1
|
Guo S, Wang P, Sun Y, Cao C, Gao J, Hong S, Li N, Xu R. Transformation of Natural Resin Resina Draconis to 3D Functionalized Fibrous Scaffolds for Efficient Chronic Wound Healing. Adv Healthc Mater 2024:e2401105. [PMID: 38889446 DOI: 10.1002/adhm.202401105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Chronic wound healing is a major challenge in clinical practice. Secondary dressing damage and antibiotic resistance are the main obstacles for traditional wound dressings. Resina draconis (RD), a natural resin traditionally used in powder form for wound care, is now considered unsuitable due to the lack of gas permeability and moist environment required for wound healing. Here, RD is incorporated in situ by constructing a 3D coiled fibrous scaffold with polycaprolactone/polyethylene oxide. Due to the high porosity of 3D scaffold, the RD-3D dressings have a favorable swelling capacity, providing permeability and moisture for wound repair. Meanwhile, the transformation of RD powder into 3D dressings fully demonstrates capabilities of RD in rapid hemostasis, bactericidal, and inflammation-regulating activities. In vivo evaluations using pressure ulcer and infected wound models confirm the high efficacy of RD-3D dressing in early wound healing, particularly beneficial in the infected wound model compared to recombinant bovine FGF-basic. Further biological analysis shows that resveratrol, loureirin A, and loureirin B, as potentially bioactive components of RD, individually contribute to different aspects of wound healing. Collectively, RD-3D integrated dressings represent a simple, cost-effective, and safe approach to wound healing, providing an alternative therapy for translating medical dressings from bench to bedside.
Collapse
Affiliation(s)
- Shijie Guo
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengyu Wang
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yu Sun
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Can Cao
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junwei Gao
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shihao Hong
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
2
|
Velot É, Balmayor ER, Bertoni L, Chubinskaya S, Cicuttini F, de Girolamo L, Demoor M, Grigolo B, Jones E, Kon E, Lisignoli G, Murphy M, Noël D, Vinatier C, van Osch GJVM, Cucchiarini M. Women's contribution to stem cell research for osteoarthritis: an opinion paper. Front Cell Dev Biol 2023; 11:1209047. [PMID: 38174070 PMCID: PMC10762903 DOI: 10.3389/fcell.2023.1209047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/18/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Émilie Velot
- Laboratory of Molecular Engineering and Articular Physiopathology (IMoPA), French National Centre for Scientific Research, University of Lorraine, Nancy, France
| | - Elizabeth R. Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Lélia Bertoni
- CIRALE, USC 957, BPLC, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Flavia Cicuttini
- Musculoskeletal Unit, Monash University and Rheumatology, Alfred Hospital, Melbourne, VIC, Australia
| | - Laura de Girolamo
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Orthopaedic Biotechnology Laboratory, Milan, Italy
| | - Magali Demoor
- Normandie University, UNICAEN, BIOTARGEN, Caen, France
| | - Brunella Grigolo
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio RAMSES, Bologna, Italy
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, United Kingdom
| | - Elizaveta Kon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department ofBiomedical Sciences, Humanitas University, Milan, Italy
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Danièle Noël
- IRMB, University of Montpellier, Inserm, CHU Montpellier, Montpellier, France
| | - Claire Vinatier
- Nantes Université, Oniris, INSERM, Regenerative Medicine and Skeleton, Nantes, France
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine and Department of Otorhinolaryngology, Department of Biomechanical Engineering, University Medical Center Rotterdam, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
3
|
Co CM, Nguyen T, Vaish B, Izuagbe S, Borrelli J, Tang L. Biomolecule-releasing bioadhesive for glenoid labrum repair through induced host progenitor cell responses. J Orthop Res 2023; 41:1624-1636. [PMID: 36448179 PMCID: PMC10355087 DOI: 10.1002/jor.25494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Glenoid labral tears occur with repetitive dislocation events and are common injuries observed in shoulder arthroscopic procedures. Although surgery can restore shoulder anatomy, repair is associated with poor clinical outcomes, which may be attributed to the poor regenerative capability of glenoid labral fibrocartilage. Thus, this study was designed to assess whether in situ tissue regeneration via biomolecule-stimulated recruitment of progenitor cells is a viable approach for the regeneration of labral tears. We developed a click chemistry-based bioadhesive to improve labral repair and reduce local inflammatory responses due to trauma. Additionally, we previously identified the presence of progenitor cells in the human labrum, which can be recruited by platelet-derived growth factor (PDGF). Thus, we hypothesized that PDGF-releasing adhesives could induce the regenerative responses of progenitor cells at the injury site to improve labral healing. In a rat glenoid labral tear model, we evaluated the effect of PDGF-releasing adhesives on promoting progenitor cells to participate in labral tear healing. After 3 and 6 weeks, the labrum was histologically analyzed for inflammatory responses, progenitor cell recruitment, proliferation, and extracellular matrix (ECM) production (collagen and glycosaminoglycan). Our results showed that adhesives alone considerably reduced local inflammatory responses and labral tissue dissolution. PDGF-releasing adhesives significantly increased progenitor cell recruitment, proliferation, and ECM production. These results demonstrate that by accelerating autologous progenitor cell responses, PDGF-releasing adhesives represent a novel clinically relevant strategy to improve the healing of glenoid labral tears.
