1
|
Ali AH, Li S, Liu SQ, Gan RY, Li HB, Kamal-Eldin A, Ayyash M. Invited review: Camel milk and gut health-Understanding digestibility and the effect on gut microbiota. J Dairy Sci 2024; 107:2573-2585. [PMID: 37977446 DOI: 10.3168/jds.2023-23995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Camel milk (CM), known for its immune-regulatory, anti-inflammatory, antiapoptotic, and antidiabetic properties, is a natural healthy food. It is easily digestible due to the high levels of β-casein and diverse secreted antibodies, exhibiting superior antibacterial and antiviral activities compared with bovine milk. β-casein is less allergic and more digestible because it is more susceptible to digestive hydrolysis in the gut; therefore, higher levels of β-casein make CM advantageous for human health. Furthermore, antibodies help the digestive system by destroying the antigens, which are then overwhelmed and digested by macrophages. The connection between the gut microbiota and human health has gained substantial research attention, as it offers potential benefits and supports disease treatment. The gut microbiota has a vital role in regulating the host's health because it helps in several biological functions, such as protection against pathogens, immune function regulation, energy harvesting from digested foods, and reinforcement of digestive tract biochemical barriers. These functions could be affected by the changes in the gut microbiota profile, and gut microbiota differences are associated with several diseases, such as inflammatory bowel disease, colon cancer, irritable bowel disorder, mental illness, allergy, and obesity. This review focuses on the digestibility of CM components, particularly protein and fat, and their influence on gut microbiota modulation. Notably, the hypoallergenic properties and small fat globules of CM contribute to its enhanced digestibility. Considering the rapid digestion of its proteins under conditions simulating infant gastrointestinal digestion, CM exhibits promise as a potential alternative for infant formula preparation due to the high β-/αs-casein ratio and protective proteins, in addition to the absence of β-lactoglobulin.
Collapse
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Siqi Li
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates.
| |
Collapse
|
2
|
Guo W, Liu S, Khan MZ, Wang J, Chen T, Alugongo GM, Li S, Cao Z. Bovine milk microbiota: Key players, origins, and potential contributions to early-life gut development. J Adv Res 2024; 59:49-64. [PMID: 37423549 PMCID: PMC11081965 DOI: 10.1016/j.jare.2023.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Bovine milk is a significant substitute for human breast milk and holds great importance in infant nutrition and health. Apart from essential nutrients, bovine milk also contains bioactive compounds, including a microbiota derived from milk itself rather than external sources of contamination. AIM OF REVIEW Recognizing the profound impact of bovine milk microorganisms on future generations, our review focuses on exploring their composition, origins, functions, and applications. KEY SCIENTIFIC CONCEPTS OF REVIEW Some of the primary microorganisms found in bovine milk are also present in human milk. These microorganisms are likely transferred to the mammary gland through two pathways: the entero-mammary pathway and the rumen-mammary pathway. We also elucidated potential mechanisms by which milk microbiota contribute to infant intestinal development. The mechanisms include the enhancing of the intestinal microecological niche, promoting the maturation of immune system, strengthening the intestinal epithelial barrier function, and interacting with milk components (e.g., oligosaccharides) via cross-feeding effect. However, given the limited understanding of bovine milk microbiota, further studies are necessary to validate hypotheses regarding their origins and to explore their functions and potential applications in early intestinal development.
Collapse
Affiliation(s)
- Wenli Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Muhammad Z Khan
- Faculty of Veterinary and Animal Sciences, Department of Animal Breeding and Genetics, The University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gibson M Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Zingone F, Bertin L, Maniero D, Palo M, Lorenzon G, Barberio B, Ciacci C, Savarino EV. Myths and Facts about Food Intolerance: A Narrative Review. Nutrients 2023; 15:4969. [PMID: 38068827 PMCID: PMC10708184 DOI: 10.3390/nu15234969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Most adverse reactions to food are patient self-reported and not based on validated tests but nevertheless lead to dietary restrictions, with patients believing that these restrictions will improve their symptoms and quality of life. We aimed to clarify the myths and reality of common food intolerances, giving clinicians a guide on diagnosing and treating these cases. We performed a narrative review of the latest evidence on the widespread food intolerances reported by our patients, giving indications on the clinical presentations, possible tests, and dietary suggestions, and underlining the myths and reality. While lactose intolerance and hereditary fructose intolerance are based on well-defined mechanisms and have validated diagnostic tests, non-coeliac gluten sensitivity and fermentable oligosaccharide, disaccharide, monosaccharide, and polyol (FODMAP) intolerance are mainly based on patients' reports. Others, like non-hereditary fructose, sorbitol, and histamine intolerance, still need more evidence and often cause unnecessary dietary restrictions. Finally, the main outcome of the present review is that the medical community should work to reduce the spread of unvalidated tests, the leading cause of the problematic management of our patients.
