1
|
Nosal BM, Thornton SN, Darooghegi Mofrad M, Sakaki JR, Mahoney KJ, Macdonald Z, Daddi L, Tran TDB, Weinstock G, Zhou Y, Lee ECH, Chun OK. Blackcurrants shape gut microbiota profile and reduce risk of postmenopausal osteoporosis via the gut-bone axis: Evidence from a pilot randomized controlled trial. J Nutr Biochem 2024; 133:109701. [PMID: 39019119 DOI: 10.1016/j.jnutbio.2024.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
This study aimed to investigate the effects of blackcurrant (BC) on gut microbiota abundance and composition, inflammatory and immune responses, and their relationship with bone mass changes. The effects of BC on bone mineral density (BMD), gut microbiota, and blood inflammatory and immune biomarkers were evaluated using DXA, stool and fasting blood collected from a pilot three-arm, randomized, double-blind, placebo-controlled clinical trial. Fifty-one peri- and early postmenopausal women aged 45-60 years were randomly assigned into one of three treatment groups for 6 months: control, low BC (392 mg/day) and high BC (784 mg/day); and 40 women completed the trial. BC supplementation for 6 months effectively mitigated the loss of whole-body BMD (P<.05). Six-month changes (%) in peripheral IL-1β (P=.056) and RANKL (P=.052) for the high BC group were marginally significantly lower than the control group. Six-month changes in whole-body BMD were inversely correlated with changes in RANKL (P<.01). In proteome analysis, four plasma proteins showed increased expression in the high BC group: IGFBP4, tetranectin, fetuin-B, and vitamin K-dependent protein S. BC dose-dependently increased the relative abundance of Ruminococcus 2 (P<.05), one of six bacteria correlated with BMD changes in the high BC group (P<.05), suggesting it might be the key bacteria that drove bone protective effects. Daily BC consumption for 6 months mitigated bone loss in this population potentially through modulating the gut microbiota composition and suppressing osteoclastogenic cytokines. Larger-scale clinical trials on the potential benefits of BC and connection of Ruminococcus 2 with BMD maintenance in postmenopausal women are warranted. Trial Registration: NCT04431960, https://classic.clinicaltrials.gov/ct2/show/NCT04431960.
Collapse
Affiliation(s)
- Briana M Nosal
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Staci N Thornton
- Department of Kinesiology, University of Connecticut, Storrs, CT
| | | | - Junichi R Sakaki
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Kyle J Mahoney
- Department of Kinesiology, University of Connecticut, Storrs, CT
| | | | - Lauren Daddi
- Department of Medicine, University of Connecticut Health, Farmington, CT
| | | | | | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health, Farmington, CT
| | | | - Ock K Chun
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT.
| |
Collapse
|
2
|
Feng B, Lu J, Han Y, Han Y, Qiu X, Zeng Z. The role of short-chain fatty acids in the regulation of osteoporosis: new perspectives from gut microbiota to bone health: A review. Medicine (Baltimore) 2024; 103:e39471. [PMID: 39183408 PMCID: PMC11346881 DOI: 10.1097/md.0000000000039471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
Osteoporosis is a systemic skeletal disease characterized by low bone density and microarchitectural deterioration, resulting in increased fracture risk. With an aging population, osteoporosis imposes a heavy burden worldwide. Current pharmacotherapies such as bisphosphonates can reduce fracture risk but have limitations. Emerging research suggests that gut microbiota regulates bone metabolism through multiple mechanisms. Short-chain fatty acids (SCFAs) produced from microbial fermentation of dietary fiber beneficially impact bone health. Preclinical studies indicate that SCFAs such as butyrate and propionate prevent bone loss in osteoporosis models by inhibiting osteoclastogenesis and immune modulation. Early clinical data also suggest that SCFA supplementation may improve bone turnover markers in postmenopausal women. SCFAs likely act via inhibition of osteoclast differentiation, stimulation of osteoblast activity, regulation of T cells, and other pathways. However, optimal dosing, delivery methods, and long-term safety require further investigation. Modulating the gut-bone axis via supplementation, prebiotics/probiotics, diet, and lifestyle interventions represents an innovative therapeutic approach for osteoporosis. Harnessing the interplay between microbiome, metabolism, immunity, and bone may provide new directions for managing osteoporosis in the future.
