1
|
Xu W, Yang T, Zhang J, Li H, Guo M. Rhodiola rosea: a review in the context of PPPM approach. EPMA J 2024; 15:233-259. [PMID: 38841616 PMCID: PMC11147995 DOI: 10.1007/s13167-024-00367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
A natural "medicine and food" plant, Rhodiola rosea (RR) is primarily made up of organic acids, phenolic compounds, sterols, glycosides, vitamins, lipids, proteins, amino acids, trace elements, and other physiologically active substances. In vitro, non-clinical and clinical studies confirmed that it exerts anti-inflammatory, antioxidant, and immune regulatory effects, balances the gut microbiota, and alleviates vascular circulatory disorders. RR can prolong life and has great application potential in preventing and treating suboptimal health, non-communicable diseases, and COVID-19. This narrative review discusses the effects of RR in preventing organ damage (such as the liver, lung, heart, brain, kidneys, intestines, and blood vessels) in non-communicable diseases from the perspective of predictive, preventive, and personalised medicine (PPPM/3PM). In conclusion, as an adaptogen, RR can provide personalised health strategies to improve the quality of life and overall health status.
Collapse
Affiliation(s)
- Wenqian Xu
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | | | - Jinyuan Zhang
- The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Heguo Li
- Department of Spleen, Stomach, Liver and Gallbladder, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Min Guo
- Department of Spleen, Stomach, Liver and Gallbladder, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Matboli M, Al-Amodi HS, Khaled A, Khaled R, Roushdy MMS, Ali M, Diab GI, Elnagar MF, Elmansy RA, TAhmed HH, Ahmed EME, Elzoghby DMA, M.Kamel HF, Farag MF, ELsawi HA, Farid LM, Abouelkhair MB, Habib EK, Fikry H, Saleh LA, Aboughaleb IH. Comprehensive machine learning models for predicting therapeutic targets in type 2 diabetes utilizing molecular and biochemical features in rats. Front Endocrinol (Lausanne) 2024; 15:1384984. [PMID: 38854687 PMCID: PMC11157016 DOI: 10.3389/fendo.2024.1384984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/03/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction With the increasing prevalence of type 2 diabetes mellitus (T2DM), there is an urgent need to discover effective therapeutic targets for this complex condition. Coding and non-coding RNAs, with traditional biochemical parameters, have shown promise as viable targets for therapy. Machine learning (ML) techniques have emerged as powerful tools for predicting drug responses. Method In this study, we developed an ML-based model to identify the most influential features for drug response in the treatment of type 2 diabetes using three medicinal plant-based drugs (Rosavin, Caffeic acid, and Isorhamnetin), and a probiotics drug (Z-biotic), at different doses. A hundred rats were randomly assigned to ten groups, including a normal group, a streptozotocin-induced diabetic group, and eight treated groups. Serum samples were collected for biochemical analysis, while liver tissues (L) and adipose tissues (A) underwent histopathological examination and molecular biomarker extraction using quantitative PCR. Utilizing five machine learning algorithms, we integrated 32 molecular features and 12 biochemical features to select the most predictive targets for each model and the combined model. Results and discussion Our results indicated that high doses of the selected drugs effectively mitigated liver inflammation, reduced insulin resistance, and improved lipid profiles and renal function biomarkers. The machine learning model identified 13 molecular features, 10 biochemical features, and 20 combined features with an accuracy of 80% and AUC (0.894, 0.93, and 0.896), respectively. This study presents an ML model that accurately identifies effective therapeutic targets implicated in the molecular pathways associated with T2DM pathogenesis.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hiba S. Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
- Medicinal Biochemistry and Molecular Biology Department, Modern University for Technology and Information, Cairo, Egypt
| | - Marian M. S. Roushdy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Rasha A. Elmansy
- Anatomy Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hagir H. TAhmed
- Anatomy Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, AlNeelain University, Khartoum, Sudan
| | - Enshrah M. E. Ahmed
- Pathology Unit, Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Gassim University, Buraydah, Saudi Arabia
| | | | - Hala F. M.Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed F. Farag
- Medical Physiology Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Hind A. ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr, Egypt
| | - Laila M. Farid
- Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Eman K. Habib
- Department of Anatomy and Cell Biology, Faculty of Medicine, Galala University, Attaka, Suez Governorate, Egypt
| | - Heba Fikry
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lobna A. Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
3
|
Nakajima S. Pica behavior of laboratory rats (Rattus norvegicus domestica): Nauseated animals ingest kaolin, zeolite, bentonite, but not calcium carbonate chalk. Behav Processes 2024; 216:105001. [PMID: 38336238 DOI: 10.1016/j.beproc.2024.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
"Pica" refers to the ingestion of non-nutritive substances by animals that would not typically consume them. The pica behavior can be utilized to investigate the internal conditions of animals' bodies. For example, rats, due to neuroanatomical reasons, cannot vomit; nevertheless, when nauseated, they ingest kaolin clay. This renders the ingestion of kaolin a practical proxy for measuring nausea in rats. The question of whether rats consume minerals other than kaolin during nauseous episodes remains unanswered. This study aims to identify a mineral better suited for detecting nausea in rats. In two experiments, nausea was induced in laboratory rats by a single dose of lithium chloride (0.15 M, 2% bw), and their mineral consumption over the 24-hour period was measured. Experiment 1 compared three minerals between rat groups: kaolin sold for nausea detection (kaolin A), kaolin for ceramics (kaolin B), and zeolite. Nauseated rats consumed all minerals, with the highest consumption occurring with kaolin B. In Experiment 2, three commercially available health soils were compared: edible kaolin, edible bentonite, and edible chalk. The most significant consumption was observed in the kaolin group, followed by the bentonite group, while nauseated rats did not consume edible chalk. These findings underscore the suitability of kaolin for nausea detection, although the extent of consumption may vary depending on the product.
