1
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Fasting: A Complex, Double-Edged Blade in the Battle Against Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2024:10.1007/s12012-024-09925-7. [PMID: 39354217 DOI: 10.1007/s12012-024-09925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
In recent years, there has been a surge in the popularity of fasting as a method to enhance one's health and overall well-being. Fasting is a customary practice characterized by voluntary refraining from consuming food and beverages for a specified duration, ranging from a few hours to several days. The potential advantages of fasting, including enhanced insulin sensitivity, decreased inflammation, and better cellular repair mechanisms, have been well documented. However, the effects of fasting on cancer therapy have been the focus of recent scholarly investigations. Doxorubicin (Dox) is one of the most widely used chemotherapy medications for cancer treatment. Unfortunately, cardiotoxicity, which may lead to heart failure and other cardiovascular issues, has been linked to Dox usage. This study aims to comprehensively examine the possible advantages and disadvantages of fasting concerning Dox-induced cardiotoxicity. Researchers have investigated the potential benefits of fasting in lowering the risk of Dox-induced cardiac damage to solve this problem. Nevertheless, new studies indicate that prolonged alternate-day fasting may adversely affect the heart's capacity to manage the cardiotoxic properties of Dox. Though fasting may benefit overall health, it is essential to proceed cautiously and consider the potential risks in certain circumstances.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tao Yu
- Department of Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Liaoning Province Cancer Hospital, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Liaoning Province Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
2
|
Mackieh R, Al-Bakkar N, Kfoury M, Okdeh N, Pietra H, Roufayel R, Legros C, Fajloun Z, Sabatier JM. Unlocking the Benefits of Fasting: A Review of its Impact on Various Biological Systems and Human Health. Curr Med Chem 2024; 31:1781-1803. [PMID: 38018193 DOI: 10.2174/0109298673275492231121062033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Fasting has gained significant attention in recent years for its potential health benefits in various body systems. This review aims to comprehensively examine the effects of fasting on human health, specifically focusing on its impact on different body's physiological systems. The cardiovascular system plays a vital role in maintaining overall health, and fasting has shown promising effects in improving cardiovascular health markers such as blood pressure, cholesterol levels, and triglyceride levels. Additionally, fasting has been suggested to enhance insulin sensitivity, promote weight loss, and improve metabolic health, thus offering potential benefits to individuals with diabetes and metabolic disorders. Furthermore, fasting can boost immune function, reduce inflammation, enhance autophagy, and support the body's defense against infections, cancer, and autoimmune diseases. Fasting has also demonstrated a positive effect on the brain and nervous system. It has been associated with neuroprotective properties, improving cognitive function, and reducing the risk of neurodegenerative diseases, besides the ability of increasing the lifespan. Hence, understanding the potential advantages of fasting can provide valuable insights for individuals and healthcare professionals alike in promoting health and wellbeing. The data presented here may have significant implications for the development of therapeutic approaches and interventions using fasting as a potential preventive and therapeutic strategy.
