim
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia; Department of Pre-Clinical Sciences, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia.
| |
Collapse
|
5
|
Wu B, Zhou RL, Ou QJ, Chen YM, Fang YJ, Zhang CX. Association of plant-based dietary patterns with the risk of colorectal cancer: a large-scale case-control study. Food Funct 2022; 13:10790-10801. [PMID: 36193696 DOI: 10.1039/d2fo01745h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plant-based diets are associated with a lower risk of colorectal cancer, but the risk might differ by the quality of plant-based diets. This study aimed to investigate the association between different types of plant-based dietary patterns and colorectal cancer risk in the Chinese population. We conducted a case-control study with 2799 eligible colorectal cancer cases and 2799 sex- and age-matched controls in Guangzhou, China. A validated food frequency questionnaire was used to collect dietary data, from which we derived plant-based diet indices, including the plant-based diet index (PDI), the healthy PDI (hPDI), and the unhealthy PDI (uPDI). The PDI, hPDI, and uPDI assess the adherence to overall, healthy, and unhealthy plant-based dietary patterns, respectively. The odds ratios (ORs) and 95% confidence intervals (CIs) for colorectal cancer risk were estimated using unconditional logistic regression models. Higher adherence to the PDI, particularly the hPDI, was associated with a lower risk of colorectal cancer, whereas greater adherence to the uPDI was associated with a higher risk of colorectal cancer. Compared with the lowest quintile, the adjusted ORs in the highest quintile were 0.79 (95% CI: 0.66-0.95) for the PDI, 0.45 (95% CI: 0.38-0.55) for the hPDI, and 1.45 (95% CI: 1.18-1.78) for the hPDI, respectively. In stratified analysis, the inverse association between the PDI and colorectal cancer risk was not observed in women, and the positive association between the uPDI and colorectal cancer risk was not observed in men. In conclusion, these results support recommendations that shifting to a healthy plant-based dietary pattern is important for the prevention of colorectal cancer, particularly in the Chinese population that habitually consumes plant foods.
Collapse
Affiliation(s)
- Batubayan Wu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ruo-Lin Zhou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Qing-Jian Ou
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China.
| | - Yu-Ming Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yu-Jing Fang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China.
| | - Cai-Xia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China. .,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| |
Collapse
|
6
|
de la Fuente B, Pinela J, Mandim F, Heleno SA, Ferreira ICFR, Barba FJ, Berrada H, Caleja C, Barros L. Nutritional and bioactive oils from salmon (Salmo salar) side streams obtained by Soxhlet and optimized microwave-assisted extraction. Food Chem 2022; 386:132778. [PMID: 35344720 DOI: 10.1016/j.foodchem.2022.132778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/04/2022]
Abstract
The efficiency of the microwave-assisted extraction (MAE) technique on recovering nutritional and bioactive oils from salmon (Salmo salar) side streams was evaluated and compared to Soxhlet extraction. The response surface methodology (RSM) coupled with a central composite rotatable design was used to optimize time, microwave power, and solid/liquid ratio of the MAE process in terms of oil yield. The optimal MAE conditions were 14.6 min, 291.9 W, 80.1 g/L for backbones, 10.8 min, 50.0 W, 80.0 g/L for heads, and 14.3 min, 960.6 W, 99.5 g/L for viscera, which resulted in a recovery of 69% of the total lipid content for backbones and heads and 92% for viscera. The oils obtained under optimal MAE conditions showed a healthy lipid profile as well as cytotoxic, antioxidant, anti-inflammatory, or antimicrobial properties. These results highlight that oils from underutilized salmon by-products could be exploited by different industrial sectors under the circular economy approach.