Collapse
Affiliation(s)
- Sadahiko Nakajima
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya 662-8501, Japan.
| |
Collapse
|
4
|
Wang S, Feng Y, Zheng L, He P, Tan J, Cai J, Wu M, Ye X. Rosavin: Research Advances in Extraction and Synthesis, Pharmacological Activities and Therapeutic Effects on Diseases of the Characteristic Active Ingredients of Rhodiola rosea L. Molecules 2023; 28:7412. [PMID: 37959831 PMCID: PMC10648587 DOI: 10.3390/molecules28217412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Rhodiola rosea L. (RRL) is a popular plant in traditional medicine, and Rosavin, a characteristic ingredient of RRL, is considered one of the most important active ingredients in it. In recent years, with deepening research on its pharmacological actions, the clinical application value and demand for Rosavin have been steadily increasing. Various routes for the extraction and all-chemical or biological synthesis of Rosavin have been gradually developed for the large-scale production and broad application of Rosavin. Pharmacological studies have demonstrated that Rosavin has a variety of biological activities, including antioxidant, lipid-lowering, analgesic, antiradiation, antitumor and immunomodulation effects. Rosavin showed significant therapeutic effects on a range of chronic diseases, including neurological, digestive, respiratory and bone-related disorders during in vitro and vivo experiments, demonstrating the great potential of Rosavin as a therapeutic drug for diseases. This paper gives a comprehensive and insightful overview of Rosavin, focusing on its extraction and synthesis, pharmacological activities, progress in disease-treatment research and formulation studies, providing a reference for the production and preparation, further clinical research and applications of Rosavin in the future.
Collapse
Affiliation(s)
- Shen Wang
- School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; (S.W.); (J.T.); (J.C.)
| | - Yanmin Feng
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524023, China; (Y.F.); (L.Z.); (P.H.)
| | - Lin Zheng
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524023, China; (Y.F.); (L.Z.); (P.H.)
| | - Panfeng He
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang 524023, China; (Y.F.); (L.Z.); (P.H.)
| | - Jingyi Tan
- School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; (S.W.); (J.T.); (J.C.)
| | - Jinhui Cai
- School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China; (S.W.); (J.T.); (J.C.)
| | - Minhua Wu
- School of Basic Medicine, Guangdong Medical University, Zhanjiang 524023, China;
| | - Xiaoxia Ye
- School of Basic Medicine, Guangdong Medical University, Zhanjiang 524023, China;
| |
Collapse
|
5
|
Kshatriya D, Hao L, Li X, Bello NT. Raspberry Ketone [4-(4-Hydroxyphenyl)-2-Butanone] Differentially Effects Meal Patterns and Cardiovascular Parameters in Mice. Nutrients 2020; 12:nu12061754. [PMID: 32545402 PMCID: PMC7353175 DOI: 10.3390/nu12061754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023] Open
Abstract
Raspberry ketone (RK; [4-(4-hydroxyphenyl)-2-butanone]) is a popular nutraceutical used for weight management and appetite control. We sought to determine the physiological benefits of RK on the meal patterns and cardiovascular changes associated with an obesogenic diet. In addition, we explored whether the physiological benefits of RK promoted anxiety-related behaviors. Male and female C57BL/6J mice were administered a daily oral gavage of RK 200 mg/kg, RK 400 mg/kg, or vehicle for 14 days. Commencing with dosing, mice were placed on a high-fat diet (45% fat) or low-fat diet (10% fat). Our results indicated that RK 200 mg/kg had a differential influence on meal patterns in males and females. In contrast, RK 400 mg/kg reduced body weight gain, open-field total distance travelled, hemodynamic measures (i.e., reduced systolic blood pressure (BP), diastolic BP and mean BP), and increased nocturnal satiety ratios in males and females. In addition, RK 400 mg/kg increased neural activation in the nucleus of the solitary tract, compared with vehicle. RK actions were not influenced by diet, nor resulted in an anxiety-like phenotype. Our findings suggest that RK has dose-differential feeding and cardiovascular actions, which needs consideration as it is used as a nutraceutical for weight control for obesity.
