1
|
Szelényi P, Somogyi A, Sarnyai F, Zámbó V, Simon-Szabó L, Kereszturi É, Csala M. Microsomal pre-receptor cortisol production is inhibited by resveratrol and epigallocatechin gallate through different mechanisms. Biofactors 2019; 45:236-243. [PMID: 30496642 DOI: 10.1002/biof.1477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/24/2018] [Accepted: 10/22/2018] [Indexed: 01/11/2023]
Abstract
Local activation of cortisol in hormone target tissues is a major determinant of glucocorticoid effect. Disorders in this peripheral cortisol metabolism play an important role in the development of metabolic diseases, such as obesity or type 2 diabetes mellitus. Hence, dietary factors influencing the activity of the involved enzymes can have major impacts on the risk of the above diseases. Resveratrol and epigallocatechin gallate (EGCG), two natural polyphenols found in several nutriments and in green tea, respectively, are well-known for their antiobesity and antidiabetic activities. EGCG has been shown to interfere with microsomal cortisol production through decreasing the luminal NADPH:NADP+ ratio. The aim of this study was to clarify if resveratrol also induces such a redox shift or causes any direct enzyme inhibition that influences local cortisol production. Cortisone-cortisol conversions and changes in NADPH levels were monitored in rat liver microsomal vesicles. Cortisol production was inhibited by resveratrol in a concentration dependent manner while the intrinsic reducing and oxidizing capacity as well as the NADPH level inside the ER-derived vesicles remained unaffected. Activity measurements performed in permeabilized microsomes confirmed that resveratrol, unlike EGCG, inhibits 11β-hydroxysteroid dehydrogenase type 1 directly. Long-term moderation of pre-receptor cortisol production likely contributes to the beneficial health effects of both polyphenols. © 2018 BioFactors, 45(2):236-243, 2019.
Collapse
Affiliation(s)
- Péter Szelényi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Anna Somogyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Farkas Sarnyai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Veronika Zámbó
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Laura Simon-Szabó
- Pathobiochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University (MTA-SE), Budapest, Hungary
| | - Éva Kereszturi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Limonta P, Moretti RM, Marzagalli M, Fontana F, Raimondi M, Montagnani Marelli M. Role of Endoplasmic Reticulum Stress in the Anticancer Activity of Natural Compounds. Int J Mol Sci 2019; 20:ijms20040961. [PMID: 30813301 PMCID: PMC6412802 DOI: 10.3390/ijms20040961] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer represents a serious global health problem, and its incidence and mortality are rapidly growing worldwide. One of the main causes of the failure of an anticancer treatment is the development of drug resistance by cancer cells. Therefore, it is necessary to develop new drugs characterized by better pharmacological and toxicological profiles. Natural compounds can represent an optimal collection of bioactive molecules. Many natural compounds have been proven to possess anticancer effects in different types of tumors, but often the molecular mechanisms associated with their cytotoxicity are not completely understood. The endoplasmic reticulum (ER) is an organelle involved in multiple cellular processes. Alteration of ER homeostasis and its appropriate functioning originates a cascade of signaling events known as ER stress response or unfolded protein response (UPR). The UPR pathways involve three different sensors (protein kinase RNA(PKR)-like ER kinase (PERK), inositol requiring enzyme1α (IRE1) and activating transcription factor 6 (ATF6)) residing on the ER membranes. Although the main purpose of UPR is to restore this organelle's homeostasis, a persistent UPR can trigger cell death pathways such as apoptosis. There is a growing body of evidence showing that ER stress may play a role in the cytotoxicity of many natural compounds. In this review we present an overview of different plant-derived natural compounds, such as curcumin, resveratrol, green tea polyphenols, tocotrienols, and garcinia derivates, that exert their anticancer activity via ER stress modulation in different human cancers.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Roberta M Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| |
Collapse
|
3
|
Epigallocatechin-3-Gallate (EGCG) Promotes Autophagy-Dependent Survival via Influencing the Balance of mTOR-AMPK Pathways upon Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6721530. [PMID: 29636854 PMCID: PMC5831959 DOI: 10.1155/2018/6721530] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
Abstract
The maintenance of cellular homeostasis is largely dependent on the ability of cells to give an adequate response to various internal and external stimuli. We have recently proposed that the life-and-death decision in endoplasmic reticulum (ER) stress response is defined by a crosstalk between autophagy, apoptosis, and mTOR-AMPK pathways, where the transient switch from autophagy-dependent survival to apoptotic cell death is controlled by GADD34. The aim of the present study was to investigate the role of epigallocatechin-3-gallate (EGCG), the major polyphenol of green tea, in promoting autophagy-dependent survival and to verify the key role in connecting GADD34 with mTOR-AMPK pathways upon prolonged ER stress. Our findings, obtained by using HEK293T cells, revealed that EGCG treatment is able to extend cell viability by inducing autophagy. We confirmed that EGCG-induced autophagy is mTOR-dependent and PKA-independent; furthermore, it also required ULK1. We show that pretreatment of cells with EGCG diminishes the negative effect of GADD34 inhibition (by guanabenz or siGADD34 treatment) on autophagy. EGCG was able to delay apoptotic cell death by upregulating autophagy-dependent survival even in the absence of GADD34. Our data suggest a novel role for EGCG in promoting cell survival via shifting the balance of mTOR-AMPK pathways in ER stress.