Collapse
Affiliation(s)
- Rawan Mackieh
- Department of Biology, Faculty of Sciences, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Nadia Al-Bakkar
- Faculty of Health Sciences, College of Life Sciences, Beirut Arab University, Beirut Campus, P.O. Box 11 50 20, Riad El Solh, Beirut 11072809, Lebanon
| | - Milena Kfoury
- Department of Biology, Faculty of Sciences, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Nathalie Okdeh
- Department of Biology, Faculty of Sciences, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Hervé Pietra
- Association Esprit Jeûne & Fasting Spirit, 226, Chemin du Pélican, Toulon 83000, France
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Hadiya, Kuwait
| | - Christian Legros
- Univ Angers, INSERM, CNRS, MITOVASC, Team 2 CarMe, SFR ICAT, Angers 49000, France
| | - Ziad Fajloun
- Department of Biology, Faculty of Sciences, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Jean-Marc Sabatier
- Aix-- Marseille Université, CNRS, INP, Inst Neurophysiopathol, Marseille 13385, France
| |
Collapse
|
3
|
Saputri FC, Azmi NU, Puteri MU, Damayanti, Novita V, Marisi G, Oktavira E, Sari AN, Ronaningtyas K, Herawati E. High-Fat Diet Enhances Platelet Activation and Is Associated with Proprotein Convertase Subtilisin Kexin 9: An Animal Study. Nutrients 2023; 15:4463. [PMID: 37892538 PMCID: PMC10609754 DOI: 10.3390/nu15204463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Platelet activation and proprotein convertase subtilisin kexin 9 (PCSK9) play pivotal roles in the progression of atherosclerosis to cardiovascular events. It has been reported that hyperlipidemia, a well-documented risk factors for cardiovascular diseases, tends increase platelet activation and PCSK9 expression. However, little is known about this specific mechanism, particularly how nutrition affects platelet activation and PCSK9 levels in hyperlipidemia conditions. This study aimed to assess how a high-fat diet influences platelet activation, its association with PCSK9, and the effects on blood pressure in an animal model. Here, male Wistar rats were divided into four groups, subjected to different high-fat diets for ten weeks with varying nutrient components. The results showed that high-fat diet-induced hypercholesterolemia and hypertriglyceridemia significantly increased the plasma levels of β-thromboglobulin (β-TG), p-selectin, and platelet factor 4 (PF-4). The blood pressure readings were also elevated post high-fat diet induction. Interestingly, the group with the highest percentage of saturated fatty acid and trans-fat exhibited the highest PCSK9 levels, along with the highest increase in plasma cholesterol, triglycerides, and platelet activation parameters. These findings confirm that high-fat diet-induced hypercholesterolemia and hypertriglyceridemia stimulate platelet activity and PCSK9 levels. Moreover, our results suggest that PCSK9, implicated in hypercholesterolemia and hypertriglyceridemia, may synergistically mediate platelet hyperactivity, aligning with clinical studies. Notably, our results highlight the association between a high-fat diet and PCSK9, providing insights for drug discovery targeting platelet activation in atherosclerosis-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Fadlina Chany Saputri
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 16424, West Java, Indonesia; (N.U.A.); (M.U.P.); (A.N.S.); (K.R.); (E.H.)
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 16424, West Java, Indonesia
| | - Nuriza Ulul Azmi
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 16424, West Java, Indonesia; (N.U.A.); (M.U.P.); (A.N.S.); (K.R.); (E.H.)
| | - Meidi Utami Puteri
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 16424, West Java, Indonesia; (N.U.A.); (M.U.P.); (A.N.S.); (K.R.); (E.H.)
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 16424, West Java, Indonesia
| | - Damayanti
- Laboratory of Drug Development, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 16424, West Java, Indonesia; (D.); (V.N.); (G.M.); (E.O.)
| | - Vivi Novita
- Laboratory of Drug Development, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 16424, West Java, Indonesia; (D.); (V.N.); (G.M.); (E.O.)
| | - Gracia Marisi
- Laboratory of Drug Development, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 16424, West Java, Indonesia; (D.); (V.N.); (G.M.); (E.O.)
| | - Elin Oktavira
- Laboratory of Drug Development, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 16424, West Java, Indonesia; (D.); (V.N.); (G.M.); (E.O.)
| | - Aninda Novika Sari
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 16424, West Java, Indonesia; (N.U.A.); (M.U.P.); (A.N.S.); (K.R.); (E.H.)
| | - Khairunisa Ronaningtyas
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 16424, West Java, Indonesia; (N.U.A.); (M.U.P.); (A.N.S.); (K.R.); (E.H.)
| | - Enny Herawati
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok 16424, West Java, Indonesia; (N.U.A.); (M.U.P.); (A.N.S.); (K.R.); (E.H.)