Collapse
Affiliation(s)
- Boyi Feng
- Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Jingjing Lu
- Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Yanhua Han
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yaguang Han
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaokui Qiu
- Shenzhen Guangming District People’s Hospital, Shenzhen, China
| | - Zhuoying Zeng
- Chemical Analysis and Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
3
|
Tian E, Rothermel C, Michel Z, de Castro LF, Lee J, Kilts T, Kent T, Collins MT, Ten Hagen KG. Loss of the glycosyltransferase Galnt11 affects vitamin D homeostasis and bone composition. J Biol Chem 2024; 300:107164. [PMID: 38484798 PMCID: PMC11001633 DOI: 10.1016/j.jbc.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024] Open
Abstract
O-glycosylation is a conserved posttranslational modification that impacts many aspects of organismal viability and function. Recent studies examining the glycosyltransferase Galnt11 demonstrated that it glycosylates the endocytic receptor megalin in the kidneys, enabling proper binding and reabsorption of ligands, including vitamin D-binding protein (DBP). Galnt11-deficient mice were unable to properly reabsorb DBP from the urine. Vitamin D plays an essential role in mineral homeostasis and its deficiency is associated with bone diseases such as rickets, osteomalacia, and osteoporosis. We therefore set out to examine the effects of the loss of Galnt11 on vitamin D homeostasis and bone composition. We found significantly decreased levels of serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, consistent with decreased reabsorption of DBP. This was accompanied by a significant reduction in blood calcium levels and a physiologic increase in parathyroid hormone (PTH) in Galnt11-deficient mice. Bones in Galnt11-deficient mice were smaller and displayed a decrease in cortical bone accompanied by an increase in trabecular bone and an increase in a marker of bone formation, consistent with PTH-mediated effects on bone. These results support a unified model for the role of Galnt11 in bone and mineral homeostasis, wherein loss of Galnt11 leads to decreased reabsorption of DBP by megalin, resulting in a cascade of disrupted mineral and bone homeostasis including decreased circulating vitamin D and calcium levels, a physiological increase in PTH, an overall loss of cortical bone, and an increase in trabecular bone. Our study elucidates how defects in O-glycosylation can influence vitamin D and mineral homeostasis and the integrity of the skeletal system.
Collapse
Affiliation(s)
- E Tian
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline Rothermel
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Zachary Michel
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Luis Fernandez de Castro
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeeyoung Lee
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Tina Kilts
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Tristan Kent
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
4
|
Pettifor JM, Thandrayen K. The role of vitamin D in paediatric bone health. Lancet Diabetes Endocrinol 2024; 12:4-5. [PMID: 38048798 DOI: 10.1016/s2213-8587(23)00353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Affiliation(s)
- John M Pettifor
- SAMRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Wits 2050, South Africa.
| | - Kebashni Thandrayen
- Division of Paediatric Endocrinology, Department of Paediatrics, Chris Hani Baragwanath Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Stanciu M, Sandru F, Carsote M, Ciuche A, Sima OC, Popa FL, Iliescu MG, Ciufu N, Nistor C. Difficulties in decision making on a long standing, complicated case of osteoporosis – a real challenge for functional rehabilitation. BALNEO AND PRM RESEARCH JOURNAL 2023; 14:642. [DOI: 10.12680/balneo.2023.642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
We aim was to present a case of severe osteoporosis with concern to an adult female who was under specific medication against the condition while she experienced inexplicable weight loss in association with an incidental fracture inconsistent with DXA changes. Challenges of the case management and decision making are further on explained. Real-life-medicine poses multiple issues that require an individual decision while respecting the standard protocols. That is why a generalized decision is rather impractical. Here we introduce the clinical case of a lady in her late 60s with a known 6-year history of osteoporosis that required several difficult decisions along surveillance: at first, zoledronic acid represented an available solution, yet after one year, BMD decreased and adjustment was done by initiating a second sequence according to the teriparatide protocol. DXA-BMD, as well as the spectrum of bone turnover markers, qualified the patient as responsive and she further continued with oral bisphosphonates while being monitored via telemedicine amid COVID-19 pandemic. After 24 more months, a second decision of zoledronic acid was done, despite prior partial response, but digestive complains restricted the oral administration of anti-osteoporotic drugs. After one more year, denosumab was initiated and consecutive follow-up is essential. At this point, another challenging aspect was revealed: the discordance between DXA – based scores increase and the presence of an incidental fracture. A supplementary investigation was considered useful (Tc- whole body scintigraphy) noting the clinical presentation with local pain, dysfunctionality, and mild weight loss that also required rehabilitation management.
Collapse
Affiliation(s)
- Mihaela Stanciu
- Department of Endocrinology,”Lucian Blaga” University of Sibiu, Faculty of Medicine, Sibiu, Romania
| | - Florica Sandru
- Department of Dermatovenerology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Adrian Ciuche
- Department 4 - Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Oana-Claudia Sima
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Florina Ligia Popa
- Department of Physical Medicine and Rehabilitation,”Lucian Blaga” University of Sibiu, Faculty of Medicine, Sibiu, Romania
| | - Mădălina Gabriela Iliescu
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, „Ovidius” University of Constanta, Romania
| | - Nicolae Ciufu
- Department of Surgical Disciplines, Faculty of Medicine, „Ovidius” University of Constanta, Romania
| | - Claudiu Nistor
- Thoracic Surgery Department, “Dr. Carol Davila” Central Emergency University Military Hospital, Bucharest, Romania
| |
Collapse
|