Collapse
|
4
|
Modernelli A, Naponelli V, Giovanna Troglio M, Bonacini M, Ramazzina I, Bettuzzi S, Rizzi F. EGCG antagonizes Bortezomib cytotoxicity in prostate cancer cells by an autophagic mechanism. Sci Rep 2015; 5:15270. [PMID: 26471237 PMCID: PMC4607952 DOI: 10.1038/srep15270] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/15/2015] [Indexed: 12/19/2022] Open
Abstract
The proteasome inhibitors Bortezomib (BZM) and MG132 trigger cancer cell death via induction of endoplasmic reticulum (ER) stress and unfolded protein response. Epigallocatechin gallate (EGCG), the most bioactive green tea polyphenol, is known to display strong anticancer properties as it inhibits proteasome activity and induces ER stress. We investigated whether combined delivery of a proteasome inhibitor with EGCG enhances prostate cancer cell death through increased induction of ER stress. Paradoxically, EGCG antagonized BZM cytotoxicity even when used at low concentrations. Conversely, the MG132 dose-response curve was unaffected by co-administration of EGCG. Moreover, apoptosis, proteasome inhibition and ER stress were inhibited in PC3 cells simultaneously treated with BZM and EGCG but not with a combination of MG132 and EGCG; EGCG enhanced autophagy induction in BZM-treated cells only. Autophagy inhibition restored cytotoxicity concomitantly with CHOP and p-eIF2α up-regulation in cells treated with BZM and EGCG. Overall, these findings demonstrate that EGCG antagonizes BZM toxicity by exacerbating the activation of autophagy, which in turn mitigates ER stress and reduces CHOP up-regulation, finally protecting PC3 cells from cell death.
Collapse
Affiliation(s)
- Alice Modernelli
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43125 Parma, Italy
| | - Valeria Naponelli
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43125 Parma, Italy.,Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy.,National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - Maria Giovanna Troglio
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43125 Parma, Italy
| | - Martina Bonacini
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43125 Parma, Italy
| | - Ileana Ramazzina
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43125 Parma, Italy.,Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy.,National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - Saverio Bettuzzi
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43125 Parma, Italy.,Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy.,National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - Federica Rizzi
- Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43125 Parma, Italy.,Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy.,National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| |
Collapse
|
5
|
Green tea polyphenol extract in vivo attenuates inflammatory features of neutrophils from obese rats. Eur J Nutr 2015; 55:1261-74. [PMID: 26031433 DOI: 10.1007/s00394-015-0940-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/22/2015] [Indexed: 01/11/2023]
Abstract
PURPOSE Our study aimed to evaluate whether obesity induced by cafeteria diet changes the neutrophil effector/inflammatory function and whether treatment with green tea extract (GT) can improve neutrophil function. METHODS Male Wistar rats were treated with GT by gavage (12 weeks/5 days/week; 500 mg/kg of body weight), and obesity was induced by cafeteria diet (8 weeks). Neutrophils were obtained from the peritoneal cavity (injection of oyster glycogen). The following analyses were performed: phagocytic capacity, chemotaxis, myeloperoxidase activity (MPO), hypochlorous acid (HOCl), superoxide anion (O 2 (·-) ), hydrogen peroxide (H2O2), IL-1β, IL-6 and TNFα, mRNA levels of inflammatory genes, calcium mobilisation, activities of antioxidant enzymes, hexokinase and G6PDH. RESULTS Neutrophils from obese rats showed a significant decrease in migration capacity, H2O2 and HOCl production, MPO activity and O 2 (·-) production. Phagocytosis and CD11b mRNA levels were increased, while inflammatory cytokines release remained unmodified. mRNA levels of TLR4 and IκK were enhanced. Treatment of obese rats with GT increased neutrophil migration, MPO activity, H2O2, HOCl and O 2 (·-) production, whereas TNF-α and IL-6 were decreased (versus obese). Similar reductions in TLR4, IκK and CD11b mRNA were observed. Catalase and hexokinase were increased by obesity, while SOD and G6PDH were decreased. Treatment with GT reduced catalase and increased the GSH/GSSG ratio. CONCLUSION In response to a cafeteria diet, we found a decreased chemotaxis, H2O2 release, MPO activity and HOCl production. We also showed a significant immunomodulatory effect of GT on the obese condition recovering some of these factors such H2O2 and HOCl production, also reducing the levels of inflammatory cytokines.