| |
Collapse
|
4
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
5
|
Demirci E, Çalapkorur B, Celik O, Koçer D, Demirelli S, Şimsek Z. Improvement in Blood Pressure After Intermittent Fasting in Hipertension: Could Renin-Angiotensin System and Autonomic Nervous System Have a Role? Arq Bras Cardiol 2023; 120:e20220756. [PMID: 37098959 PMCID: PMC10124600 DOI: 10.36660/abc.20220756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/15/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Although it has been reported that the intermittent fasting (IF) diet has positive effects on heart health and improvement in blood pressure, it has not been sufficiently clarified how it could have these positive effects yet. OBJECTIVE We aimed to evaluate the effects of IF on the autonomic nervous system (ANS) and renin-angiotensin system (RAS), which are closely related to blood pressure. METHODS Seventy-two hypertensive patients were included in the study, and the data of 58 patients were used. All the participants fasted for about 15-16 hours for 30 days. Participants were evaluated with 24-hour ambulatory blood pressure monitoring and Holter electrocardiography before and after IF; also, 5 ml venous blood samples were taken for assessment of Serum angiotensin I (Ang-I) and angiotensin II (Ang-II) levels and angiotensin-converting enzyme (ACE) activity. For data analysis, the p-value <0.05 was accepted as significant. RESULTS Compared to pre-IF, a significant decrease was observed in the patients' blood pressures in post-IF. An increase in high-frequency (HF) power and the mean root square of the sum of squares of differences between adjacent NN intervals (RMSSD) were observed after the IF protocol (p=0.039, p=0.043). Ang-II and ACE activity were lower in patients after IF (p=0.034, p=0.004), and decreasing Ang-II levels were determined as predictive factors for improvement of the blood pressure, like the increase in HF power and RMSSD. CONCLUSION The present findings of our study demonstrated an improvement in blood pressure and the relationship of blood pressure with positive outcomes, including HRV, ACE activity, and Ang-II levels after the IF protocol.
Collapse
Affiliation(s)
- Erkan Demirci
- Kayseri City Hospital - Departamento de Cardiologia, Kayseri - Turquia
| | - Bekir Çalapkorur
- Kayseri City Hospital - Departamento de Cardiologia, Kayseri - Turquia
| | - Oguzhan Celik
- Mugla Sitki Kocman University, Faculdade de Medicina - Departamento de Cardiologia, Mugla - Turquia
| | - Derya Koçer
- Kayseri City Hospital - Departamento de Bioquímica, Kayseri - Turquia
| | - Selami Demirelli
- Kayseri City Hospital - Departamento de Cardiologia, Kayseri - Turquia
| | - Ziya Şimsek
- Kayseri City Hospital - Departamento de Cardiologia, Kayseri - Turquia
| |
Collapse
|
6
|
Hernández-Díazcouder A, González-Ramírez J, Sanchez F, Leija-Martínez JJ, Martínez-Coronilla G, Amezcua-Guerra LM, Sánchez-Muñoz F. Negative Effects of Chronic High Intake of Fructose on Lung Diseases. Nutrients 2022; 14:nu14194089. [PMID: 36235741 PMCID: PMC9571075 DOI: 10.3390/nu14194089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
In the modern diet, excessive fructose intake (>50 g/day) had been driven by the increase, in recent decades, of the consumption of sugar-sweetened beverages. This phenomenon has dramatically increased within the Caribbean and Latin American regions. Epidemiological studies show that chronic high intake of fructose related to sugar-sweetened beverages increases the risk of developing several non-communicable diseases, such as chronic obstructive pulmonary disease and asthma, and may also contribute to the exacerbation of lung diseases, such as COVID-19. Evidence supports several mechanisms—such as dysregulation of the renin−angiotensin system, increased uric acid production, induction of aldose reductase activity, production of advanced glycation end-products, and activation of the mTORC1 pathway—that can be implicated in lung damage. This review addresses how these pathophysiologic and molecular mechanisms may explain the lung damage resulting from high intake of fructose.