Collapse
Affiliation(s)
- Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy;
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy;
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
| | - Michela Palo
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
| | - Brigida Barberio
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy;
| | - Carolina Ciacci
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Salerno, Italy;
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy;
| |
Collapse
|
4
|
Mahdavi A, Trottier J, Barbier O, Lebel M, Rudkowska I. Dairy Intake Modifies the Level of the Bile Acid Precursor and Its Correlation with Serum Proteins Associated with Cholesterol Clearance in Subjects with Hyperinsulinemia. Nutrients 2023; 15:4707. [PMID: 38004101 PMCID: PMC10675775 DOI: 10.3390/nu15224707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Bile acids regulate glucose homeostasis and lipid metabolism. Further, the levels of bile acids can be influenced by the intake of dairy products. Although the serum proteome can provide information on the biological pathways associated with different metabolites, it is unknown whether the intake of dairy modifies such associations between bile acids and the proteome. The objectives of this study were to examine plasma bile acid profiles, find the correlations between bile acids and lipid as well as glycemic markers, and to uncover the correlation between bile acids and proteins after high dairy (HD) and adequate dairy (AD) intake among 25 overweight individuals with hyperinsulinemia. In this randomized crossover-trial study, hyperinsulinemia adults were randomized to both HD (≥4 servings/day) and AD (≤2 servings/day) for 6 weeks. Measurements and analyses were performed on before- as well as after- AD and HD conditions. The results indicated that plasma 7α-hydroxy-4-cholesten-3-one (7AC4) increased after HD in comparison with before HD intake (p = 0.03). After adjusting for BMI, age, and sex, 7AC4 positively correlated with triglyceride levels in the pre-AD (r = 0.44; p = 0.03) and post-HD (r = 0.42; p = 0.04). Further, 7AC4 correlated positively with proteins associated with high-density lipoprotein particle remodeling pathway and reverse cholesterol transport only after HD consumption. Thus, the consumption of higher dairy intake modifies the association between 7AC4-a biomarker for bile acid synthesis-and serum proteins involved in cholesterol clearance. Overall, higher dairy consumption may have a positive effect on cholesterol metabolism in subjects at risk of type 2 diabetes.
Collapse
Affiliation(s)
- Atena Mahdavi
- Endocrinology and Nephrology, CHU de Québec Research Center—Université Laval, Quebec City, QC G1V 4G2, Canada;
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU de Québec Research Center—Université Laval, Quebec City, QC G1V 4G2, Canada; (J.T.); (O.B.)
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU de Québec Research Center—Université Laval, Quebec City, QC G1V 4G2, Canada; (J.T.); (O.B.)
- Faculty of Pharmacy, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Michel Lebel
- Endocrinology and Nephrology, CHU de Québec Research Center—Université Laval, Quebec City, QC G1V 4G2, Canada;
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Iwona Rudkowska
- Endocrinology and Nephrology, CHU de Québec Research Center—Université Laval, Quebec City, QC G1V 4G2, Canada;
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 4G2, Canada
| |
Collapse
|
5
|
Li A, Han X, Liu L, Zhang G, Du P, Zhang C, Li C, Chen B. Dairy products and constituents: a review of their effects on obesity and related metabolic diseases. Crit Rev Food Sci Nutr 2023; 64:12820-12840. [PMID: 37724572 DOI: 10.1080/10408398.2023.2257782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Obesity has become a global public health problem that seriously affects the quality of life. As an important part of human diet, dairy products contain a large number of nutrients that are essential for maintaining human health, such as proteins, peptides, lipids, vitamins, and minerals. A growing number of epidemiological investigations provide strong evidence on dairy interventions for weight loss in overweight/obese populations. Therefore, this paper outlines the relationship between the consumption of different dairy products and obesity and related metabolic diseases. In addition, we dive into the mechanisms related to the regulation of glucose and lipid metabolism by functional components in dairy products and the interaction with gut microbes. Lastly, the role of dairy products on obesity of children and adolescents is revisited. We conclude that whole dairy products exert more beneficial effect than single milk constituent on alleviating obesity and that dairy matrix has important implications for metabolic health.
Collapse
Affiliation(s)
- Aili Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xueting Han
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Libo Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Guofang Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Peng Du
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Research Institute, Harbin, China
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
6
|
Lin A, Yan X, Xu R, Wang H, Su Y, Zhu W. Effects of lactic acid bacteria-fermented formula milk supplementation on colonic microbiota and mucosal transcriptome profile of weaned piglets. Animal 2023; 17:100959. [PMID: 37688970 DOI: 10.1016/j.animal.2023.100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 09/11/2023] Open
Abstract
Supplemental probiotic fermented milk as a gut modulator can improve growth performance for weaned piglets by promoting the development of the small intestine in digestion and immune function. The effect on colon health might also play a considerable part in the favourable role of probiotic fermented milk in the growth performance improvement of weaned piglets; however, it has yet to be reported. This study aimed to investigate the effects of supplementation with lactic acid bacteria-fermented formula milk (LFM) on colonic morphology, microbiota composition, and mucosal transcriptome profile in weaned piglets. A total of 24 male weaned piglets were randomly divided into two groups: a control (CON) treatment or the LFM-supplemented treatment. Each group consisted of six replicates (cages) with two piglets per cage, and each piglet in the LFM group was supplemented with 80 mL LFM three times a day for 21 d, while the CON group was treated with the same amount of drinking water. Results showed that supplementation of LFM reduced the colonic histological damage scores and significantly increased the number of goblet cells per crypt. Furthermore, LFM consumption decreased the levels of pro-inflammation cytokines in the colonic mucosa. LFM downregulated the expression of inflammatory genes (CXCL9 and CXCL10) involving Toll-like receptor signalling pathway, immune response, and response to bacterium, and up-regulated two active genes (S100A8 and S100A9) involving the IL-17 signalling pathway and Toll-like receptor 4 binding. In addition, LFM could increase the potential probiotic genera containing Lachnospira and Anaerorhabdus furcosa group, which were positively related to short-chain fatty acid (SCFA) production. Correspondingly, LFM-fed piglets had higher total bacterial load and total SCFA concentration in the colonic digesta compared with the CON group. These novel findings support the benefits of LFM in enhancing intestinal homoeostasis and ameliorating weaning stress for weaned piglets, which is associated with the modulation of gut microbiota composition and immune-related genes.