Collapse
Affiliation(s)
- Beatriz de la Fuente
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Francisco J Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain
| | - Houda Berrada
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
7
|
Berdowska I, Zieliński B, Matusiewicz M, Fecka I. Modulatory Impact of Lamiaceae Metabolites on Apoptosis of Human Leukemia Cells. Front Pharmacol 2022; 13:867709. [PMID: 35784715 PMCID: PMC9240652 DOI: 10.3389/fphar.2022.867709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Lamiaceae species are rich sources of biologically active compounds which have been applied in medicine since ancient times. Especially their antineoplastic properties have been thoroughly studied with respect to their putative application in chemoprevention and adjuvant therapy of cancer. However, the most known biological effects of Lamiaceae have been ascribed to their essential oil fractions, whereas their (poly)phenolic metabolites being also abundant in these plants, are much less recognized, nevertheless contributing to their beneficial properties, such as anti-cancer actions. The aim of this study was to evaluate the impact of dried aqueous extracts from common thyme (Thymus vulgaris L.) (ExTv), wild thyme (Thymus serpyllum L.) (ExTs), sweet marjoram (Origanum majorana L.) (ExOm), and peppermint (Mentha × piperita L.) (ExMp), as well as (poly)phenolic compounds: caffeic acid (CA), rosmarinic acid (RA), lithospermic acid (LA), luteolin-7-O-β-glucuronide (Lgr), luteolin-7-O-rutinoside (Lr), eriodictyol-7-O-rutinoside (Er), and arbutin (Ab), on unstimulated Jurkat cells, in comparison with their effect on staurosporine-stimulated Jurkat cells. Jurkat T cells were incubated with different concentrations of ExTv, ExTs, ExOm, ExMp, Lgr, LA, Er, Lr, RA, CA, or Ab. Subsequently, staurosporine was added to half of the samples and flow cytometry combined with fluorescence-activated cell sorting analysis was conducted, which allowed for the selection of early and late apoptotic cells. Both ExTs and ExOm stimulated apoptosis of Jurkat cells and enhanced the proapoptotic effect of staurosporine. Conversely, ExTv and ExMp demonstrated no clear effect on apoptosis. CA and RA raised the staurosporine-induced apoptotic effect. The impact of Er and Lgr on Jurkat cells showed fluctuations depending on the compound concentration. Neither Er nor Ab altered staurosporine-induced apoptosis in Jurkat cells, whereas Lgr seemed to weaken the proapoptotic action of staurosporine. The most evident observation in this study was the pro-apoptotic action of ExTs and ExOm observed both in staurosporine-unstimulated and stimulated Jurkat cells. Additionally, an enhancement of staurosporine-induced apoptosis by caffeic and rosmarinic acids was reported. Therefore, it might be concluded that these are the mixtures of biologically active polyphenols which often exert more pronounced beneficial effects than purified molecules.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wrocław Medical University, Wrocław, Poland
- *Correspondence: Izabela Berdowska, ; Małgorzata Matusiewicz,
| | - Bogdan Zieliński
- Department of Medical Biochemistry, Wrocław Medical University, Wrocław, Poland
| | - Małgorzata Matusiewicz
- Department of Medical Biochemistry, Wrocław Medical University, Wrocław, Poland
- *Correspondence: Izabela Berdowska, ; Małgorzata Matusiewicz,
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
8
|
DeClercq V, Nearing JT, Sweeney E. Plant-Based Diets and Cancer Risk: What is the Evidence? Curr Nutr Rep 2022; 11:354-369. [PMID: 35334103 DOI: 10.1007/s13668-022-00409-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the recent (past 5 years) available evidence regarding the association between plant-based diets on cancer risk from clinical trials and observational studies. Biological mechanisms and gaps in the current literature will also be discussed. RECENT FINDINGS There is a lack of intervention studies but there are abundant observational studies assessing the association between plant-based diets and cancer risk, including multiple longitudinal cohort studies and similar data from case-control studies that demonstrate a decreased overall cancer risk with plant-based diets. Case-control studies support a decreased risk of colorectal and breast cancers with plant-based diets, but results for specific cancers remain inconsistent in cohort studies. Current evidence from observational studies indicates an inverse association between plant-based diets and overall cancer risk. Future research should include intervention studies, address inconsistencies in dietary assessment methods and provide greater detail on underrepresented groups.
Collapse
Affiliation(s)
- Vanessa DeClercq
- Department of Pharmacology, Dalhousie University, Room 5-D Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada.