Collapse
Affiliation(s)
| | - Javier González-Ramírez
- Cellular Biology Laboratory, Faculty of Nursing, Universidad Autónoma de Baja California Campus Mexicali, Mexicali 21100, Mexico
| | - Fausto Sanchez
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana Xochimilco, Mexico City 04960, Mexico
| | - José J. Leija-Martínez
- Master and Doctorate Program in Medical, Dental, and Health Sciences, Faculty of Medicine, Universidad Nacional Autónoma de México Campus Ciudad Universitaria, Mexico City 04510, Mexico
- Research Laboratory of Pharmacology, Hospital Infantil de Mexico Federico Gómez, Mexico City 06720, Mexico
| | - Gustavo Martínez-Coronilla
- Histology Laboratory, Faculty of Medicine, Universidad Autónoma de Baja California Campus Mexicali, Mexicali 21100, Mexico
| | - Luis M. Amezcua-Guerra
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Fausto Sánchez-Muñoz
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
- Correspondence: ; Tel.: +52-5573-2911 (ext. 21310)
| |
Collapse
|
7
|
El-Outa A, Ghandour L, Hamade H, Borgi C, Fares EJ, Gherbal T, Mufarrij A. Intermittent fasting & performance: The iFast clinical trial protocol. Contemp Clin Trials Commun 2022; 25:100766. [PMID: 35024492 PMCID: PMC8728049 DOI: 10.1016/j.conctc.2021.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 11/26/2022] Open
Abstract
There is increasing evidence from animal and human studies suggesting that fasting can play a role in disease prevention, weight control and longevity. However, few studies have compared exercise performances in individuals adhering to an intermittent fasting (IF) in comparison to individuals who are not. Given the rising popularity of IF we aim to investigate whether this type eating pattern will improve cardiovascular performance over a period of 12 weeks through VO2 max measurements in participants from a Lebanese community. Additionally, we will study the variation of different health parameters, physical performance and biomarkers potentially affected by IF. Participants will be recruited from a large university community and randomized into 4 arms. Baseline information will be collected from all participants, which includes biological, physical, nutritional, medical and psychological data. Two arms will follow a time-restricted fasting diet with and without physical exercise, one arm will exercise without fasting, and one will act as a control group. Throughout the study, measurements will be repeated, and data analysis will follow to evaluate results.
Collapse
Affiliation(s)
- Abbass El-Outa
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lara Ghandour
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hani Hamade
- Department of Internal Medicine, The MetroHealth System, Cleveland, USA
| | - Cecile Borgi
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Elie-Jacques Fares
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Tarek Gherbal
- University Sports, Office of Student Affairs, American University of Beirut, Beirut, Lebanon
| | - Afif Mufarrij
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
8
|
Intermittent Fasting Improves High-Fat Diet-Induced Obesity Cardiomyopathy via Alleviating Lipid Deposition and Apoptosis and Decreasing m6A Methylation in the Heart. Nutrients 2022; 14:nu14020251. [PMID: 35057432 PMCID: PMC8781965 DOI: 10.3390/nu14020251] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Intermittent fasting (IF) plays an essential role in improving lipid metabolism disorders caused by metabolic cardiomyopathy. Growing evidence revealed that N6-methyladenosine (m6A) RNA methylation is related to obesity and lipid metabolic. Our study aimed to assess the beneficial effects of IF on lipid deposition, apoptosis, and m6A methylation in high-fat diet (HFD)-induced obesity cardiomyopathy. Male C57BL/6J mice were fed a normal diet (ND) or HFD ad libitum for 13 weeks, after which time a subgroup of HFD mice were subjected to IF for 24 h and fed HFD in the other day for 8 weeks. We found that IF intervention significantly improved cardiac functional and structural impairment and serum lipid metabolic disorder induced by HFD. Furthermore, IF intervention decreased the mRNA levels of the fatty acid uptake genes of FABP1, FATP1, and CD36 and the fatty acid synthesis genes of SREBF1, FAS, and ACCα and increased the mRNA levels of the fatty acid catabolism genes of ATGL, HSL, LAL, and LPL in cardiac tissueof HFD-induced obese mice. TUNEL-positive cells, Bax/Bcl-2 ratio, and Cleaved Caspase-3 protein expression in HFD-induced obese mice hearts was down-regulated by IF intervention. In addition, IF intervention decreased the m6A methylation levels and METTL3 expression and increased FTO expression in HFD-induced obesity cardiomyopathy. In conclusion, our findings demonstrate that IF attenuated cardiac lipid deposition and apoptosis, as well as improved cardiac functional and structural impairment in HFD-induced obesity cardiomyopathy, by a mechanism associated with decreased m6A RNA methylation levels.
