1
|
El-Ashmawy NE, Khedr EG, Shamloula MM, Kamel MM. Evaluation of the antirheumatic effects of isoflavone-free soy protein isolate and etanercept in rats with adjuvant-induced arthritis. Exp Biol Med (Maywood) 2019; 244:545-553. [PMID: 30897958 PMCID: PMC6545695 DOI: 10.1177/1535370219839222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/03/2019] [Indexed: 12/14/2022] Open
Abstract
IMPACT STATEMENT In view of the partial clinical benefit and significant toxicity of traditional rheumatoid arthritis (RA) treatments, there is a growing trend to use complementary therapy. The antiarthritic activity of soy is related to the effect of soy isoflavones. However, little is known about the antiarthritic activity of soy protein itself. This study demonstrates that soy protein isolate (SPI) and etanercept (ETN), a tumor necrosis factor-α (TNF-α) inhibitor, protect rats against the effects of adjuvant-induced arthritis (AIA) by reducing inflammation (TNF-α and matrix metalloproteinase-3), autoantibody production (anticyclic citrullinated peptide), and lipid peroxidation (malondialdehyde). Only SPI improved dyslipidemia accompanied by RA, giving it the advantage of reducing cardiovascular risk. Additionally, the severity of arthritis-induced pathology, including inflammatory infiltrates, synovial hyperplasia, pannus formation, synovial vascularity, and cartilage erosions, was reduced by both SPI and ETN. This research ascertains the possible antiarthritic effect of SPI, making it a recommended alternative therapy for RA.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Maha M Shamloula
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Maha M Kamel
- Department of Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| |
Collapse
|
2
|
|
3
|
Houston M. Dyslipidemia. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Tang GY, Meng X, Li Y, Zhao CN, Liu Q, Li HB. Effects of Vegetables on Cardiovascular Diseases and Related Mechanisms. Nutrients 2017; 9:nu9080857. [PMID: 28796173 PMCID: PMC5579650 DOI: 10.3390/nu9080857] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022] Open
Abstract
Epidemiological studies have shown that vegetable consumption is inversely related to the risk of cardiovascular diseases. Moreover, research has indicated that many vegetables like potatoes, soybeans, sesame, tomatoes, dioscorea, onions, celery, broccoli, lettuce and asparagus showed great potential in preventing and treating cardiovascular diseases, and vitamins, essential elements, dietary fibers, botanic proteins and phytochemicals were bioactive components. The cardioprotective effects of vegetables might involve antioxidation; anti-inflammation; anti-platelet; regulating blood pressure, blood glucose, and lipid profile; attenuating myocardial damage; and modulating relevant enzyme activities, gene expression, and signaling pathways as well as some other biomarkers associated to cardiovascular diseases. In addition, several vegetables and their bioactive components have been proven to protect against cardiovascular diseases in clinical trials. In this review, we analyze and summarize the effects of vegetables on cardiovascular diseases based on epidemiological studies, experimental research, and clinical trials, which are significant to the application of vegetables in prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Cicero AFG, Fogacci F, Colletti A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: a narrative review. Br J Pharmacol 2017; 174:1378-1394. [PMID: 27572703 PMCID: PMC5429326 DOI: 10.1111/bph.13608] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 12/24/2022] Open
Abstract