Collapse
Affiliation(s)
- A Lin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - X Yan
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - R Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - H Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Y Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
| | - W Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Peptidomics Profile, Bioactive Peptides Identification and Biological Activities of Six Different Cheese Varieties. BIOLOGY 2023; 12:biology12010078. [PMID: 36671770 PMCID: PMC9855406 DOI: 10.3390/biology12010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Several recent published studies reported that cheese consumption may protect against the onset of cardiovascular diseases and type-2 diabetes due to the presence of bioactive peptides. In the present work, six cheese varieties (the Egyptian traditional cheeses Karish, Domiati and Ras as well as Feta-type, Gouda and Edam cheeses) were characterized for their peptidomics profiles with high-resolution mass spectrometry, biological activities and content in bioactive peptides. The highest ACE-inhibitory and DPP-IV-inhibitory activities were found in Gouda cheese, which also displayed the highest antioxidant activity. A total of 809 peptides originating from the major milk proteins were identified, and 82 of them were bioactive. Most of them showed ACE-inhibitory, antioxidant and DPP-IV-inhibitory activities. The highest amount of the in vivo anti-hypertensive tripeptides VPP and IPP was found in Gouda cheese (39.19 ± 1.26 and 17.72 ± 0.89 mg/100 g of cheese, respectively), whereas the highest amount of APFPE was detected in Edam cheese (509.13 ± 20.44 mg/100 g of cheese). These results suggest that the intake of Edam, Domiati and, especially, Gouda cheeses may result in a possible anti-hypertensive effect in hypertensive subjects.
Collapse
|
8
|
Aljutaily T, Rehan M, Moustafa MMA, Barakat H. Effect of Intermittent Fasting, Probiotic-Fermented Camel Milk, and Probiotic-Fermented Camel Milk Incorporating Sukkari Date on Diet-Induced Obesity in Rats. FERMENTATION-BASEL 2022; 8:619. [DOI: 10.3390/fermentation8110619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Obesity causes metabolic syndrome disorders that are detrimental to health. The current study examined the effects of intermittent fasting (IF), fermented camel milk (FCM), and fermented camel milk incorporating 10% Sukkari date (FCM-D) on weight loss, blood profile, and antioxidant status in obese rats for 6 weeks. Subsequently, leptin and adiponectin levels and histopathological examination of adipose tissue were carried out. Results showed that IF with FCM or FCM-D decreased body weight by 0.92 and −5.45%, respectively. IF alone lowered non-fasting blood glucose (NFBG) and fasting blood glucose FBG after 6 weeks, whereas adding FCM or FCM-D reduced NFBG after 4 weeks. Intermittently fasting obese rats given FCM or FCM-D had the lowest blood glucose levels (BGL). The hypolipidemic effects of IF, FCM, and FCM-D on obese rats reduced triglycerides (TG), cholesterols (CHO), and their derivatives. FCM-D with IF presented a superior effect on lipid profile. A reduction rate of 40, 37, 66, and 40% for TG, CHO, low-density lipoprotein (LDL-c), and very low-density lipoprotein (VLDL-c), respectively, and an increase in HDL-C by 34% were noticed. Reductions of 40, 37, 66, and 40% for TG, CHO, LDL-c, and VLDL-c, respectively, and a 34% rise in high-density lipoprotein (HDL-C) were noted. Combining IF with FCM or FCM-D lowered the atherogenic index (AI) by 42% and 59%, respectively. Remarkably, treating rats with FCM+IF or FCM-D+IF effectively attenuated leptin and adiponectin levels. Malondialdehyde (MDA) was significantly decreased in a type-dependent manner. Implementing FCM-D or FCM with IF significantly attenuated reduced glutathione (GSH), superoxide dismutase (SOD), MDA, and catalase (CAT) levels. The most efficient treatment was giving FCM-D with IF. Histopathologically, adipocyte lipolysis increases free fatty acids (FFAs) and promotes inflammation. Only IF+FCM-D indicated no histopathological alteration except for a few focal areas of a few inflammatory cell infiltrations in the parenchyma. In conclusion, combining IF and Probiotic-FCM or Probiotic-FCM-D effectively accelerated weight loss, attenuated metabolic markers, and reversed histopathological alterations. Thus, IF combined with Probiotic-FCM or Probiotic-FCM-D is highly recommended for weight loss, strengthening antioxidative status, and preventing health disorders.