Collapse
|
9
|
Sepúlveda-Fragoso V, Alexandre-Santos B, Salles ACP, Proença AB, de Paula Alves AP, Vázquez-Carrera M, Nóbrega ACL, Frantz EDC, Magliano DC. Crosstalk between the renin-angiotensin system and the endoplasmic reticulum stress in the cardiovascular system: Lessons learned so far. Life Sci 2021; 284:119919. [PMID: 34480931 DOI: 10.1016/j.lfs.2021.119919] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 12/18/2022]
Abstract
The renin-angiotensin (Ang) system (RAS) is a complex hormonal system present locally in several tissues such as cardiovascular organs. RAS deregulation through overactivation of the classical arm [Ang-converting enzyme (ACE)/Ang-II/Ang type 1 receptor (AT1R)] has been linked to the development of cardiovascular diseases and activation of endoplasmic reticulum (ER) stress pathways. The ER stress is a condition that, if unresolved, might lead to heart failure, atherosclerosis, hypertension, and endothelial dysfunction. Accumulated evidence has shown that the RAS modulates the UPR activation. Several studies reported increased ER stress markers in response to Ang-II treatment, in both in vivo and in vitro models. Evidence has also pointed that targeting the RAS classical arm through RAS blockers, gene silencing or genetic models leads to lower levels of ER stress markers. Few studies demonstrated protective effects of the counter-regulatory arm (ACE-2/Ang-(1-7)/Mas receptor) over ER stress. However, the crosstalk mechanisms between the arms of the RAS and ER stress remain unclear. In this review, we sought to explore the classical arm of the RAS as a key mechanism in UPR activation and to suggest a possible protective role of the counter-regulatory arm in mitigating ER stress.
Collapse
Affiliation(s)
- Vinicius Sepúlveda-Fragoso
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Beatriz Alexandre-Santos
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Amanda Conceição Pimenta Salles
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Ana Beatriz Proença
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Ana Paula de Paula Alves
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Antonio Claudio Lucas Nóbrega
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - Eliete Dalla Corte Frantz
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - D'Angelo Carlo Magliano
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
10
|
Ealey KN, Phillips J, Sung HK. COVID-19 and obesity: fighting two pandemics with intermittent fasting. Trends Endocrinol Metab 2021; 32:706-720. [PMID: 34275726 PMCID: PMC8226104 DOI: 10.1016/j.tem.2021.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/27/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
Obesity is strongly and independently associated with an increased risk of severe illness and death from coronavirus disease 2019 (COVID-19). The pathophysiological changes that result from elevated body weight lead to metabolic dysfunction, chronic inflammation, impaired immunological responses, and multisystem disorders, which increase vulnerability to severe illness from COVID-19. While vaccination strategies are under way across the world, the second and third waves of the pandemic, along with the emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains, continue to threaten the stability of medical systems worldwide. Furthermore, evidence from previous pandemics suggests that vaccines are less effective in obese individuals than in their healthy-weight counterparts over the long term. Therefore, a consideration of lifestyle changes that can boost metabolic health and immunity is critical to reduce the risk of complications and severe illness from viral infection. In this review, we discuss the potential mechanisms linking excess body weight with COVID-19 morbidity. We also present evidence that intermittent fasting (IF), a dietary program that has gained popularity in recent years, may be an effective strategy to improve metabolic health and immunity and thus reduce the impact of obesity on COVID-19 morbidity and mortality.