In the past few years, increasing interest has been directed to bioactive peptides of animal and plant origin: in particular, researchers have focused their attention on their mechanisms of action and potential role in the prevention and treatment of cancer, cardiovascular and infective diseases. We have developed a search strategy to identify these studies in PubMed (January 1980 to May 2016); particularly those papers presenting comprehensive reviews or meta-analyses, plus in vitro and in vivo studies and clinical trials on those bioactive peptides that affect cardiovascular diseases, immunity or cancer, or have antioxidant, anti-inflammatory and antimicrobial effects. In this review we have mostly focused on evidence-based healthy properties of bioactive peptides from different sources. Bioactive peptides derived from fish, milk, meat and plants have demonstrated significant antihypertensive and lipid-lowering activity in clinical trials. Many bioactive peptides show selective cytotoxic activity against a wide range of cancer cell lines in vitro and in vivo, whereas others have immunomodulatory and antimicrobial effects. Furthermore, some peptides exert anti-inflammatory and antioxidant activity, which could aid in the prevention of chronic diseases. However, clinical evidence is at an early stage, and there is a need for solid pharmacokinetic data and for standardized extraction procedures. Further studies on animals and randomized clinical trials are required to confirm these effects, and enable these peptides to be used as preventive or therapeutic treatments. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Atherosclerosis and Metabolic Diseases Research Center, Medicine and Surgery DeptartmentAlma Mater Studiorum, University of BolognaBolognaItaly
| | - Federica Fogacci
- Atherosclerosis and Metabolic Diseases Research Center, Medicine and Surgery DeptartmentAlma Mater Studiorum, University of BolognaBolognaItaly
| | - Alessandro Colletti
- Atherosclerosis and Metabolic Diseases Research Center, Medicine and Surgery DeptartmentAlma Mater Studiorum, University of BolognaBolognaItaly
| |
Collapse
|
6
|
Hong MY, Lumibao J, Mistry P, Saleh R, Hoh E. Fish Oil Contaminated with Persistent Organic Pollutants Reduces Antioxidant Capacity and Induces Oxidative Stress without Affecting Its Capacity to Lower Lipid Concentrations and Systemic Inflammation in Rats. J Nutr 2015; 145:939-44. [PMID: 25788582 PMCID: PMC4408738 DOI: 10.3945/jn.114.206607] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/02/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Numerous studies have investigated the benefits of fish, fish oil, and ω-3 (n-3) polyunsaturated fatty acids against cardiovascular diseases. However, concern surrounding contamination with persistent organic pollutants (POPs) prompts caution in the recommendation to consume fish and fish oil. OBJECTIVE The present study compared the effects of fish oil contaminated with polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCs) on serum lipid profiles, inflammation, and oxidative stress. METHODS Twenty eight-day-old male Sprague-Dawley rats (n = 30) consumed diets of unmodified fish oil (FO) consisting of 15% fat by weight, persistent organic pollutant-contaminated fish oil (POP FO) (PCBs at 2.40 μg/g; OCs at 3.80 μg/g FO), or corn oil (control; CO) for 9 wk. Lipid profiles and C-reactive protein concentrations were assessed. Hepatic gene expression related to lipid metabolism was determined by real time quantitative polymerase chain reaction analysis. RESULTS After 9 wk of feeding, accumulation of PCBs and OCs in the fat tissue of the POP FO group compared with the other 2 groups was confirmed (P < 0.01). Both fish oil groups showed greater HDL cholesterol (FO 53 ± 5.3 and POP FO 55 ± 7.7 vs. CO 34 ± 2.3 mg/dL), but lower triglycerides (24 ± 2.8 and 22 ± 3.0 vs. 43 ± 5.6 mg/dL), LDL cholesterol (38 ± 14 and 34 ± 9.2 vs. 67 ± 4.4 mg/dL), and C-reactive protein (113 ± 20 and 120 ± 26 vs. 189 ± 22 μg/dL) compared with the CO group (P < 0.05). Gene expression of fatty acid synthase in both fish oil groups was also less than in the CO group (P < 0.05). However, the POP FO group showed greater lipid peroxidation (5.1 ± 0.7 vs. 2.9 ± 0.9 and 2.6 ± 0.6 μM) and less antioxidant capacity (0.08 ± 0.06 vs. 0.5 ± 0.1 and 0.4 ± 0.1 mM) than the CO and FO groups (P < 0.05). CONCLUSIONS These findings indicate that, despite exhibiting benefits on serum lipid concentrations and inflammation, contamination with PCBs and OCs showed significant negative effects on oxidative stress and antioxidant capacity in rats. Future studies should investigate the effects of different contaminant doses and the possibility of a dose-dependent response, a lengthened feeding time, and interactions between contaminant mixtures and oils of varying composition to advise on dietary consumption of fish and fish oil.