Collapse
Affiliation(s)
- Dushyant Kshatriya
- Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (D.K.); (X.L.)
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | - Lihong Hao
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | - Xinyi Li
- Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (D.K.); (X.L.)
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | - Nicholas T. Bello
- Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (D.K.); (X.L.)
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
- Correspondence: ; Tel.: +1-848-932-2966
| |
Collapse
|
6
|
An Overview on Citrus aurantium L.: Its Functions as Food Ingredient and Therapeutic Agent. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7864269. [PMID: 29854097 PMCID: PMC5954905 DOI: 10.1155/2018/7864269] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/24/2018] [Accepted: 04/01/2018] [Indexed: 01/01/2023]
Abstract
Citrus aurantium L. (Rutaceae), commonly known as bitter orange, possesses multiple therapeutic potentials. These biological credentials include anticancer, antianxiety, antiobesity, antibacterial, antioxidant, pesticidal, and antidiabetic activities. The essential oil of C. aurantium was reported to display marked pharmacological effects and great variation in chemical composition depending on growing locations but mostly contained limonene, linalool, and β-myrcene. Phytochemically, C. aurantium is rich in p-synephrine, an alkaloid, and many health-giving secondary metabolites such as flavonoids. Animal studies have demonstrated a low affinity of p-synephrine for adrenergic receptors and an even lower affinity in human models. The present review focuses on the different biological activities of the C. aurantium in animal and human models in the form of extract and its pure secondary metabolites. Finally, it is concluded that both the extract and isolated compounds have no unwanted effects in human at therapeutic doses and, therefore, can confidently be used in various dietary formulations.
Collapse
|
7
|
Stohs SJ. Safety, Efficacy, and Mechanistic Studies Regarding Citrus aurantium (Bitter Orange) Extract and p-Synephrine. Phytother Res 2017; 31:1463-1474. [PMID: 28752649 PMCID: PMC5655712 DOI: 10.1002/ptr.5879] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/21/2017] [Accepted: 07/01/2017] [Indexed: 12/25/2022]
Abstract
Citrus aurantium L. (bitter orange) extracts that contain p-synephrine as the primary protoalkaloid are widely used for weight loss/weight management, sports performance, appetite control, energy, and mental focus and cognition. Questions have been raised about the safety of p-synephrine because it has some structural similarity to ephedrine. This review focuses on current human, animal, in vitro, and mechanistic studies that address the safety, efficacy, and mechanisms of action of bitter orange extracts and p-synephrine. Numerous studies have been conducted with respect to p-synephrine and bitter orange extract because ephedra and ephedrine were banned from use in dietary supplements in 2004. Approximately 30 human studies indicate that p-synephrine and bitter orange extracts do not result in cardiovascular effects and do not act as stimulants at commonly used doses. Mechanistic studies suggest that p-synephrine exerts its effects through multiple actions, which are discussed. Because p-synephrine exhibits greater adrenergic receptor binding in rodents than humans, data from animals cannot be directly extrapolated to humans. This review, as well as several other assessments published in recent years, has concluded that bitter orange extract and p-synephrine are safe for use in dietary supplements and foods at the commonly used doses. Copyright © 2017 The Authors Phytotherapy Research Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Sidney J. Stohs
- Creighton University Medical CenterKitsto Consulting LLCFriscoTXUSA
| |
Collapse
|
8
|
Rhodiola rosea L.: an herb with anti-stress, anti-aging, and immunostimulating properties for cancer chemoprevention. ACTA ACUST UNITED AC 2017; 3:384-395. [PMID: 30393593 DOI: 10.1007/s40495-017-0106-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose of review Rhodiola rosea extracts have been used as a dietary supplement in healthy populations, including athletes, to non-specifically enhance the natural resistance of the body to both physical and behavior stresses for fighting fatigue and depression. We summarize the information with respect to the new pharmacological activities of Rhodiola rosea extracts and its underlying molecular mechanisms in this review article. Recent findings In addition to its multiplex stress-protective activity, Rhodiola rosea extracts have recently demonstrated its anti-aging, anti-inflammation, immunostimulating, DNA repair and anti-cancer effects in different model systems. Molecular mechanisms of Rhodiola rosea extracts's action have been studied mainly along with one of its bioactive compounds, salidroside. Both Rhodiola rosea extracts and salidroside have contrast molecular mechanisms on cancer and normal physiological functions. For cancer, Rhodiola rosea extracts and salidroside inhibit the mTOR pathway and reduce angiogenesis through down-regulation of the expression of HIF-1α/HIF-2α. For normal physiological functions, Rhodiola rosea extracts and salidroside activate the mTOR pathway, stimulate paracrine function and promote neovascularization by inhibiting PHD3 and stabilizing HIF-1α proteins in skeletal muscles. In contrast to many natural compounds, salidroside is water-soluble and highly bioavailable via oral administration and concentrated in urine by kidney excretion. Summary Rhodiola rosea extracts and salidroside can impose cellular and systemic benefits similar to the effect of positive lifestyle interventions to normal physiological functions and for anti-cancer. The unique pharmacological properties of Rhodiola rosea extracts or salidroside deserve further investigation for cancer chemoprevention, in particular for human urinary bladder cancer.