Collapse
Affiliation(s)
- Thamer Aljutaily
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | | | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Food Technology, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
9
|
Inoue M, Matsumura K, Sugimori N, Hamazaki K, Tsuchida A, Inadera H. Dietary intake of yogurt and cheese in children at age 1 year and sleep duration at age 1 and 3 years: the Japan Environment and Children's Study. BMC Pediatr 2022; 22:624. [PMID: 36319988 PMCID: PMC9623995 DOI: 10.1186/s12887-022-03633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Background We previously reported that 1-year-old infants born to mothers who regularly consumed fermented food during pregnancy had a lower risk of sleep deprivation. However, it is not known if these positive effects are enhanced when infants themselves eat fermented foods or the long-term effects of such consumption. In this study, we examined the association between the frequency of fermented food intake during the child’s weaning period and sleep deprivation at age 1 and 3 years. Methods This birth cohort study used data from a nationwide, government-funded study called the Japan Environment and Children’s Study (JECS), covering 65,210 mother-child pairs. We examined the association between infants’ consumption of fermented foods at 1 year of age and sleep deprivation at 1 and 3 years of age. Results There was no association between yogurt or cheese intake and sleep duration at age 1; at age 3, there was no group difference, although a trend test showed that yogurt intake at age 1 was significantly associated with sleep duration at age 3. There was also no association between the frequency of cheese intake and inadequate sleep duration at age 3. Conclusion Frequency of children’s yogurt and cheese intake at age 1 was not associated with sleep duration at age 1 or 3. However, a trend test showed a significant association between the frequency of yogurt intake at age 1 and sleep duration at age 3.
Collapse
Affiliation(s)
- Mariko Inoue
- grid.267346.20000 0001 2171 836XDepartment of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, 930-0194 Toyama City, Toyama Japan
| | - Kenta Matsumura
- grid.267346.20000 0001 2171 836XDepartment of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, 930-0194 Toyama City, Toyama Japan ,grid.267346.20000 0001 2171 836XToyama Regional Center for JECS, University of Toyama, 2630 Sugitani, 930-8555 Toyama City, Toyama Japan
| | - Narumi Sugimori
- grid.267346.20000 0001 2171 836XDepartment of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, 930-0194 Toyama City, Toyama Japan
| | - Kei Hamazaki
- grid.267346.20000 0001 2171 836XDepartment of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, 930-0194 Toyama City, Toyama Japan ,grid.267346.20000 0001 2171 836XToyama Regional Center for JECS, University of Toyama, 2630 Sugitani, 930-8555 Toyama City, Toyama Japan ,grid.256642.10000 0000 9269 4097Department of Public Health, Gunma University Graduate School of Medicine, Showa 3-39-22, 371-8511 Maebashi, Gunma Japan
| | - Akiko Tsuchida
- grid.267346.20000 0001 2171 836XDepartment of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, 930-0194 Toyama City, Toyama Japan ,grid.267346.20000 0001 2171 836XToyama Regional Center for JECS, University of Toyama, 2630 Sugitani, 930-8555 Toyama City, Toyama Japan
| | - Hidekuni Inadera
- grid.267346.20000 0001 2171 836XDepartment of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, 930-0194 Toyama City, Toyama Japan ,grid.267346.20000 0001 2171 836XToyama Regional Center for JECS, University of Toyama, 2630 Sugitani, 930-8555 Toyama City, Toyama Japan
| | | |
Collapse
|
10
|
Lin A, Yan X, Wang H, Su Y, Zhu W. Effects of lactic acid bacteria-fermented formula milk supplementation on ileal microbiota, transcriptomic profile, and mucosal immunity in weaned piglets. J Anim Sci Biotechnol 2022; 13:113. [PMID: 36199127 PMCID: PMC9536082 DOI: 10.1186/s40104-022-00762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lactic acid bacteria (LAB) participating in milk fermentation naturally release and enrich the fermented dairy product with a broad range of bioactive metabolites, which has numerous roles in the intestinal health-promoting of the consumer. However, information is lacking regarding the application prospect of LAB fermented milk in the animal industry. This study investigated the effects of lactic acid bacteria-fermented formula milk (LFM) on the growth performance, intestinal immunity, microbiota composition, and transcriptomic responses in weaned piglets. A total of 24 male weaned piglets were randomly divided into the control (CON) and LFM groups. Each group consisted of 6 replicates (cages) with 2 piglets per cage. Each piglet in the LFM group were supplemented with 80 mL LFM three times a day, while the CON group was treated with the same amount of drinking water. RESULTS LFM significantly increased the average daily gain of piglets over the entire 14 d (P < 0.01) and the average daily feed intake from 7 to 14 d (P < 0.05). Compared to the CON group, ileal goblet cell count, villus-crypt ratio, sIgA, and lactate concentrations in the LFM group were significantly increased (P < 0.05). Transcriptomic analysis of ileal mucosa identified 487 differentially expressed genes (DEGs) between two groups. Especially, DEGs involved in the intestinal immune network for IgA production pathways, such as polymeric immunoglobulin receptor (PIGR), were significantly up-regulated (P < 0.01) by LFM supplementation. Moreover, trefoil factor 2 (TFF2) in the LFM group, one of the DEGs involved in the secretory function of goblet cells, was also significantly up-regulated (P < 0.01). Sequencing of the 16S rRNA gene of microbiota demonstrated that LFM led to selective enrichment of lactate-producing and short-chain fatty acid (SCFA)-producing bacteria in the ileum, such as an increase in the relative abundance of Enterococcus (P = 0.09) and Acetitomaculum (P < 0.05). CONCLUSIONS LFM can improve intestinal health and immune tolerance, thus enhancing the growth performance of weaned piglets. The changes in microbiota and metabolites induced by LFM might mediate the regulation of the secretory function of goblet cells.