Collapse
Affiliation(s)
| | - Jan Lumibao
- School of Exercise and Nutritional Sciences, and
| | | | - Rhonda Saleh
- Graduate School of Public Health, San Diego State University, San Diego, CA
| | - Eunha Hoh
- Graduate School of Public Health, San Diego State University, San Diego, CA
| |
Collapse
|
7
|
Hong MY, Hartig N, Kaufman K, Hooshmand S, Figueroa A, Kern M. Watermelon consumption improves inflammation and antioxidant capacity in rats fed an atherogenic diet. Nutr Res 2015; 35:251-8. [PMID: 25631716 DOI: 10.1016/j.nutres.2014.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/26/2014] [Accepted: 12/28/2014] [Indexed: 01/22/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States. Watermelon, rich in antioxidants and other bioactive components, may be a viable method to improve CVD risk factors through reduced oxidative stress. The purpose of the study was to determine the effects of watermelon powder consumption on lipid profiles, antioxidant capacity, and inflammation in dextran sodium sulfate (DSS)-treated rats fed an atherogenic diet. We hypothesized that watermelon would increase antioxidant capacity and reduce blood lipids and inflammation through modulation of related gene expression. Forty male-weanling (21 days old) Sprague-Dawley rats were divided into 4 groups (10 per group, total N = 40) in a 2 diets (control or 0.33% watermelon) × 2 treatments (with or without DSS) factorial design using an atherogenic diet. Watermelon-fed groups exhibited significantly lower serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol (P< .05). C-reactive protein levels were significantly lower in watermelon-fed rats than the control (P= .001). In addition, oxidative stress as measured by thiobarbituric acid reactive substances was significantly lower in watermelon groups (P= .001). Total antioxidant capacity, superoxide dismutase, and catalase activities were greater in watermelon groups (P< .05). Aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase were significantly lower in DSS-treated rats when watermelon was consumed (P< .05). Fatty acid synthase, 3-hydroxy-3methyl-glutaryl-CoA reductase, sterol regulatory element-binding protein 1, sterol regulatory element-binding protein 2, and cyclooxygenase-2 gene expression was significantly downregulated in the watermelon group without DSS (P< .05). These findings indicate that watermelon improves risk factors for CVD in rats through better lipid profiles, lower inflammation, and greater antioxidant capacity by altering gene expression for lipid metabolism.
Collapse
Affiliation(s)
- Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego CA USA 92182.
| | - Nicole Hartig
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego CA USA 92182
| | - Katy Kaufman
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego CA USA 92182
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego CA USA 92182
| | - Arturo Figueroa
- Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306
| | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego CA USA 92182
| |
Collapse
|
8
|
Shadwell N, Villalobos F, Kern M, Hong MY. Blooming reduces the antioxidant capacity of dark chocolate in rats without lowering its capacity to improve lipid profiles. Nutr Res 2013; 33:414-21. [DOI: 10.1016/j.nutres.2013.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 01/28/2023]
|
9
|
Kim K, Lim KM, Shin HJ, Seo DB, Noh JY, Kang S, Chung HY, Shin S, Chung JH, Bae ON. Inhibitory effects of black soybean on platelet activation mediated through its active component of adenosine. Thromb Res 2013; 131:254-61. [PMID: 23332980 DOI: 10.1016/j.thromres.2013.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/26/2012] [Accepted: 01/02/2013] [Indexed: 11/17/2022]
Abstract
Owing to the beneficial health effects on human cardiovascular system, soybeans and soy-related products have been a focus of intensive research. Soy isoflavones are known to be primarily responsible for the soy-related biological effects including anti-platelet activity but its in vivo relevancy has not been fully verified. Here we compared the role of adenosine, an active ingredient abundant in black soybean (BB) extract, in the anti-platelet effects of BB, to that of soy isoflavones. At the concentrations existing in BB, isoflavones such as genistein and daidzein could not attenuate collagen-induced platelet aggregation, however, adenosine significantly inhibited platelet aggregation with an equivalent potency to BB, suggesting that adenosine may be the major bioactive component. Consistently, the anti-aggregatory effects of BB disappeared after treatment of adenosine receptor antagonists. The effects of BB are mediated by adenosine through intracellular cAMP and subsequent attenuation of calcium mobilization. Of note, adenosine and BB significantly reduced platelet fibrinogen binding and platelet adhesion, other critical events for platelet activation, which were not affected by isoflavones. Taken together, we demonstrated that adenosine might be the major active ingredient for BB-induced anti-platelet activity, which will shed new light on the roles of adenosine as a bioactive compound in soybeans and soy-related food.
Collapse
Affiliation(s)
- Keunyoung Kim
- College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|