Collapse
|
9
|
Duquette LL, Mattiace F, Blum K, Waite RL, Boland T, McLaughlin T, Dushaj K, Febo M, Badgaiyan RD. Neurobiology of KB220Z-Glutaminergic-Dopaminergic Optimization Complex [GDOC] as a Liquid Nano: Clinical Activation of Brain in a Highly Functional Clinician Improving Focus, Motivation and Overall Sensory Input Following Chronic Intake. ACTA ACUST UNITED AC 2016; 3. [PMID: 29214221 PMCID: PMC5714519 DOI: 10.23937/2378-3656/1410104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background With neurogenetic and epigenetic tools utilized in research and neuroimaging, we are unraveling the mysteries of brain function, especially as it relates to Reward Deficiency (RDS). We encourage the development of pharmaceuticals or nutraceuticals that promote a reduction in dopamine resistance and balance brain neurochemistry, leading to dopamine homeostasis. We disclose self-assessment of a highly functional professional under work-related stress following KB220Z use, a liquid (aqua) nano glutaminergic-dopaminergic optimization complex (GDOC). Case presentation Subject took GDOC for one month. Subject self-administered GDOC using one-half-ounce twice a day. During first three days, unique brain activation occurred; resembling white noise after 30 minutes and sensation was strong for 45 minutes and then dissipated. He described effect as if his eyesight improved slightly and pointed out that his sense of smell and sleep greatly improved. Subject experienced a calming effect similar to meditation that could be linked to dopamine release. He also reported control of going over the edge after a hard day’s work, which was coupled with a slight increase in energy, increased motivation to work, increased focus and multi-tasking, with clearer purpose of task at hand. Subject felt less inhibited in a social setting and suggested Syndrome that GDOC increased his Behavior Activating System (reward), while having a decrease in the Behavior Inhibition System (caution). Conclusion These results and other related studies reveal an improved mood, work-related focus, and sleep. These effects as a subjective feeling of brain activation maybe due to direct or indirect dopaminergic interaction. While this case is encouraging, we must await more research in a larger randomized placebo-controlled study to map the role of GDOC, especially in a nano-sized product, to determine the possible effects on circuit inhibitory control and memory banks and the induction of dopamine homeostasis independent of either hypo- or hyper-dopaminergic traits/states.
Collapse
Affiliation(s)
- Lucien L Duquette
- New Pathway Counseling Services Inc., Paramus, NJ, USA.,Behavior Wellness Center, Englewood, NJ, USA
| | | | - Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA.,Division of Addiction Services, Dominion Diagnostics, LLC., North Kingstown, RI, USA.,Division of Neuroscience-Based Therapy, Summit Estate Recovery Center, Los Gatos, CA, USA.,Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA.,Department of Clinical Neurology, PATH Foundation NY, New York, NY, USA.,Department of Nutrigenomic Translational Research, LaVita RDS, Salt Lake City, UT, USA.,Division of Neuroscience Research & Addiction Therapy, Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA
| | - Roger L Waite
- Department of Nutrigenomic Translational Research, LaVita RDS, Salt Lake City, UT, USA
| | | | | | - Kristina Dushaj
- Department of Clinical Neurology, PATH Foundation NY, New York, NY, USA
| | - Marcelo Febo
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Laboratory of Molecular and Functional Imaging, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Verpeut JL, DiCicco-Bloom E, Bello NT. Ketogenic diet exposure during the juvenile period increases social behaviors and forebrain neural activation in adult Engrailed 2 null mice. Physiol Behav 2016; 161:90-98. [PMID: 27080080 DOI: 10.1016/j.physbeh.2016.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/16/2016] [Accepted: 04/02/2016] [Indexed: 11/16/2022]
Abstract
Prolonged consumption of ketogenic diets (KD) has reported neuroprotective benefits. Several studies suggest KD interventions could be useful in the management of neurological and developmental disorders. Alterations in the Engrailed (En) genes, specifically Engrailed 2 (En2), have neurodevelopmental consequences and produce autism-related behaviors. The following studies used En2 knockout (KO; En2(-/-)), and wild-type (WT; En2(+/+)), male mice fed either KD (80% fat, 0.1% carbohydrates) or control diet (CD; 10% fat, 70% carbohydrates). The objective was to determine whether a KD fed from weaning at postnatal day (PND) 21 to adulthood (PND 60) would alter brain monoamines concentrations, previously found dysregulated, and improve social outcomes. In WT animals, there was an increase in hypothalamic norepinephrine content in the KD-fed group. However, regional monoamines were not altered in KO mice in KD-fed compared with CD-fed group. In order to determine the effects of juvenile exposure to KD in mice with normal blood ketone levels, separate experiments were conducted in mice removed from the KD or CD and fed standard chow for 2days (PND 62). In a three-chamber social test with a novel mouse, KO mice previously exposed to the KD displayed similar social and self-grooming behaviors compared with the WT group. Groups previously exposed to a KD, regardless of genotype, had more c-Fos-positive cells in the cingulate cortex, lateral septal nuclei, and anterior bed nucleus of the stria terminalis. In the novel object condition, KO mice previously exposed to KD had similar behavioral responses and pattern of c-Fos immunoreactivity compared with the WT group. Thus, juvenile exposure to KD resulted in short-term consequences of improving social interactions and appropriate exploratory behaviors in a mouse model that displays autism-related behaviors. Such findings further our understanding of metabolic-based therapies for neurological and developmental disorders.