Collapse
Affiliation(s)
- Cynthia M Co
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Tam Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Bhavya Vaish
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Samira Izuagbe
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Joseph Borrelli
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
4
|
Gao LL, Wei Y, Tan YS, Li RX, Zhang CQ, Gao H. Irrigating degradation properties of silk fibroin-collagen type II composite cartilage scaffold in vitro and in vivo. BIOMATERIALS ADVANCES 2023; 149:213389. [PMID: 36965402 DOI: 10.1016/j.bioadv.2023.213389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Silk fibroin-collagen type II scaffolds are promising in cartilage tissue engineering due to their suitable biological functionality to promote proliferation of chondrocytes in vitro. However, their degradation properties, which are of crucial importance as scaffold degradation should consistent with the new tissue formation process, are still unknown. In this study, degradability of silk fibroin-collagen type II cartilage scaffolds was probed both in vitro and in vivo. In vitro degradation experiments show that the scaffolds decreased 32.25 % ± 0.62 %, 34.27 % ± 0.96 %, 36.27 % ± 2.39 % in weight after 8 weeks of degradation at the irrigation velocity of 0 mL/min, 7.89 mL/min and 15.79 mL/min. The degradation ratio, which increases with time and increasing irrigation velocity, is described by combining the built mathematic model and finite element modeling method. The scaffolds after 8 weeks of degradation in vitro keep their mechanical structural integrity to support new tissues. In vivo degradation experiments conducted in rabbits further show that the scaffolds degrade gradually, be absorbed with time and finally collapse in structure. The degradation process is accompanied by the growth of fibrous tissues and the scaffold is filled by fibrous tissues after 12 weeks of implantation. Immunohistology analysis shows that the inflammation caused by scaffolds is controllable and gradually alleviates with time. To sum up, silk fibroin-collagen type II cartilage scaffolds, which show suitable mechanical properties and biocompatibility during degradation in vitro and in vivo, have great potential in cartilage repair. The novelty of the study is that it not only introduces a mathematical model to predict the irrigation degradation ratio, but also provides experimental degradation data support for clinical application of silk fibroin-collagen type II cartilage scaffolds.
Collapse
Affiliation(s)
- Li-Lan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Ying Wei
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Yan-Song Tan
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China.
| | - Rui-Xin Li
- Tianjin Stomatological Hospital, Tianjin, China.
| | - Chun-Qiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China.
