1
|
Ledesma-Aparicio J, Mailloux-Salinas P, Arias-Chávez DJ, Campos-Pérez E, Calixto-Tlacomulco S, Cruz-Rangel A, Reyes-Grajeda JP, Bravo G. Transcriptomic Analysis of the Protective Effect of Piperine on Orlistat Hepatotoxicity in Obese Male Wistar Rats. J Biochem Mol Toxicol 2024; 38:e70040. [PMID: 39503200 DOI: 10.1002/jbt.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
Obesity is a risk factor for the development of noncommunicable diseases that impair the quality of life. Orlistat is one of the most widely used drugs in the management of obesity due to its accessibility and low cost. However, cases of hepatotoxicity have been reported due to the consumption of this drug. On the other hand, piperine is an alkaloid found in black pepper that has demonstrated antiobesity, antihyperlipidemic, antioxidant, prebiotic, and hepatoprotective effects. The aim of this study was to evaluate the protective effect of piperine on the toxicity of orlistat in liver tissue. Obese male rats were administered piperine (30 mg/kg), orlistat (60 mg/kg), and the orlistat-piperine combination (30 mg/kg + 60 mg/kg) daily for 6 weeks. It was observed that the orlistat-piperine treatment resulted in greater weight loss, decreased biochemical markers (lipid profile, liver enzymes, pancreatic lipase activity), and histopathological analysis showed decreased hepatic steatosis and reduction of duodenal inflammation. Transcriptomic analysis revealed that the administration of piperine with orlistat increased the expression of genes related to the beta-oxidation of fatty acids, carbohydrate metabolism, detoxification of xenobiotics, and response to oxidative stress. Therefore, the results suggest that the administration of orlistat-piperine activates signaling pathways that confer a hepatoprotective effect, reducing the toxic impact of this drug.
Collapse
Affiliation(s)
- Jessica Ledesma-Aparicio
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Patrick Mailloux-Salinas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - David Julian Arias-Chávez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Elihu Campos-Pérez
- Departamento de Patología, Hospital General Dra Matilde Petra Montoya Lafragua, ISSSTE, Mexico City, Mexico
| | - Sandra Calixto-Tlacomulco
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Armando Cruz-Rangel
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Juan Pablo Reyes-Grajeda
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Guadalupe Bravo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| |
Collapse
|
2
|
Lee HY, Lee JH, Baek J, Cho KA, Min KJ. Piperine improves the health span of Drosophila melanogaster with age- and sex-specific effect. Biogerontology 2024; 25:665-677. [PMID: 38548993 DOI: 10.1007/s10522-024-10100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/17/2024] [Indexed: 07/02/2024]
Abstract
Piperine, a dietary phytochemical isolated from the Piper species, has been used as a natural medicine for pain, flu, and fever in ancient China and India. Although the health benefits of piperine have been widely studied, research on its effect on aging is limited. This study aimed to determine whether piperine has the potential to mitigate aging-related changes in the fruit fly (Drosophila melanogaster), which is an excellent model organism for studies on aging. The experiments were conducted using the newly eclosed or 30-day-old D. melanogaster wild-type strain Cantonized-white. Piperine was dissolved in 99% ethanol and added to the sucrose-yeast medium at a final concentration of 10, 35, 70, or 100 μM. The study examined the effects of piperine supplementation on the lifespan of D. melanogaster and other physiological functions, such as fecundity, feeding, lipid content, and resistance to environmental stress. Log-rank tests, Shapiro-Wilk test, F-test, t-test, or Wilcoxon rank sum test were used to analyze the data. Piperine failed to change the lifespan and body weight, but increased the fecundity and decreased the feeding rate in one-week-old flies. However, when piperine was fed to 30-day-old flies, it increased the lifespan of male flies and the fecundity and feeding rate of female flies. These results indicate that piperine can improve the health of aged flies. The findings suggest that piperine has age-dependent and sex-specific anti-aging effects in fruit flies.
Collapse
Affiliation(s)
- Hye-Yeon Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Ji-Hyeon Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Jisun Baek
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Jeonnam-do, 58128, Republic of Korea
- Research Center, Medispan Co., Ltd., Seongnam-si, Gyeonggi-do, 13486, Republic of Korea
| | - Kyung-Jin Min
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
3
|
Peng Y, Qi Z, Xu Y, Yang X, Cui Y, Sun Q. AMPK and metabolic disorders: The opposite roles of dietary bioactive components and food contaminants. Food Chem 2024; 437:137784. [PMID: 37897819 DOI: 10.1016/j.foodchem.2023.137784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
AMPK is a key player in a variety of metabolic and physiological processes, which might be considered one of the most promising targets for both prevention and treatment of metabolic syndrome and its associated diseases. Many dietary components and contaminants have been recently demonstrated to prevent or promote the development these diseases via AMPK-mediated pathways. AMPK can be activated by diverse phytochemical substances such as EGCG, chicoric acid, tomatidine, and others, all of which have been found to contribute to preventing or ameliorating chronic disorders. On the other hand, recent studies have found that metabolic disruptions induced by pesticides such as 1,3-Dichloro-2-propanol, imidacloprid, permethrin, are attributed to the inactivation of AMPK. This review may contribute to the development of functional foods for treatment of metabolic syndrome and associated diseases through modulating AMPK pathway.