Collapse
Affiliation(s)
- Jessica L Verpeut
- Department of Animal Sciences, Graduate Program in Endocrinology and Animal Biosciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology/Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nicholas T Bello
- Department of Animal Sciences, Graduate Program in Endocrinology and Animal Biosciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
11
|
Gotthardt JD, Verpeut JL, Yeomans BL, Yang JA, Yasrebi A, Roepke TA, Bello NT. Intermittent Fasting Promotes Fat Loss With Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice. Endocrinology 2016; 157:679-91. [PMID: 26653760 PMCID: PMC4733124 DOI: 10.1210/en.2015-1622] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022]
Abstract
Clinical studies indicate alternate-day, intermittent fasting (IMF) protocols result in meaningful weight loss in obese individuals. To further understand the mechanisms sustaining weight loss by IMF, we investigated the metabolic and neural alterations of IMF in obese mice. Male C57/BL6 mice were fed a high-fat diet (HFD; 45% fat) ad libitum for 8 weeks to promote an obese phenotype. Mice were divided into four groups and either maintained on ad libitum HFD, received alternate-day access to HFD (IMF-HFD), and switched to ad libitum low-fat diet (LFD; 10% fat) or received IMF of LFD (IMF-LFD). After 4 weeks, IMF-HFD (∼13%) and IMF-LFD (∼18%) had significantly lower body weights than the HFD. Body fat was also lower (∼40%-52%) in all diet interventions. Lean mass was increased in the IMF-LFD (∼12%-13%) compared with the HFD and IMF-HFD groups. Oral glucose tolerance area under the curve was lower in the IMF-HFD (∼50%), whereas the insulin tolerance area under the curve was reduced in all diet interventions (∼22%-42%). HPLC measurements of hypothalamic tissue homogenates indicated higher (∼55%-60%) norepinephrine (NE) content in the anterior regions of the medial hypothalamus of IMF compared with the ad libitum-fed groups, whereas NE content was higher (∼19%-32%) in posterior regions in the IMF-LFD group only. Relative gene expression of Npy in the arcuate nucleus was increased (∼65%-75%) in IMF groups. Our novel findings indicate that intermittent fasting produces alterations in hypothalamic NE and neuropeptide Y, suggesting the counterregulatory processes of short-term weight loss are associated with an IMF dietary strategy.