Collapse
Affiliation(s)
- Ailian Lin
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.,National Center for International Research On Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoxi Yan
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.,National Center for International Research On Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongyu Wang
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.,National Center for International Research On Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong Su
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China. .,National Center for International Research On Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.,National Center for International Research On Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
11
|
Xia B, Liu X, Li Z, Ren J, Liu X. The Effects of Microbiota-targeted Approaches in Inflammatory Bowel Disease: Probiotics, Probiotic Foods and Prebiotics. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
12
|
Ghosh S, Sarkar T, Chakraborty R, Shariati MA, Simal-Gandara J. Nature's palette: An emerging frontier for coloring dairy products. Crit Rev Food Sci Nutr 2022; 64:1508-1552. [PMID: 36066466 DOI: 10.1080/10408398.2022.2117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Consumers all across the world are looking for the most delectable and appealing foods, while also demanding products that are safer, more nutritious, and healthier. Substitution of synthetic colorants with natural colorants has piqued consumer and market interest in recent years. Due to increasing demand, extensive research has been conducted to find natural and safe food additives, such as natural pigments, that may have health benefits. Natural colorants are made up of a variety of pigments, many of which have significant biological potential. Because of the promising health advantages, natural colorants are gaining immense interest in the dairy industry. This review goes over the use of various natural colorants in dairy products which can provide desirable color as well as positive health impacts. The purpose of this review is to provide an in-depth look into the field of food (natural or synthetic) colorants applied in dairy products as well as their potential health benefits, safety, general trends, and future prospects in food science and technology. In this paper, we listed a plethora of applications of natural colorants in various milk-based products.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Mohammad Ali Shariati
- Research Department, K. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, E32004, Spain
| |
Collapse
|
13
|
He J, Li W, Deng J, Lin Q, Bai J, Zhang L, Fang Y. An insight into the health beneficial of probiotics dairy products: a critical review. Crit Rev Food Sci Nutr 2022; 63:11290-11309. [PMID: 35730254 DOI: 10.1080/10408398.2022.2090493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Probiotic dairy products satisfy people's pursuit of health, and are widely favored because of their easy absorption, high nutritional value, and various health benefits. However, its effectiveness and safety are still controversial. This proposal aims to analyze the effect of probiotics on the quality characteristics of dairy products, clarify a series of physiological functions of probiotic dairy products and critically evaluate the effectiveness and safety of probiotic dairy products. Also, dairy products containing inactivated microorganisms were compared with probiotic products. The addition of probiotics enables dairy products to obtain unique quality characteristics, and probiotic dairy products have better health-promoting effects. This review will promote the further development of probiotic dairy products, provide directions for the research and development of probiotic-related products, and help guide the general public to choose and purchase probiotic fermentation products.
Collapse
Affiliation(s)
- JinTao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - QinLu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - Jie Bai
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lin Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Aljutaily T. Evaluating the Nutritional and Immune Potentiating Characteristics of Unfermented and Fermented Turmeric Camel Milk in Cyclophosphamide-Induced Immunosuppression in Rats. Antioxidants (Basel) 2022; 11:antiox11040792. [PMID: 35453477 PMCID: PMC9027126 DOI: 10.3390/antiox11040792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 01/24/2023] Open
Abstract
Antioxidative, nutritional, and immune-boosting characteristics of turmeric-camel milk (TCM) and fermented turmeric-camel milk (FTCM) were investigated. A cyclophosphamide-induced immunosuppression rat model consisting of six experimental groups was carried out to study the effects of TCM and FTCM on weight gain, antioxidant status, immunoglobulin (Igs), pro-inflammatory and anti-inflammatory cytokines, and oxidative stress biomarkers. TCM or FTCM were orally administrated at 10 or 20 mL Kg-1 rat weight to CYP-immunosuppressed rats for 2 weeks in the presence of negative (NR) and positive (CYP) control groups. The phytochemical analysis and antioxidant capacity results indicated that TCM and FTCM contained considerable phenolic content with super antioxidant activities. CYP injection affected the rats' weight directly during the first week and then, a low weight gain percentage was recorded in treated groups at the end of the experiment. The most efficient treatment for recovering rats' weight was administering TCM and FTCM at 20 mL kg-1. Feed efficiency significantly increased with feeding TCM and FTCM in a dose-dependent manner. A significant improvement was found in WBCs, lymphocytes, and neutrophils count, suggesting that both TCM and FTCM alleviated the CYP-induced immunity suppression in a dose-dependent manner. IgG, IgA, and IgM concentrations in the CYP + TCM at 10 or 20 mL kg-1 and CYP + FTCM at 10 or 20 mL kg-1 groups were increased significantly. Concentrations of IL-1 beta, IL-6, IL-10, IL-13, and IL-TNF-α in the CYP group were significantly lower than in the NR group. Interestingly, both TCM and FTCM, especially with high doses, significantly enhanced cytokines production. Administrating FTCM was more potent than TCM, indicating that TCM with probiotics fermentation potentiated the immunological activity in immunosuppressed rats. Treated rats with TCM and FTCM can reverse CYP inhibition of antioxidant enzyme activities, significantly increase GSH, CAT, and SOD, and decrease MDA levels in a dose-dependent manner. In conclusion, these observations indicated that FTCM exhibits better improvements in weight gain, increased immune biomarkers in terms of WBCs, enhanced pro-inflammation and anti-inflammation responses, and accelerated antioxidant activity in immunosuppressed rats compared with TCM. It could be beneficial and profitable for boosting immunity and protecting against oxidative stress.