| | - Hong Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Altaie A, Baboolal TG, Wall O, Pandit H, Jones E, McGonagle D. Device-Based Enrichment of Knee Joint Synovial Cells to Drive MSC Chondrogenesis Without Prior Culture Expansion In Vitro: A Step Closer to 1-Stage Orthopaedic Procedures. Am J Sports Med 2022; 50:152-161. [PMID: 34779670 PMCID: PMC8739599 DOI: 10.1177/03635465211055164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/27/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Synovial fluid (SF) mesenchymal stem cells (MSCs) are derived from the synovial membrane and have cartilage repair potential. Their current use in clinical practice is largely exploratory. As their numbers tend to be small, therapeutic procedures using MSCs typically require culture expansion. Previous reports indicate that the stem cell-mobilizing device (STEM device) intraoperatively increases SF-MSCs. PURPOSE This study evaluated the chondrogenic potential of non-culture expanded synovium-mobilized MSCs and SF-microfragments obtained after enrichment using the STEM device and ascertained if device-mediated synovial membrane manipulation facilitated ongoing MSC release. STUDY DESIGN Controlled laboratory study. METHODS Two samples of aspiration fluid were collected intraoperatively before and after STEM device utilization from patients (n = 16) undergoing diagnostic or therapeutic knee arthroscopy. Human knee synovium (n = 5) was collected during total knee replacement, and a suspended culture was performed to assess the effect of the STEM device on ongoing MSC release. Colony forming unit-fibroblastic assays were used to determine the number of MSCs. Additionally, cytometric characterization of stromal and immune cells and chondrogenesis differentiation assay were performed without culture expansion. Filtered platelet concentrates were prepared using the HemaTrate system. RESULTS After STEM device use, a significant increase was evident in SF-MSCs (P = .03) and synovial fluid-resident synovial tissue microfragments (P = .03). In vitro-suspended synovium released significantly more MSCs following STEM device use than nonstimulated synovium (P = .01). The STEM device-released total cellular fraction produced greater in vitro chondrogenesis with significantly more glycosaminoglycans (GAGs; P < .0001) when compared with non-STEM device synovial fluid material. Nonexpanded SF-MSCs and SF-microfragments combined with autologous filtered platelet concentrate produced significantly more GAGs than the complete chondrogenic media (P < .0001). The STEM device-mobilized cells contained more M2 macrophage cells and fewer M1 cells. CONCLUSION Non-culture expanded SF-MSCs and SF-microfragments had the potential to undergo chondrogenesis without culture expansion, which can be augmented using the STEM device with increased MSC release from manipulated synovium for several days. Although preliminary, these findings offer proof of concept toward manipulation of the knee joint environment to facilitate endogenous repair responses. CLINICAL RELEVANCE Although numbers were small, this study highlights 3 factors relevant to 1-stage joint repair using the STEM device: increased SF-MSCs and SF-microfragments and prolonged synovial release of MSCs. Joint repair strategies involving endogenous MSCs for cartilage repair without the need for culture expansion in a 1-stage procedure may be possible.
Collapse
Affiliation(s)
- Ala Altaie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Thomas G. Baboolal
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Owen Wall
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Leeds Biomedical Research Centre, National Institute for Health Research, Leeds, UK
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Leeds Biomedical Research Centre, National Institute for Health Research, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Leeds Biomedical Research Centre, National Institute for Health Research, Leeds, UK
| |
Collapse
|
6
|
Perry J, Roelofs AJ, Mennan C, McCarthy HS, Richmond A, Clark SM, Riemen AHK, Wright K, De Bari C, Roberts S. Human Mesenchymal Stromal Cells Enhance Cartilage Healing in a Murine Joint Surface Injury Model. Cells 2021; 10:1999. [PMID: 34440768 PMCID: PMC8393840 DOI: 10.3390/cells10081999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 01/15/2023] Open
Abstract
Human umbilical cord (hUC)- or bone marrow (hBM)-derived mesenchymal stromal cells (MSCs) were evaluated as an allogeneic source of cells for cartilage repair. We aimed to determine if they could enhance healing of chondral defects with or without the recruitment of endogenous cells. hMSCs were applied into a focal joint surface injury in knees of adult mice expressing tdTomato fluorescent protein in cells descending from Gdf5-expressing embryonic joint interzone cells. Three experimental groups were used: (i) hUC-MSCs, (ii) hBM-MSCs and (iii) PBS (vehicle) without cells. Cartilage repair was assessed after 8 weeks and tdTomato-expressing cells were detected by immunostaining. Plasma levels of pro-inflammatory mediators and other markers were measured by electrochemiluminescence. Both hUC-MSC (n = 14, p = 0.009) and hBM-MSC (n = 13, p = 0.006) treatment groups had significantly improved cartilage repair compared to controls (n = 18). While hMSCs were not detectable in the repair tissue at 8 weeks post-implantation, increased endogenous Gdf5-lineage cells were detected in repair tissue of hUC-MSC-treated mice. This xenogeneic study indicates that hMSCs enhance intrinsic cartilage repair mechanisms in mice. Hence, hMSCs, particularly the more proliferative hUC-MSCs, could represent an attractive allogeneic cell population for treating patients with chondral defects and perhaps prevent the onset and progression of osteoarthritis.