Collapse
Affiliation(s)
- Juliet D Gotthardt
- Department of Animal Sciences (J.D.G., J.L.V., B.L.Y., J.A.Y., A.Y., T.A.R., N.T.B.), School of Environmental and Biological Sciences, Nutritional Sciences Graduate Program (J.D.G., B.L.Y., T.A.R., N.T.B.), Graduate Program in Endocrinology and Animal Biosciences (J.L.V., J.A.Y., T.A.R., N.T.B.), and New Jersey Institute for Food, Nutrition, and Health (T.A.R., N.T.B.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 0890
| | - Jessica L Verpeut
- Department of Animal Sciences (J.D.G., J.L.V., B.L.Y., J.A.Y., A.Y., T.A.R., N.T.B.), School of Environmental and Biological Sciences, Nutritional Sciences Graduate Program (J.D.G., B.L.Y., T.A.R., N.T.B.), Graduate Program in Endocrinology and Animal Biosciences (J.L.V., J.A.Y., T.A.R., N.T.B.), and New Jersey Institute for Food, Nutrition, and Health (T.A.R., N.T.B.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 0890
| | - Bryn L Yeomans
- Department of Animal Sciences (J.D.G., J.L.V., B.L.Y., J.A.Y., A.Y., T.A.R., N.T.B.), School of Environmental and Biological Sciences, Nutritional Sciences Graduate Program (J.D.G., B.L.Y., T.A.R., N.T.B.), Graduate Program in Endocrinology and Animal Biosciences (J.L.V., J.A.Y., T.A.R., N.T.B.), and New Jersey Institute for Food, Nutrition, and Health (T.A.R., N.T.B.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 0890
| | - Jennifer A Yang
- Department of Animal Sciences (J.D.G., J.L.V., B.L.Y., J.A.Y., A.Y., T.A.R., N.T.B.), School of Environmental and Biological Sciences, Nutritional Sciences Graduate Program (J.D.G., B.L.Y., T.A.R., N.T.B.), Graduate Program in Endocrinology and Animal Biosciences (J.L.V., J.A.Y., T.A.R., N.T.B.), and New Jersey Institute for Food, Nutrition, and Health (T.A.R., N.T.B.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 0890
| | - Ali Yasrebi
- Department of Animal Sciences (J.D.G., J.L.V., B.L.Y., J.A.Y., A.Y., T.A.R., N.T.B.), School of Environmental and Biological Sciences, Nutritional Sciences Graduate Program (J.D.G., B.L.Y., T.A.R., N.T.B.), Graduate Program in Endocrinology and Animal Biosciences (J.L.V., J.A.Y., T.A.R., N.T.B.), and New Jersey Institute for Food, Nutrition, and Health (T.A.R., N.T.B.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 0890
| | - Troy A Roepke
- Department of Animal Sciences (J.D.G., J.L.V., B.L.Y., J.A.Y., A.Y., T.A.R., N.T.B.), School of Environmental and Biological Sciences, Nutritional Sciences Graduate Program (J.D.G., B.L.Y., T.A.R., N.T.B.), Graduate Program in Endocrinology and Animal Biosciences (J.L.V., J.A.Y., T.A.R., N.T.B.), and New Jersey Institute for Food, Nutrition, and Health (T.A.R., N.T.B.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 0890
| | - Nicholas T Bello
- Department of Animal Sciences (J.D.G., J.L.V., B.L.Y., J.A.Y., A.Y., T.A.R., N.T.B.), School of Environmental and Biological Sciences, Nutritional Sciences Graduate Program (J.D.G., B.L.Y., T.A.R., N.T.B.), Graduate Program in Endocrinology and Animal Biosciences (J.L.V., J.A.Y., T.A.R., N.T.B.), and New Jersey Institute for Food, Nutrition, and Health (T.A.R., N.T.B.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey 0890
| |
Collapse
|
12
|
Al-Kuraishy HM. Central additive effect of Ginkgo biloba and Rhodiola rosea on psychomotor vigilance task and short-term working memory accuracy. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2015; 5:7-13. [PMID: 27069717 PMCID: PMC4805150 DOI: 10.5455/jice.20151123043202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/09/2015] [Indexed: 11/26/2022]
Abstract
Aim: The present study investigates the effect of combined treatment with Ginkgo biloba and/or Rhodiola rosea on psychomotor vigilance task (PVT) and short-term working memory accuracy. Subjects and Methods: A total number of 112 volunteers were enrolled to study the effect of G. biloba and R. rosea on PVT and short-term working memory accuracy as compared to placebo effects, the central cognitive effect was assessed by critical flicker-fusion frequency, PVT, and computerized N-back test. Results: Placebo produced no significant effects on all neurocognitive tests measure P > 0.05 in normal healthy volunteers, G. biloba or R. rosea improve PVT and low to moderate working memory accuracy, The combined effect of R. rosea and G. biloba leading to more significant effect on PVT, all levels of short-term working memory accuracy and critical fusion versus flicker P < 0.01, more than of G. biloba or R. rosea when they used alone. Conclusion: The combined effect of R. rosea and G. biloba leading to a more significant effect on cognitive function than either G. biloba or R. rosea when they used alone.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine College of Medicine Al-Mustansiriya University, P.O. Box 14132, Iraq, Baghdad
| |
Collapse
|
13
|
Traditional Korean Herbal Formula Samsoeum Attenuates Adipogenesis by Regulating the Phosphorylation of ERK1/2 in 3T3-L1 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:893934. [PMID: 26483846 PMCID: PMC4592915 DOI: 10.1155/2015/893934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/13/2015] [Accepted: 08/10/2015] [Indexed: 11/29/2022]
Abstract
Adipogenesis is the cell differentiation process from preadipocytes into adipocytes and the critical action in the development of obesity. In the present study, we conducted in vitro analyses to investigate the inhibitory effects of Samsoeum (SSE), a traditional herbal decoction. SSE had no significant cytotoxic effect against either the undifferentiated or differentiated 3T3-L1 cells. Oil Red O staining results showed that SSE significantly inhibited fat accumulation in adipocytes. SSE treatment consistently reduced the intracellular triglyceride content in the cells. SSE significantly inactivated glycerol-3-phosphate dehydrogenase (GPDH), a major link between carbohydrate and lipid metabolisms in 3T3-L1 adipocytes, and markedly inhibited the production of leptin, an important adipokine, in differentiated cells. SSE markedly suppressed the mRNA expression of the adipogenesis-related genes peroxisome proliferator-activated receptor-gamma (PPAR-γ), CCAAT/enhancer binding protein-alpha (C/EBP-α), fatty acid synthase (FAS), lipoprotein lipase (LPL), and fatty acid binding protein 4 (FABP4). Importantly, SSE increased the phosphorylation of ERK1/2, but not p38 MAPK and JNK, in adipose cells. Overall, our results indicate that SSE exerts antiadipogenic activity and modulates expressions of adipogenesis-related genes and ERK1/2 activation in adipocytes.