Collapse
Affiliation(s)
- Thamer Aljutaily
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
15
|
Maciel da Silva R, Henrique Campelo P, Rodrigues S. In vitro viability of L. Casei B-442 and fructooligosaccharides integrity in Amazonian sapota-do-solimões functional juice. Food Res Int 2022; 154:111036. [DOI: 10.1016/j.foodres.2022.111036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
|
16
|
Domínguez Rubio AP, D’Antoni CL, Piuri M, Pérez OE. Probiotics, Their Extracellular Vesicles and Infectious Diseases. Front Microbiol 2022; 13:864720. [PMID: 35432276 PMCID: PMC9006447 DOI: 10.3389/fmicb.2022.864720] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics have been shown to be effective against infectious diseases in clinical trials, with either intestinal or extraintestinal health benefits. Even though probiotic effects are strain-specific, some "widespread effects" include: pathogen inhibition, enhancement of barrier integrity and regulation of immune responses. The mechanisms involved in the health benefits of probiotics are not completely understood, but these effects can be mediated, at least in part, by probiotic-derived extracellular vesicles (EVs). However, to date, there are no clinical trials examining probiotic-derived EVs health benefits against infectious diseases. There is still a long way to go to bridge the gap between basic research and clinical practice. This review attempts to summarize the current knowledge about EVs released by probiotic bacteria to understand their possible role in the prevention and/or treatment of infectious diseases. A better understanding of the mechanisms whereby EVs package their cargo and the process involved in communication with host cells (inter-kingdom communication), would allow further advances in this field. In addition, we comment on the potential use and missing knowledge of EVs as therapeutic agents (postbiotics) against infectious diseases. Future research on probiotic-derived EVs is needed to open new avenues for the encapsulation of bioactives inside EVs from GRAS (Generally Regarded as Safe) bacteria. This could be a scientific novelty with applications in functional foods and pharmaceutical industries.
Collapse
Affiliation(s)
- A. Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cecilia L. D’Antoni
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Oscar E. Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
17
|
Gut microbiota - nutrition and health. Nutr Res 2022; 100:42-46. [DOI: 10.1016/j.nutres.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022]
|
18
|
Incorporation of Sukkari Date in Probiotic-Enriched Fermented Camel Milk Improves the Nutritional, Physicochemical, and Organoleptical Characteristics. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation8010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Camel milk and dates are well-known for their great nutritional and therapeutical benefits. Therefore, the study aimed to combine the benefits of fermented camel milk (FCM) and Sukkari date (SKD) in a naturally sweetened FCM. Six treatments of FCM using ABT-5 cultures with 0, 5, 7.5, 10, 12.5, and 15% SKD were carried out. Chemical, physicochemical, rheological properties were studied, while organoleptical attributes and probiotic strains viability were monitored during cold storage (4 °C) up to 15 days. Results showed that fortification with SKD increased total solids (TS), ash, dietary fiber, and carbohydrate content compared to plain FCM. Water holding capacity (WHC) values increased with low and medium SKD levels then decreased with high SKD levels. Minerals such as K, P, Mg, Zn, Fe, and Cu were significantly increased, while Na was significantly decreased. Increased SKD levels in FCM resulted in significant increases in total phenolic content (TPC), total flavonoids (TF), total flavonols (TFL), and antioxidant activity (AOA). Instrumental color analysis exhibited a significant change in L*, b*, BI, and ∆E due to adding SKD in a dose-dependent manner. The viability of Streptococcus thermophiles, Lactobacillus acidophilus, and Bifidobacterium bifidum was increased by adding low and medium SKD levels, resulting in a higher number than the accepted threshold for a probiotic effect. Adding 10 and 12.5% SKD recorded the best-balanced flavor score at the beginning and after up to 15 days of storage, respectively. Conclusively, the current study revealed that fortification with SKD at 7.5–12.5% improved the nutritional quality without adverse effects on the technological, organoleptic characteristics, and probiotics viability and provided acceptable, nutritious, and healthy benefits to FCM.