Collapse
|
6
|
Dey A, Lakshmanan J. The role of antioxidants and other agents in alleviating hyperglycemia mediated oxidative stress and injury in liver. Food Funct 2014; 4:1148-84. [PMID: 23760593 DOI: 10.1039/c3fo30317a] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several antioxidants and agents having similar antioxidant effects are known to exert beneficial effects in ameliorating the injurious effects of hyperglycemia on liver in different diabetic in vitro and in vivo models. The review deals with some of the agents which have been shown to exert protective effects on liver against hyperglycemic insult and the various mechanisms involved. The different classes of agents which protect the diabetic liver or decrease the severity of hyperglycemia mediated injury include flavonoids, catechins, and other polyphenolic compounds, curcumin and its derivatives, certain vitamins, hormones and drugs, trace elements, prototypical antioxidants and amino acids. Some of the pronounced changes mediated by the antioxidants in liver exposed to hyperglycemia include decreased oxidative stress, and alterations in carbohydrate and lipid metabolism. Other mechanisms through which the agents ameliorate hyperglycemia mediated liver injury include decrease in oxidative DNA and protein damage, restoration of mitochondrial structural and functional integrity, decrease in inflammation and improved insulin signaling. Thus, antioxidants may prove to be an important mode of defense in maintaining normal hepatic functions in diabetes.
Collapse
Affiliation(s)
- Aparajita Dey
- Life Science Division, AU-KBC Research Centre, MIT Campus of Anna University, Chromepet, Chennai 600044, India.
| | | |
Collapse
|
7
|
Rizzi F, Naponelli V, Silva A, Modernelli A, Ramazzina I, Bonacini M, Tardito S, Gatti R, Uggeri J, Bettuzzi S. Polyphenon E(R), a standardized green tea extract, induces endoplasmic reticulum stress, leading to death of immortalized PNT1a cells by anoikis and tumorigenic PC3 by necroptosis. Carcinogenesis 2013; 35:828-39. [PMID: 24343359 DOI: 10.1093/carcin/bgt481] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Increasing doses of Polyphenon E®, a standardized green tea extract, were given to PNT1a and PC3 prostate epithelial cells mimicking initial and advanced stages of prostate cancer (PCa), respectively. Cell death occurred in both cell lines, with PNT1a being more sensitive [half-maximal inhibitory concentration (IC50) = 35 μg/ml] than PC3 (IC50 = 145 μg/ml) to Polyphenon E®. Cell cycle arrest occurred at G0/G1 checkpoint for PNT1a, and G2/M for PC3 cells. Endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) occurred in both cell lines, with each exhibiting different timing in response to Polyphenon E®. Autophagy was transiently activated in PNT1a cells within 12 h after treatment as a survival response to overcome ERS; then activation of caspases and cleavage of poly (ADP ribose) polymerase 1 occurred, committing cells to anoikis death. Polyphenon E® induced severe ERS in PC3 cells, causing a dramatic enlargement of the ER; persistent activation of UPR produced strong upregulation of GADD153/CHOP, a key protein of ERS-mediated cell death. Thereafter, GADD153/CHOP activated Puma, a BH3-only protein, committing cells to necroptosis, a programmed caspase-independent mechanism of cell death. Our results provide a foundation for the identification of novel targets and strategies aimed at sensitizing apoptosis-resistant cells to alternative death pathways.
Collapse
Affiliation(s)
- Federica Rizzi
- Department of Biomedicine, Biotechnology and Translational Research and
| | | | | | | | | | | | | | | | | | | |
Collapse
|