Collapse
|
14
|
Chuang ML, Wu TC, Wang YT, Wang YC, Tsao TCY, Wei JCC, Chen CY, Lin IF. Adjunctive Treatment with Rhodiola Crenulata in Patients with Chronic Obstructive Pulmonary Disease--A Randomized Placebo Controlled Double Blind Clinical Trial. PLoS One 2015; 10:e0128142. [PMID: 26098419 PMCID: PMC4476627 DOI: 10.1371/journal.pone.0128142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/21/2015] [Indexed: 12/01/2022] Open
Abstract
UNLABELLED Chronic obstructive pulmonary disease (COPD) is a low grade systemic inflammatory disease characterized by dyspnea and exercise intolerance even under standard therapy. Rhodiola crenulata (RC) has been shown to exert anti-inflammatory effects and to enhance exercise endurance, thereby having the potential to treat COPD. In this 12-week, randomized, double-blind, placebo-controlled clinical trial, 57 patients with stable moderate-to-severe COPD aged 70±8.8 years were given RC (250 mg twice/day) (n=38) or a placebo (250 mg twice/day) (n=19) in addition to their standard regimen. There were no significant differences in anthropometrics, quality of life, lung function, six-minute walk and incremental exercise tests between the two groups at enrollment. Over the 12 weeks, RC was well tolerated, significantly reduced triceps skin thickness (Δ=-1 mm, p=.04), change of FEV1 (4.5%, p=.03), and improved workload (Δ=10%, p=.01); although there were no significant differences in these factors between the two groups. However, there were significant between-group differences in tidal volume and ventilation-CO2-output ratio at peak exercise (both p=.05), which were significantly related to peak work rate (both p<.0001). RC tended to protect against acute exacerbation of COPD (p=.1) but not other measurements. RC did not improve the six-minute walk test distance but significantly improved tidal breathing and ventilation efficiency, most likely through improvements in work rate. Further studies with a larger patient population are needed in order to confirm these findings. TRIAL REGISTRATION ClinicalTrials.gov number NCT02242461.
Collapse
Affiliation(s)
- Ming-Lung Chuang
- Division of Pulmonary Medicine and Department of Critical Care Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Chin Wu
- Division of Pulmonary Medicine and Department of Critical Care Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yau-Tung Wang
- Division of Pulmonary Medicine and Department of Critical Care Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yau-Chen Wang
- Division of Pulmonary Medicine and Department of Critical Care Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Thomas C.-Y. Tsao
- Division of Pulmonary Medicine and Department of Critical Care Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - James Cheng-Chung Wei
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Chinese Medicine Clinical Trial Center, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Yin Chen
- Chinese Medicine Clinical Trial Center, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - I-Feng Lin
- Institute and Department of Public Health, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
15
|
Pomari E, Stefanon B, Colitti M. Effects of Two Different Rhodiola rosea Extracts on Primary Human Visceral Adipocytes. Molecules 2015; 20:8409-28. [PMID: 25970041 PMCID: PMC6272273 DOI: 10.3390/molecules20058409] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Rhodiola rosea (Rro) has been reported to have various pharmacological properties, including anti-fatigue, anti-stress and anti-inflammatory activity. It is also known to improve glucose and lipid metabolism, but the effects of Rhodiola rosea on adipocyte differentiation and metabolism are not still elucidated. In this study the anti-adipogenic and lipolytic activity of two extracts of Rhodiola rosea, containing 3% salidroside (RS) or 1% salidroside and 3% rosavines (RR) on primary human visceral adipocytes was investigated. Pre-adipocytes were analyzed after 10 and 20 days of treatment during differentiation and after 7 days of treatment when they reached mature shape. The RS extract significantly induced higher apoptosis and lipolysis in comparison to control cells and to RR extract. In contrast, RR extract significantly reduced triglyceride incorporation during maturation. Differentiation of pre-adipocytes in the presence of RS and RR extracts showed a significant decrease in expression of genes involved in adipocyte function such as SLC2A4 and the adipogenic factor FGF2 and significant increase in expression of genes involved in inhibition of adipogenesis, such as GATA3, WNT3A, WNT10B. Furthermore RR extract, in contrast to RS, significantly down-regulates PPARG, the master regulator of adipogenesis and FABP4. These data support the lipolytic and anti-adipogenetic activity of two different commercial extracts of Rhodiola rosea in primary human visceral pre-adipocytes during differentiation.