Collapse
Affiliation(s)
- Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zexiu Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yuqing Xu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Xueyan Yang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yue Cui
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Quancai Sun
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, United States.
| |
Collapse
|
4
|
Nouri-Vaskeh M, Hashemi P, Hataminia N, Yazdani Y, Nasirian M, Alizadeh L. The impact of piperine on the metabolic conditions of patients with NAFLD and early cirrhosis: a randomized double-blind controlled trial. Sci Rep 2024; 14:1053. [PMID: 38200253 PMCID: PMC10782007 DOI: 10.1038/s41598-024-51726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic dysfunction of the liver defined as an abnormal accumulation of fat within the liver without secondary triggers like alcohol consumption or viral hepatitis. Piperine, the bio-active ingredient of black pepper, can exert a significant function in treatment of individuals with NAFLDand early cirrhosis. We investigated the impact of piperine consumption with a duration of 12 weeks on patients with NAFLD and early cirrhosis compared toplacebo consumption. In a double-blind study, patients with NAFLD and early stage of cirrhosis were haphazardly distributed into case and control groups. They were prescribed a placebo and 5 mg of piperine for 12 weeks, respectively. The demographic and laboratory parameters of individuals were assessed as the baseline and after the duration of piperine intake. Piperine with a daily dosage of 5 mg could significantly decrease hepatic enzymes and glucose, and alleviate dyslipidemia in the case arm rather than the control arm. Moreover, HOMA levels and insulin resistance were reduced in case participants compared to the control counterparts. In the absence of approved medicinal intervention for patients with NAFLD, and regarding the favorable impact of piperine on NAFLD more studies on this subject are warranted.
Collapse
Affiliation(s)
- Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran
| | - Payam Hashemi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Hataminia
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahkameh Nasirian
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Alizadeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Sirotkin AV. Peppers and their constituents against obesity. Biol Futur 2023; 74:247-252. [PMID: 37493973 DOI: 10.1007/s42977-023-00174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Phytotherapy can be an efficient tool for prevention and treatment of disorders including obesity. The purpose of this narrative review is to summarize the available knowledge concerning the positive effects of peppers (Capsicum spp.) and their alkaloid capsaicin on human health, in particular on fat and obesity. Search for literature was performed in Medline/Pubmed, Web of Science and SCOPUS databases between the year 2000 and 2023. Words used to search were pepper, Capsicum, capsaicin, review, obesity, fat, weight loss and mechanisms. The available data demonstrate that both pepper extract and capsaicin can positively influence human health and treat several disorders. Moreover, they can reduce fat storage affecting brain centres responsible for the sensation of hunger, nutrient uptake by gastrointestinal tract, state of adipocytes, increase in carbohydrate and fat oxidation, metabolism and thermogenesis and other mechanisms. Therefore, despite some possible limitations, these substances could be useful for treatment of obesity.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovak Republic.
| |
Collapse
|
6
|
He W, Liang L, Zhang Y. Pungency Perception and the Interaction with Basic Taste Sensations: An Overview. Foods 2023; 12:2317. [PMID: 37372528 DOI: 10.3390/foods12122317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The perception of pungency can be attributed to the combination of pain and heat, and it has critical impacts on food flavor and food consumption preferences. Many studies have reported a variety of pungent ingredients with different Scoville heat units (SHU), and the mechanism of pungent perception was revealed in vivo and in vitro. The worldwide use of spices containing pungent ingredients has led to an increasing awareness of their effects on basic tastes. However, the interaction between basic tastes and pungency perception based on structure-activity relationship, taste perception mechanism and neurotransmission lacks review and summary, considering its brighter prospects in food flavor. Thus, in this review, common pungency substances and pungency evaluation methods, and the mechanism of pungency perception is presented, and the interaction between basic tastes and pungency perception and the possible factors of their interaction are reviewed in detail. Pungent stimuli are mainly transduced through transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential fixed hormone isoform (TRPA1) activated by stimulants. Using modern detection techniques combined with sensory standards, different substances produce different degrees of pungent stimulation, ranging from 104 to 107 SHU/g. Pungent stimuli can affect taste receptor or channel protein conformation and regulate taste bud cell sensitivity by producing neurotransmission products. The products of neurotransmission and taste receptor cell activation in turn act on taste perception. When there are simultaneous effects of taste perception, pungency stimulation may enhance the perception of salty at a certain concentration, with a mutual inhibition effect with sour, sweet, and bitter taste, while its interaction with umami taste is not obvious. However, due to the complexity of perception and the uncertainty of many perceptual receptors or channels, the current studies of interactions are still controversial. Based on the understanding of the mechanism and influencing factors, the availability of pungency substances is proposed in the perspective of food industry in order to achieve new development.