Collapse
Affiliation(s)
- Jade Perry
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK; (C.M.); (H.S.M.); (K.W.); (S.R.)
- The School of Pharmacy & Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
| | - Anke J. Roelofs
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
- Arthritis and Regenerative Medicine Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (A.J.R.); (A.R.); (S.M.C.); (A.H.K.R.); (C.D.B.)
| | - Claire Mennan
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK; (C.M.); (H.S.M.); (K.W.); (S.R.)
- The School of Pharmacy & Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
| | - Helen S. McCarthy
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK; (C.M.); (H.S.M.); (K.W.); (S.R.)
- The School of Pharmacy & Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
| | - Alison Richmond
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
- Arthritis and Regenerative Medicine Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (A.J.R.); (A.R.); (S.M.C.); (A.H.K.R.); (C.D.B.)
| | - Susan M. Clark
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
- Arthritis and Regenerative Medicine Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (A.J.R.); (A.R.); (S.M.C.); (A.H.K.R.); (C.D.B.)
| | - Anna H. K. Riemen
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
- Arthritis and Regenerative Medicine Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (A.J.R.); (A.R.); (S.M.C.); (A.H.K.R.); (C.D.B.)
| | - Karina Wright
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK; (C.M.); (H.S.M.); (K.W.); (S.R.)
- The School of Pharmacy & Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
| | - Cosimo De Bari
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
- Arthritis and Regenerative Medicine Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (A.J.R.); (A.R.); (S.M.C.); (A.H.K.R.); (C.D.B.)
| | - Sally Roberts
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, Shropshire SY10 7AG, UK; (C.M.); (H.S.M.); (K.W.); (S.R.)
- The School of Pharmacy & Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- The Tissue Engineering & Regenerative Therapies Centre versus Arthritis, Cambridge CB2 2QQ, UK
| |
Collapse
|
7
|
Menarim BC, Gillis KH, Oliver A, Ngo Y, Werre SR, Barrett SH, Rodgerson DH, Dahlgren LA. Macrophage Activation in the Synovium of Healthy and Osteoarthritic Equine Joints. Front Vet Sci 2020; 7:568756. [PMID: 33324696 PMCID: PMC7726135 DOI: 10.3389/fvets.2020.568756] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/19/2020] [Indexed: 01/15/2023] Open
Abstract
Synovitis is a major component of osteoarthritis and is driven primarily by macrophages. Synovial macrophages are crucial for joint homeostasis (M2-like phenotype), but induce inflammation (M1-like) when regulatory functions become overwhelmed. Macrophage phenotypes in synovium from osteoarthritic and healthy joints are poorly characterized; however, comparative knowledge of their phenotypes during health and disease is paramount for developing targeted treatments. This study compared patterns of macrophage activation in healthy and osteoarthritic equine synovium and correlated histology with cytokine/chemokine profiles in synovial fluid. Synovial histology and immunohistochemistry for M1-like (CD86), M2-like (CD206, IL-10), and pan macrophage (CD14) markers were performed on biopsies from 29 healthy and 26 osteoarthritic equine joints. Synovial fluid cytokines (MCP-1, IL-10, PGE2, IL-1β, IL-6, TNF-α, IL-1ra) and growth factors (GM-CSF, SDF-1α+β, IGF-1, and FGF-2) were quantified. Macrophage phenotypes were not as clearly defined in vivo as they are in vitro. All macrophage markers were expressed with minimal differences between OA and normal joints. Expression for all markers increased proportionate to synovial inflammation, especially CD86. Synovial fluid MCP-1 was higher in osteoarthritic joints while SDF-1 and IL-10 were lower, and PGE2 concentrations did not differ between groups. Increased CD14/CD86/CD206/IL-10 expression was associated with synovial hyperplasia, consistent with macrophage recruitment and activation in response to injury. Lower synovial fluid IL-10 could suggest that homeostatic mechanisms from synovial macrophages became overwhelmed preventing inflammation resolution, resulting in chronic inflammation and OA. Further investigations into mechanisms of arthritis resolution are warranted. Developing pro-resolving therapies may provide superior results in the treatment of OA.
Collapse
Affiliation(s)
- Bruno C. Menarim
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Kiersten H. Gillis
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Andrea Oliver
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Ying Ngo
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Stephen R. Werre
- Laboratory for Study Design and Statistical Analysis, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sarah H. Barrett
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | | | - Linda A. Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|