Collapse
Affiliation(s)
- Elena Pomari
- Department of Agricultural and Environmental Sciences, University of Udine, via delle Scienze, 206, 33100 Udine, Italy.
| | - Bruno Stefanon
- Department of Agricultural and Environmental Sciences, University of Udine, via delle Scienze, 206, 33100 Udine, Italy.
| | - Monica Colitti
- Department of Agricultural and Environmental Sciences, University of Udine, via delle Scienze, 206, 33100 Udine, Italy.
| |
Collapse
|
16
|
Dietary-induced binge eating increases prefrontal cortex neural activation to restraint stress and increases binge food consumption following chronic guanfacine. Pharmacol Biochem Behav 2014; 125:21-28. [PMID: 25158105 DOI: 10.1016/j.pbb.2014.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/13/2014] [Accepted: 08/16/2014] [Indexed: 01/27/2023]
Abstract
Binge eating is a prominent feature of bulimia nervosa and binge eating disorder. Stress or perceived stress is an often-cited reason for binge eating. One notion is that the neural pathways that overlap with stress reactivity and feeding behavior are altered by recurrent binge eating. Using young adult female rats in a dietary-induced binge eating model (30 min access to binge food with or without 24-h calorie restriction, twice a week, for 6 weeks) we measured the neural activation by c-Fos immunoreactivity to the binge food (vegetable shortening mixed with 10% sucrose) in bingeing and non-bingeing animals under acute stress (immobilization; 1 h) or no stress conditions. There was an increase in the number of immunopositive cells in the dorsal medial prefrontal cortex (mPFC) in stressed animals previously exposed to the binge eating feeding schedules. Because attention deficit hyperactive disorder (ADHD) medications target the mPFC and have some efficacy at reducing binge eating in clinical populations, we examined whether chronic (2 weeks; via IP osmotic mini-pumps) treatment with a selective alpha-2A adrenergic agonist (0.5 mg/kg/day), guanfacine, would reduce binge-like eating. In the binge group with only scheduled access to binge food (30 min; twice a week; 8 weeks), guanfacine increased total calories consumed during the 30-min access period from the 2-week pre-treatment baseline and increased binge food consumption compared with saline-treated animals. These experiments suggest that mPFC is differentially activated in response to an immobilization stress in animals under different dietary conditions and chronic guanfacine, at the dose tested, was ineffective at reducing binge-like eating.
Collapse
|
17
|
Colitti M, Grasso S. Nutraceuticals and regulation of adipocyte life: premises or promises. Biofactors 2014; 40:398-418. [PMID: 24692086 DOI: 10.1002/biof.1164] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/26/2014] [Accepted: 03/16/2014] [Indexed: 01/18/2023]
Abstract
Obesity is the actual worldwide health threat, that is associated with an increased number of metabolic disorders and diseases. Following the traditional hypothesis stating that in obesity hypertrophic adipocytes trigger the adipose tissue hyperplasia, strategies to treat obesity have increased fat researches of the molecular processes that achieve adipocyte enlargement and formation that finally increase body fat mass. Moreover, a new cell type was recently identified, the "brite" adipocyte that presents a unique gene expression profile of compared to both brown and white adipocytes. Therapies against obesity, targeting these cells and their pathways, would include the induction of lipolysis and apoptosis or the inhibition of differentiation and adipogenesis. However, it should be noted that both the increase of adipocyte size and number take place in association with positive energy balance. According to the adipose tissue expansion hypothesis, adipogenesis could be related with improved metabolic health of obese people, taking back the adipose mass to a traditionally site of lipid storage. Furthermore, new perspectives in fat biology suggest that the conversion of white-to-brown adipocytes and their metabolism could be exploited for the development of therapeutic approaches against obesity-associated diseases and for the regulation of energy balance. Drugs currently available to treat obesity generally have unpleasant side effects. A novel promising approach is the usage of dietary supplements and plant products that could interfere on the life cycle of adipocyte. Here, various dietary bioactive compounds that target different stages of adipocyte life cycle and molecular and metabolic pathways are reviewed.
Collapse
Affiliation(s)
- Monica Colitti
- Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy
| | | |
Collapse
|