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, NS, Canada.
| | - Jacob T Nearing
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Ellen Sweeney
- Atlantic Partnership for Tomorrow's Health (PATH), Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
9
|
de Lima Brito I, Chantelle L, Magnani M, de Magalhães Cordeiro AMT. Nutritional, therapeutic and technological perspectives of Quinoa (
Chenopodium quinoa
Willd.): A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Isabelle de Lima Brito
- Department of Management and Agroindustrial Technology, Center of Human, Social and Agrarian Sciences (CCHSA) Federal University of Paraíba (UFPB) João Pessoa Paraíba Brazil
| | - Laís Chantelle
- Department of Chemistry, NPE‐LACOM Federal University of Paraíba (UFPB) João Pessoa Paraíba Brazil
| | - Marciane Magnani
- Department of Food Engineering, Tecnology Center (CT) Federal University of Paraíba João Pessoa Paraíba Brazil
| | | |
Collapse
|
10
|
Guo R, Chen M, Ding Y, Yang P, Wang M, Zhang H, He Y, Ma H. Polysaccharides as Potential Anti-tumor Biomacromolecules —A Review. Front Nutr 2022; 9:838179. [PMID: 35295918 PMCID: PMC8919066 DOI: 10.3389/fnut.2022.838179] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer, as one of the most life-threatening diseases, has attracted the attention of researchers to develop drugs with minimal side effects. The bioactive macromolecules, such as the polysaccharides, are considered the potential candidates against cancer due to their anti-tumor activities and non-toxic characteristics. The present review provides an overview on polysaccharides' extraction, isolation, purification, mechanisms for their anti-tumor activities, structure-activity relationships, absorption and metabolism of polysaccharides, and the applications of polysaccharides in anti-tumor therapy. Numerous research showed extraction methods of polysaccharides had a significant influence on their activities. Additionally, the anti-tumor activities of the polysaccharides are closely related to their structure, while molecular modification and high bioavailability may enhance the anti-tumor activity. Moreover, most of the polysaccharides exerted an anti-tumor activity mainly through the cell cycle arrest, anti-angiogenesis, apoptosis, and immunomodulation mechanisms. Also, recommendations were made to utilize the polysaccharides against cancer.
Collapse
Affiliation(s)
- Rui Guo
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Min Chen
- The Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
| | - Yangyang Ding
- The Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
| | - Pengyao Yang
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Mengjiao Wang
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haihui Zhang
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuanqing He
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
- The Laboratory Animal Research Center, Jiangsu University, Zhenjiang, China
- *Correspondence: Yuanqing He
| | - Haile Ma
- College of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
de la Fuente B, Berrada H, Barba FJ. Marine resources and cancer therapy: from current evidence to challenges for functional foods development. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Rediscovering the Contributions of Forests and Trees to Transition Global Food Systems. FORESTS 2020. [DOI: 10.3390/f11101098] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The importance of forests to safeguard agricultural production through regulating ecosystem services such as clean water, soil protection, and climate regulation is well documented, yet the contributions of forests and trees to provide food for the nutritional needs of the increasing human population has not been fully realized. Plants, fungi, and animals harvested from forests have long provided multiple benefits—for nutrition, health, income, and cultural purposes. Across the globe, the main element of “forest management” has been industrial wood production. Sourcing food from forests has been not even an afterthought but a subordinate activity that just happens and is largely invisible in official statistics. For many people, forests ensure a secure supply of essential foods and vital nutrients. For others, foraging forests for food offers cultural, recreational, and diversified culinary benefits. Increasingly, these products are perceived by consumers as being more “natural” and healthier than food from agricultural production. Forest-and wild-sourced products increasingly are being used as key ingredients in multiple billion dollar industries due to rising demand for “natural” food production. Consumer trends demonstrate growing interests in forest food gathering that involves biological processes and new forms of culturally embedded interactions with the natural world. Further, intensifying calls to “re-orient” agricultural production provides opportunities to expand the roles of forests in food production; to reset food systems by integrating forests and trees. We use examples of various plants, such as baobab, to explore ways forests and trees provide for food security and nutrition and illustrate elements of a framework to encourage integration of forests and trees. Forests and trees provide innovative opportunities and technological and logistical challenges to expand food systems and transition to a bioeconomy. This shift is essential to meet the expanding demand for secure and nutritious food, while conserving forest biodiversity.
Collapse
|