Collapse
Affiliation(s)
- Kafi N Ealey
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Joy Phillips
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Bahammam AS, Pirzada AR. Delaying school and office timings during Ramadhan: Boon or bane? Ann Thorac Med 2021; 16:1-3. [PMID: 33680124 PMCID: PMC7908901 DOI: 10.4103/atm.atm_679_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 11/04/2022] Open
Affiliation(s)
- Ahmed Salem Bahammam
- Department of Medicine, The University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,The Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi Arabia
| | - Abdul Rouf Pirzada
- Department of Medicine, The University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
AlQudah M, Hale TM, Czubryt MP. Targeting the renin-angiotensin-aldosterone system in fibrosis. Matrix Biol 2020; 91-92:92-108. [PMID: 32422329 DOI: 10.1016/j.matbio.2020.04.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by excessive deposition of extracellular matrix components such as collagen in tissues or organs. Fibrosis can develop in the heart, kidneys, liver, skin or any other body organ in response to injury or maladaptive reparative processes, reducing overall function and leading eventually to organ failure. A variety of cellular and molecular signaling mechanisms are involved in the pathogenesis of fibrosis. The renin-angiotensin-aldosterone system (RAAS) interacts with the potent Transforming Growth Factor β (TGFβ) pro-fibrotic pathway to mediate fibrosis in many cell and tissue types. RAAS consists of both classical and alternative pathways, which act to potentiate or antagonize fibrotic signaling mechanisms, respectively. This review provides an overview of recent literature describing the roles of RAAS in the pathogenesis of fibrosis, particularly in the liver, heart, kidney and skin, and with a focus on RAAS interactions with TGFβ signaling. Targeting RAAS to combat fibrosis represents a promising therapeutic approach, particularly given the lack of strategies for treating fibrosis as its own entity, thus animal and clinical studies to examine the impact of natural and synthetic substances to alter RAAS signaling as a means to treat fibrosis are reviewed as well.
Collapse
Affiliation(s)
- Mohammad AlQudah
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada; Department of Physiology and Biochemistry, College of Medicine, Jordan University of Science and Technology, Jordan
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, United States
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada.
| |
Collapse
|
13
|
Badreh F, Joukar S, Badavi M, Rashno M. Restoration of the Renin-Angiotensin System Balance Is a Part of the Effect of Fasting on Cardiovascular Rejuvenation: Role of Age and Fasting Models. Rejuvenation Res 2019; 23:302-312. [PMID: 31571520 DOI: 10.1089/rej.2019.2254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intermittent fasting (IF) is an intervention that can be beneficial for health span and mitigate the risk of developing age-related cardiovascular diseases; however, the involved mechanisms are not well understood. The present study investigated the effects of IF regimens on the plasma level of angiotensin II (Ang II), and the expression of Ang II receptors (AT1aR and AT2R) and angiotensin-converting enzyme 2 (ACE2) in the heart and aorta of male, 3-, 12-, and 24-month-old Wistar rats fed ad libitum (AL), fed ad libitum and fasted 1 day per week (FW), or fasted every other day (EOD) for 3 months. Aging was associated with high circulating levels of Ang II, high level of AT1aR protein expression in the heart and aorta, and low level of AT2R protein expression in the heart and aorta. Both FW and EOD decreased Ang II levels (p < 0.01, p < 0.001) and AT1aR protein expression in the heart (p < 0.01, p < 0.001) and aorta (p < 0.001) of old rats. Both FW and EOD increased the expression of AT2R protein in the heart (p < 0.05 and p < 0.001, respectively). However, only EOD increased the expression of AT2R protein (p < 0.05) in the aorta. In the old group, both the FW and EOD regimens induced a significant increase in the expression of ACE2 protein in the heart (p < 0.01, p < 0.001 vs. age-matched AL group, respectively). The results suggest that a part of the recovery effect of fasting on cardiovascular system in old rats is mediated through restoration of the balance of renin-angiotensin system.
Collapse
Affiliation(s)
- Firuzeh Badreh
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Siyavash Joukar
- Neuroscience Research Center, Cardiovascular Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Badavi
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,The Persian Gulf Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|