Collapse
Affiliation(s)
- Wei He
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Nithiyanandam S, Evan Prince S. Caesalpinia bonducella mitigates oxidative damage by paracetamol intoxication in the kidney and intestine via modulating pro/anti-inflammatory and apoptotic signaling: an In vivo mechanistic insight. 3 Biotech 2023; 13:176. [PMID: 37188289 PMCID: PMC10175523 DOI: 10.1007/s13205-023-03601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
Protracted use of paracetamol at therapeutic/toxic doses readily induces major organ toxicity and poor clinical efficacy. Caesalpinia bonducella seeds possess a diverse range of biological and therapeutic activities. Thus, our study aimed to scrutinize the toxic effects of paracetamol and the potential renal and intestinal protective effects of Caesalpinia bonducella seed extract (CBSE). To Wistar rats, CBSE was administered for 8 days (300 mg/kg, p.o.) with or without paracetamol (2000 mg/kg, p.o.) on the 8th day. Pertinent toxicity assessments in the kidney and intestine were analyzed at the end of the study. The CBASE's phytochemical components were examined using gas chromatography-mass spectrometry (GC-MS). After the study period, study findings evidenced that paracetamol intoxication induced elevation of renal enzyme indicators, oxidative damage, imbalance with the pro/anti-inflammatory production and pro/anti-apoptotic mediators, and tissue injury; all repercussions were alleviated by pre-treatment with CBASE. CBASE considerably reduced (P < 0.05) paracetamol-induced kidney and intestine injury by limiting caspase-8/3 signaling and amplification of inflammation in renal and intestinal tissue by significantly reducing pro-inflammatory cytokine production. As per the GC-MS report, three main bioactive components-Piperine, Isocaryophyllene, and Tetradec-13-en-11-yn-1-ol were predominant and have protective activities. Our study ascertains that CBSE pre-treatment exerts potent renal and intestine protection against paracetamol intoxication. Thus, CBSE could be a prospective therapeutic candidate for protecting the kidney and intestine from the severity of paracetamol intoxication.
Collapse
Affiliation(s)
- Sangeetha Nithiyanandam
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu India
| | - Sabina Evan Prince
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu India
| |
Collapse
|
8
|
Kim J, Han D, Lee MS, Lee J, Kim IH, Kim Y. Green Tea and Java Pepper Mixture Prevents Obesity by Increasing Energy Expenditure and Modulating Hepatic AMPK/MicroRNA-34a/370 Pathway in High-Fat Diet-Fed Rats. Antioxidants (Basel) 2023; 12:antiox12051053. [PMID: 37237919 DOI: 10.3390/antiox12051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
This study was performed to evaluate the anti-obesity effects of green tea and java pepper mixture (GJ) on energy expenditure and understand the regulatory mechanisms of AMP-activated protein kinase (AMPK), microRNA (miR)-34a, and miR-370 pathways in the liver. Sprague-Dawley rats were divided into four groups depending on the following diets given for 14 weeks: normal chow diet (NR), 45% high-fat diet (HF), HF + 0.1% GJ (GJL), and HF + 0.2% GJ (GJH). The results revealed that GJ supplementation reduced body weight and hepatic fat accumulation, improved serum lipids, and increased energy expenditure. In the GJ-supplemented groups, the mRNA levels of genes related to fatty acid syntheses, such as a cluster of differentiation 36 (CD36), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and stearoyl-CoA desaturase 1 (SCD1) were downregulated, and mRNA levels of peroxisome proliferator-activated receptor alpha (PPARα), carnitine/palmitoyl-transferase 1 (CPT1), and uncoupling protein 2 (UCP2), which participate in fatty acid oxidation, were upregulated in the liver. GJ increased the AMPK activity and decreased the miR-34a and miR-370 expression. Therefore, GJ prevented obesity by increasing energy expenditure and regulating hepatic fatty acid synthesis and oxidation, suggesting that GJ is partially regulated through AMPK, miR-34a, and miR-370 pathways in the liver.
Collapse
Affiliation(s)
- Jibin Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dahye Han
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jumi Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science and Engineering, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - In-Hwan Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science and Engineering, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|