Collapse
|
19
|
Sadovoy V, Shchedrina T, Trubina I, Morgunova A, Franko E. Cooked sausage enriched with essential nutrients for the gastrointestinal diet. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-345-353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. People with gastrointestinal disorders should have a sparing diet with a balanced chemical and amino acid composition including all essential components. Based on formulations of meat products, we identified a number of essential nutritional components that could improve the diet for gastrointestinal pathologies. In this study, we aimed to develop a formulation for cooked sausage enriched with deficient essential nutrients.
Study objects and methods. Our study object was cooked sausage. First, we analyzed the diet for people with gastrointestinal disorders. Then, we formulated a meat-based product (cooked sausage), determined its chemical and amino acid compositions, as well as vitamin and mineral contents, and assessed the balance of amino acids. Finally, we evaluated the biological value and safety of the formulated sausage on laboratory mice.
Results and discussion. The chemical and amino acid compositions of a daily gastrointestinal diet in medical institutions revealed a deficiency of some water-soluble vitamins, vitamin A, calcium, magnesium, and iron, as well as an imbalance of amino acids. To replenish the deficiency, we formulated a meat-based product composed of trimmed beef and pork, beef liver, egg mix, food gelatin, chitosan succinate, rice flour, and soy fortifier. The product was classified as a meat and cereal cooked sausage of grade B, in which most amino acids were used for anabolic purposes. Its daily portion of 100 g eliminated the deficiency of potassium and iron, almost completely replenished magnesium, calcium, and vitamin A, as well as reduced the deficiency of dietary fiber by 4.8 g. The cytological studies of the blood of laboratory animals, whose basic diet contained the formulated sausage, proved its high biological value and safety.
Conclusion. We found that the formulated meat and cereal sausage can be included in the diet for patients with gastrointestinal diseases and used in medical institutions to eliminate the deficiency of essential nutrients.
Collapse
|
20
|
Voloshyna IM. PRACTICAL USE OF GOAT MILK AND COLOSTRUM. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review presents the protein and amino acid composition of both goat colostrums and milk and describes the properties of goat colostrums and milk components. In addition, the prospects of use of goat milk and colostrum in the food and cosmetics industry and the feasibility of use of goat milk for baby feeding are shown. Functional foods produced from goat milk have antioxidant, anti-inflammatory, cardioprotective, antihypertensive and antiatherogenic activities in the human body. Goat milk cosmetics are very useful for maintaining a healthy skin and are effective in treatment of various skin diseases. Infant formula based on goat milk provides comfortable digestion for babies and are better at absorbing proteins, fats and other nutrients than infant formula based on cow’s milk.
Collapse
|
21
|
Sajdakowska M, Gębski J, Gutkowska K. Directions of Changes in the Health Values of Dairy Products in the Opinion of Consumers. Nutrients 2021; 13:1945. [PMID: 34198901 PMCID: PMC8230071 DOI: 10.3390/nu13061945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 01/13/2023] Open
Abstract
The aim of our research was to assess whether and to what extent the perceived change in the content of selected ingredients in dairy products is important for Polish consumers in accepting the enhancement of the health benefits of dairy products, including yogurt. The data were collected using a CAPI (Computer Assisted Personal Interview) survey on a sample of 983 consumers. The logistic regression model was used to predict the behavior of consumers associated with their willingness to accept the health aspects of improving dairy products. The results indicated that changes in the level of selected ingredients enhanced the willingness to accept increasing the health value of the product. The socio-demographic characteristics of the participants were not associated with the degree of their willingness to accept the improvement of the perceived health attributes. Practitioners in the dairy industry and policy makers can benefit from these results. When designing food products, it is worth focusing on increasing the nutritional value and enhancing the health value of food that is perceived by consumers as generally possessing positive health benefits, rather than on food that is perceived by them as possessing negative qualities.
Collapse
Affiliation(s)
- Marta Sajdakowska
- Department of Food Market and Consumer Research, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland; (J.G.); (K.G.)
| | | | | |
Collapse
|
22
|
Catanzaro R, Sciuto M, Marotta F. Lactose intolerance: An update on its pathogenesis, diagnosis, and treatment. Nutr Res 2021; 89:23-34. [PMID: 33887513 DOI: 10.1016/j.nutres.2021.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023]
Abstract
Lactose intolerance has a high prevalence worldwide, ranging between 57% and 65%. It is caused by a reduction or loss of the activity of the intestinal enzyme lactase-phlorizin hydrolase, responsible for the digestion of lactose. This alteration determines an increased osmotic load in the small intestine and the fermentation of lactose by the bacterial flora, which leads to a high production of short-chain fatty acids and gas. This is followed by the onset of abdominal pain, diarrhea, and flatulence. In addition to these problems, it was found that subjects with lactose intolerance have an increased risk of developing various extra-intestinal diseases, including cancers. The diagnosis is essential to undertake an adequate treatment and, for this purpose, different methods have been tested. These include genetic test, hydrogen breath test (HBT), quick lactase test, and lactose tolerance test. HBT is the most used method because it is non-invasive, inexpensive, and highly sensitive and specific, as well as easy to perform. In clinical practice, the other methods are mainly used as HBT integration tests. There are also many therapeutic options. An appropriate intervention concerns the dietetic style, such as the consumption of lactose-free foods, but with nutritional characteristics comparable to dairy products. Other valid choices are represented by the use of exogenous enzymes, probiotics, prebiotics, the selection of milk containing specific types of beta-caseins. This review is intended to illustrate the diagnostic methods currently available and the possible therapeutic options for lactose intolerance.
Collapse
Affiliation(s)
- Roberto Catanzaro
- Department of Clinical and Experimental Medicine, Gastroenterology Section, "Gaspare Rodolico" Policlinico Hospital, University of Catania, Catania, Italy.
| | - Morena Sciuto
- Department of Clinical and Experimental Medicine, Gastroenterology Section, "Gaspare Rodolico" Policlinico Hospital, University of Catania, Catania, Italy.
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention & San Babila Clinic, Milano, Italy.
| |
Collapse
|
23
|
Yamaguchi T, Tsuji S, Akagawa S, Akagawa Y, Kino J, Yamanouchi S, Kimata T, Hashiyada M, Akane A, Kaneko K. Clinical Significance of Probiotics for Children with Idiopathic Nephrotic Syndrome. Nutrients 2021; 13:nu13020365. [PMID: 33530312 PMCID: PMC7911438 DOI: 10.3390/nu13020365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
We previously reported that a decrease in butyrate-producing bacteria in the gut is a potential cause of regulatory T cell (Treg) abnormalities in children with idiopathic nephrotic syndrome (INS). Therefore, we hypothesized that administration of butyrate-producing bacteria might reduce INS relapse and the need for immunosuppressants in these patients. Twenty patients in remission from INS (median age 5.3 years, 15 boys) were enrolled in the study and assigned to receive either daily oral treatment with a preparation of 3 g Clostridium butyricum or no probiotic treatment. The number of relapses and requirement for immunosuppressive agents were compared between the two groups. In the probiotic treatment group, analyses of the gut microbiota and Treg measurements were also performed. Probiotic-treated patients experienced fewer INS relapses per year compared with non-probiotic-treated patients (p = 0.016). Further, administration of rituximab in the probiotic treatment group was significantly less frequent compared with the non-probiotic-treated group (p = 0.025). In the probiotic treatment group, analyses before and after probiotic treatment revealed the significant increases in the relative abundance of butyrate-producing bacteria (p = 0.017) and blood Treg counts (p = 0.0065). Thus, oral administration of butyrate-producing bacteria during INS remission may reduce the frequency of relapse and the need for immunosuppressive agents.
Collapse
Affiliation(s)
- Tadashi Yamaguchi
- Department of Pediatrics, Kansai Medical University, Osaka 573-1010, Japan; (T.Y.); (S.T.); (S.A.); (Y.A.); (J.K.); (S.Y.); (T.K.)
| | - Shoji Tsuji
- Department of Pediatrics, Kansai Medical University, Osaka 573-1010, Japan; (T.Y.); (S.T.); (S.A.); (Y.A.); (J.K.); (S.Y.); (T.K.)
| | - Shohei Akagawa
- Department of Pediatrics, Kansai Medical University, Osaka 573-1010, Japan; (T.Y.); (S.T.); (S.A.); (Y.A.); (J.K.); (S.Y.); (T.K.)
| | - Yuko Akagawa
- Department of Pediatrics, Kansai Medical University, Osaka 573-1010, Japan; (T.Y.); (S.T.); (S.A.); (Y.A.); (J.K.); (S.Y.); (T.K.)
| | - Jiro Kino
- Department of Pediatrics, Kansai Medical University, Osaka 573-1010, Japan; (T.Y.); (S.T.); (S.A.); (Y.A.); (J.K.); (S.Y.); (T.K.)
| | - Sohsaku Yamanouchi
- Department of Pediatrics, Kansai Medical University, Osaka 573-1010, Japan; (T.Y.); (S.T.); (S.A.); (Y.A.); (J.K.); (S.Y.); (T.K.)
| | - Takahisa Kimata
- Department of Pediatrics, Kansai Medical University, Osaka 573-1010, Japan; (T.Y.); (S.T.); (S.A.); (Y.A.); (J.K.); (S.Y.); (T.K.)
| | - Masaki Hashiyada
- Department of Legal Medicine, Kansai Medical University, Osaka 573-1010, Japan; (M.H.); (A.A.)
| | - Atsushi Akane
- Department of Legal Medicine, Kansai Medical University, Osaka 573-1010, Japan; (M.H.); (A.A.)
| | - Kazunari Kaneko
- Department of Pediatrics, Kansai Medical University, Osaka 573-1010, Japan; (T.Y.); (S.T.); (S.A.); (Y.A.); (J.K.); (S.Y.); (T.K.)
- Correspondence: ; Tel.: +81-728-040-101 (ext. 2560)
| |
Collapse
|